Transmission of foreshock waves through Earth's bow shock

. 2023 ; 19 (1) : 78-86. [epub] 20221219

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36687291

The Earth's magnetosphere and its bow shock, which is formed by the interaction of the supersonic solar wind with the terrestrial magnetic field, constitute a rich natural laboratory enabling in situ investigations of universal plasma processes. Under suitable interplanetary magnetic field conditions, a foreshock with intense wave activity forms upstream of the bow shock. So-called 30 s waves, named after their typical period at Earth, are the dominant wave mode in the foreshock and play an important role in modulating the shape of the shock front and affect particle reflection at the shock. These waves are also observed inside the magnetosphere and down to the Earth's surface, but how they are transmitted through the bow shock remains unknown. By combining state-of-the-art global numerical simulations and spacecraft observations, we demonstrate that the interaction of foreshock waves with the shock generates earthward-propagating, fast-mode waves, which reach the magnetosphere. These findings give crucial insight into the interaction of waves with collisionless shocks in general and their impact on the downstream medium.

Zobrazit více v PubMed

Wu, M. et al. The role of large amplitude upstream low-frequency waves in the generation of superthermal ions at a quasi-parallel collisionless shock: Cluster observations. Astrophys. J.808, 2 (2015).

Haggerty CC, Caprioli D. Kinetic simulations of cosmic-ray-modified shocks. I. Hydrodynamics. Astrophys. J. 2020;905:1. doi: 10.3847/1538-4357/abbe06. DOI

Caprioli, D., Haggerty, C. C. & Blasi, P. Kinetic simulations of cosmic-ray-modified shocks. II. Particle spectra. Astrophys. J.905, 2 (2020).

Collinson G, et al. Solar wind induced waves in the skies of Mars: ionospheric compression, energization, and escape resulting from the impact of ultralow frequency magnetosonic waves generated upstream of the Martian bow shock. J. Geophys. Res. Space Phys. 2018;123:7241–7256. doi: 10.1029/2018JA025414. DOI

Burgess D. Foreshock–shock interaction at collisionless quasi-parallel shocks. Adv. Space Res. 1995;15:159–169. doi: 10.1016/0273-1177(94)00098-L. DOI

Vladimirov A, Ellison DC, Bykov A. Nonlinear diffusive shock acceleration with magnetic field amplification. Astrophys. J. 2006;652:1246–1258. doi: 10.1086/508154. DOI

Liu, T. Z., Hao, Y., Wilson, L. B., Turner, D. L. & Zhang, H. Magnetospheric Multiscale observations of Earth’s oblique bow shock reformation by foreshock ultralow-frequency waves. Geophys. Res. Lett.48, e91184 (2021).

Troitskaya VA, Plyasova-Bakounina TA, Gul’Elmi AV. The connection of Pc2–4 pulsations with the interplanetary magnetic field. Dokl. Akademiia Nauk SSSR. 1971;197:1312–1314.

Takahashi K, McPherron RL, Terasawa T. Dependence of the spectrum of Pc 3–4 pulsations on the interplanetary magnetic field. J. Geophys. Res. 1984;89:2770–2780. doi: 10.1029/JA089iA05p02770. DOI

Heilig B, Lühr H, Rother M. Comprehensive study of ULF upstream waves observed in the topside ionosphere by CHAMP and on the ground. Ann. Geophys. 2007;25:737–754. doi: 10.5194/angeo-25-737-2007. DOI

Bier EA, et al. Investigating the IMF cone angle control of Pc3–4 pulsations observed on the ground. J. Geophys. Res. Space Phys. 2014;119:1797–1813. doi: 10.1002/2013JA019637. DOI

Howard TA, Menk FW. Ground observations of high-latitude Pc3–4 ULF waves. J. Geophys. Res. Space Phys. 2005;110:A04205. doi: 10.1029/2004JA010417. DOI

Del Corpo A, et al. An empirical model for the dayside magnetospheric plasma mass density derived from EMMA magnetometer network observations. J. Geophys. Res. Space Phys. 2020;125:e27381.

Rasinkangas R, Mursula K. Modulation of magnetospheric EMIC waves by Pc 3 pulsations of upstream origin. Geophys. Res. Lett. 1998;25:869–872. doi: 10.1029/98GL50415. DOI

Motoba T, et al. On the driver of daytime Pc3 auroral pulsations. Geophys. Res. Lett. 2019;46:553–561. doi: 10.1029/2018GL080842. DOI

Burch, J. L., Moore, T. E., Torbert, R. B. & Giles, B. L. Magnetospheric Multiscale overview and science objectives. Space Sci. Rev.199, 5–21 (2016).

