• Je něco špatně v tomto záznamu ?

A Lunar Microbial Survival Model for Predicting the Forward Contamination of the Moon

AC. Schuerger, JE. Moores, DJ. Smith, G. Reitz,

. 2019 ; 19 (6) : 730-756. [pub] 20190318

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025823

The surface conditions on the Moon are extremely harsh with high doses of ultraviolet (UV) irradiation (26.8 W · m-2 UVC/UVB), wide temperature extremes (-171°C to 140°C), low pressure (10-10 Pa), and high levels of ionizing radiation. External spacecraft surfaces on the Moon are generally >100°C during daylight hours and can reach as high as 140°C at local noon. A Lunar Microbial Survival (LMS) model was developed that estimated (1) the total viable bioburden of all spacecraft landed on the Moon as ∼4.57 × 1010 microbial cells/spores at contact, (2) the inactivation kinetics of Bacillus subtilis spores to vacuum as approaching -2 logs per 2107 days, (3) the inactivation of spores on external surfaces due to concomitant low-pressure and high-temperature conditions as -6 logs per 8 h for local noon conditions, and (4) the ionizing radiation by solar wind particles as approaching -3 logs per lunation on external surfaces only. When the biocidal factors of solar UV, vacuum, high-temperature, and ionizing radiation were combined into an integrated LMS model, a -231 log reduction in viable bioburden was predicted for external spacecraft surfaces per lunation at the equator. Results indicate that external surfaces of landed or crashed spacecraft are unlikely to harbor viable spores after only one lunation, that shallow internal surfaces will be sterilized due to the interactive effects of vacuum and thermal cycling from solar irradiation, and that deep internal surfaces would be affected only by vacuum with a degradation rate of -0.02 logs per lunation.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025823
003      
CZ-PrNML
005      
20201222155454.0
007      
ta
008      
201125s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1089/ast.2018.1952 $2 doi
035    __
$a (PubMed)30810338
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Schuerger, Andrew C $u 1 Department of Plant Pathology, University of Florida, Gainesville, Florida.
245    12
$a A Lunar Microbial Survival Model for Predicting the Forward Contamination of the Moon / $c AC. Schuerger, JE. Moores, DJ. Smith, G. Reitz,
520    9_
$a The surface conditions on the Moon are extremely harsh with high doses of ultraviolet (UV) irradiation (26.8 W · m-2 UVC/UVB), wide temperature extremes (-171°C to 140°C), low pressure (10-10 Pa), and high levels of ionizing radiation. External spacecraft surfaces on the Moon are generally >100°C during daylight hours and can reach as high as 140°C at local noon. A Lunar Microbial Survival (LMS) model was developed that estimated (1) the total viable bioburden of all spacecraft landed on the Moon as ∼4.57 × 1010 microbial cells/spores at contact, (2) the inactivation kinetics of Bacillus subtilis spores to vacuum as approaching -2 logs per 2107 days, (3) the inactivation of spores on external surfaces due to concomitant low-pressure and high-temperature conditions as -6 logs per 8 h for local noon conditions, and (4) the ionizing radiation by solar wind particles as approaching -3 logs per lunation on external surfaces only. When the biocidal factors of solar UV, vacuum, high-temperature, and ionizing radiation were combined into an integrated LMS model, a -231 log reduction in viable bioburden was predicted for external spacecraft surfaces per lunation at the equator. Results indicate that external surfaces of landed or crashed spacecraft are unlikely to harbor viable spores after only one lunation, that shallow internal surfaces will be sterilized due to the interactive effects of vacuum and thermal cycling from solar irradiation, and that deep internal surfaces would be affected only by vacuum with a degradation rate of -0.02 logs per lunation.
650    _2
$a Bacillus subtilis $x fyziologie $x účinky záření $7 D001412
650    _2
$a kosmické záření $x škodlivé účinky $7 D003359
650    _2
$a mimozemské prostředí $7 D005118
650    _2
$a vysoká teplota $7 D006358
650    _2
$a mikrobiální viabilita $x účinky záření $7 D050296
650    12
$a biologické modely $7 D008954
650    12
$a Měsíc $7 D016081
650    _2
$a simulace kosmického prostředí $x metody $7 D018561
650    _2
$a kosmická loď $7 D018531
650    _2
$a spory bakteriální $x fyziologie $x účinky záření $7 D013171
650    _2
$a ultrafialové záření $x škodlivé účinky $7 D014466
650    _2
$a vakuum $7 D014618
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Moores, John E $u 2 Centre for Research in Earth and Space Science (CRESS), York University, Toronto, ON Canada.
700    1_
$a Smith, David J $u 3 Space Biosciences Division, NASA, Ames Research Center, Moffett Field, California.
700    1_
$a Reitz, Günther $u 4 Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Praha, Czech Republic. 5 Radiation Biology Division, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany.
773    0_
$w MED00181699 $t Astrobiology $x 1557-8070 $g Roč. 19, č. 6 (2019), s. 730-756
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30810338 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222155450 $b ABA008
999    __
$a ok $b bmc $g 1599968 $s 1116509
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 19 $c 6 $d 730-756 $e 20190318 $i 1557-8070 $m Astrobiology $n Astrobiology $x MED00181699
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...