Eastwood JP, et al. The foreshock. Space Sci. Rev. 2005;118:41–94. doi: 10.1007/s11214-005-3824-3. DOI

Wilson LB. Low frequency waves at and upstream of collisionless shocks. Geophys. Monogr. Ser. 2016;216:269–291. doi: 10.1002/9781119055006.ch16. DOI

Turc L, et al. Foreshock properties at typical and enhanced interplanetary magnetic field strengths: results from hybrid-Vlasov simulations. J. Geophys. Res. Space Phys. 2018;123:5476–5493. doi: 10.1029/2018JA025466. DOI

Turc L, et al. First observations of the disruption of the Earth’s foreshock wave field during magnetic clouds. Geophys. Res. Lett. 2019;46:12,644–12,653. doi: 10.1029/2019GL084437. DOI

Le G, Russell CT. Solar wind control of upstream wave frequency. J. Geophys. Res. 1996;101:2571–2576. doi: 10.1029/95JA03151. DOI

Russell CT, Luhmann JG, Odera TJ, Stuart WF. The rate of occurrence of dayside Pc 3,4 pulsations: the L-value dependence of the IMF cone angle effect. Geophys. Res. Lett. 1983;10:663–666. doi: 10.1029/GL010i008p00663. DOI

Clausen LBN, et al. First simultaneous measurements of waves generated at the bow shock in the solar wind, the magnetosphere and on the ground. Ann. Geophys. 2009;27:357–371. doi: 10.5194/angeo-27-357-2009. DOI

Francia P, Regi M, De Lauretis M, Villante U, Pilipenko VA. A case study of upstream wave transmission to the ground at polar and low latitudes. J. Geophys. Res. Space Phys. 2012;117:A01210. doi: 10.1029/2011JA016751. DOI

Takahashi K, et al. Propagation of ULF waves from the upstream region to the midnight sector of the inner magnetosphere. J. Geophys. Res. Space Phys. 2016;121:8428–8447. doi: 10.1002/2016JA022958. DOI

Czaykowska A, Bauer TM, Treumann RA, Baumjohann W. Magnetic field fluctuations across the Earth’s bow shock. Ann. Geophys. 2001;19:275–287. doi: 10.5194/angeo-19-275-2001. DOI

Narita Y, et al. Low-frequency wave characteristics in the upstream and downstream regime of the terrestrial bow shock. J. Geophys. Res. Space Phys. 2006;111:A01203. doi: 10.1029/2005JA011231. DOI

Krauss-Varban D. Bow shock and magnetosheath simulations: wave transport and kinetic properties. Geophys. Monogr. Ser. 1994;81:121–134.

Krauss-Varban D. Waves associated with quasi-parallel shocks: generation, mode conversion and implications. Adv. Space Res. 1995;15:271–284. doi: 10.1016/0273-1177(94)00107-C. DOI

Engebretson MJ, et al. A comparison of ULF fluctuations in the solar wind, magnetosheath, and dayside magnetosphere. 1. Magnetosheath morphology. J. Geophys. Res. 1991;96:3441–3454. doi: 10.1029/90JA02101. DOI

Engebretson MJ, et al. The role of the ionosphere in coupling upstream ULF wave power into the dayside magnetosphere. J. Geophys. Res. 1991;96:1527–1542. doi: 10.1029/90JA01767. DOI

von Alfthan S, et al. Vlasiator: first global hybrid-Vlasov simulations of Earth’s foreshock and magnetosheath. J. Atmos. Sol. Terrestrial Phys. 2014;120:24–35. doi: 10.1016/j.jastp.2014.08.012. DOI

Palmroth M, et al. Vlasov methods in space physics and astrophysics. Living Rev. Comput. Astrophys. 2018;4:1. doi: 10.1007/s41115-018-0003-2. PubMed DOI PMC

Palmroth, M. et al. ULF foreshock under radial IMF: THEMIS observations and global kinetic simulation Vlasiator results compared. J. Geophys. Res. Space Phys.120, 8782–8798 (2015).

Kempf Y, et al. Ion distributions in the Earth’s foreshock: hybrid-Vlasov simulation and THEMIS observations. J. Geophys. Res. Space Phys. 2015;120:3684–3701. doi: 10.1002/2014JA020519. DOI

Pfau-Kempf Y, et al. Evidence for transient, local ion foreshocks caused by dayside magnetopause reconnection. Ann. Geophys. 2016;34:943–959. doi: 10.5194/angeo-34-943-2016. DOI

Blanco-Cano X, et al. Cavitons and spontaneous hot flow anomalies in a hybrid-Vlasov global magnetospheric simulation. Ann. Geophys. 2018;36:1081–1097. doi: 10.5194/angeo-36-1081-2018. DOI

Takahashi K, et al. Propagation of ultralow-frequency waves from the ion foreshock into the magnetosphere during the passage of a magnetic cloud. J. Geophys. Res. Space Phys. 2021;126:e2020JA028474. doi: 10.1029/2020JA028474. DOI

Kilpua EKJ, Balogh A, von Steiger R, Liu YD. Geoeffective properties of solar transients and stream interaction regions. Space Sci. Rev. 2017;212:1271–1314. doi: 10.1007/s11214-017-0411-3. DOI

Winterhalter, D. & Kivelson, M. G. Observations of the Earth’s bow shock under high Mach number/high plasma beta solar wind conditions. Geophys. Res. Lett.15, 1161–1164 (1988).

Le G, Russell CT. A study of ULF wave foreshock morphology - II: spatial variation of ULF waves. Planet. Space Sci. 1992;40:1215–1225. doi: 10.1016/0032-0633(92)90078-3. DOI

Shevyrev NN, Zastenker GN, Eiges PE, Richardson JD. Low frequency waves observed by Interball-1 in foreshock and magnetosheath. Adv. Space Res. 2006;37:1516–1521. doi: 10.1016/j.asr.2005.07.072. DOI

Eastwood JP, Balogh A, Lucek EA, Mazelle C, Dandouras I. Quasi-monochromatic ULF foreshock waves as observed by the four-spacecraft Cluster mission: 1. Statistical properties. J. Geophys. Res. Space Phys. 2005;110:A11219. doi: 10.1029/2004JA010617. DOI

Schwartz SJ. Shock and discontinuity normals, Mach numbers, and related parameters. ISSI Sci. Rep. Ser. 1998;1:249–270.

Battarbee M, et al. Non-locality of Earth’s quasi-parallel bow shock: injection of thermal protons in a hybrid-Vlasov simulation. Ann. Geophys. 2020;38:625–643. doi: 10.5194/angeo-38-625-2020. DOI

Bellan PM. Revised single-spacecraft method for determining wave vector k and resolving space–time ambiguity. J. Geophys. Res. Space Phys. 2016;121:8589–8599. doi: 10.1002/2016JA022827. DOI

Verscharen D, Chandran BDG. NHDS: The New Hampshire Dispersion Relation Solver. Res. Notes AAS. 2018;2:13. doi: 10.3847/2515-5172/aabfe3. DOI

Wu B-H, Mandt ME, Lee LC, Chao JK. Magnetospheric response to solar wind dynamic pressure variations: interaction of interplanetary tangential discontinuities with the bow shock. J. Geophys. Res. 1993;98:21297–21312. doi: 10.1029/93JA01013. DOI

Maynard NC, et al. Interaction of the bow shock with a tangential discontinuity and solar wind density decrease: observations of predicted fast mode waves and magnetosheath merging. J. Geophys. Res. Space Phys. 2007;112:A12219. doi: 10.1029/2007JA012293. DOI

Thomas VA, Winske D, Thomsen MF. Simulation of upstream pressure pulse propagation through the bow shock. J. Geophys. Res. 1995;100:23481–23488. doi: 10.1029/95JA02856. DOI

McKenzie JF, Westphal KO. Interaction of hydromagnetic waves with hydromagnetic shocks. Phys. Fluids. 1970;13:630–640. doi: 10.1063/1.1692968. DOI

Krauss-Varban D, Omidi N. Structure of medium mach number quasi-parallel shocks: upstream and downstream waves. J. Geophys. Res. 1991;96:17715–17731. doi: 10.1029/91JA01545. DOI

Matsuoka A, Southwood DJ, Kokubun S, Mukai T. Propagation sense of low-frequency MHD waves in the magnetosheath observed by Geotail. J. Geophys. Res. 2000;105:18,361–18,376.

Schäfer S, et al. Statistical phase propagation and dispersion analysis of low frequency waves in the magnetosheath. Ann. Geophys. 2005;23:3339–3349. doi: 10.5194/angeo-23-3339-2005. DOI

Pfau-Kempf Y, et al. On the importance of spatial and velocity resolution in the hybrid-Vlasov modeling of collisionless shocks. Front. Phys. Plasma Phys. 2018;6:44. doi: 10.3389/fphy.2018.00044. DOI

Torrence C, Compo GP. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998;79:61–78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2. DOI

Roberts OW, et al. Possible coexistence of kinetic Alfvén and ion Bernstein modes in sub-ion scale compressive turbulence in the solar wind. Phys. Rev. Res. 2020;2:043253. doi: 10.1103/PhysRevResearch.2.043253. DOI

Gershman DJ, et al. Energy partitioning constraints at kinetic scales in low-β turbulence. Phys. Plasmas. 2018;25:022303. doi: 10.1063/1.5009158. PubMed DOI PMC

Russell, C. T. et al. The Magnetospheric Multiscale magnetometers. Space Sci. Rev.199, 189–256 (2016).

Pollock, C. et al. Fast plasma investigation for Magnetospheric Multiscale. Space Sci. Rev.199, 331–406 (2016).

Narita Y, et al. Alfven waves in the foreshock propagating upstream in the plasma rest frame: statistics from Cluster observations. Ann. Geophys. 2004;22:2315–2323. doi: 10.5194/angeo-22-2315-2004. DOI

Sahraoui F, Belmont G, Goldstein ML, Rezeau L. Limitations of multispacecraft data techniques in measuring wave number spectra of space plasma turbulence. J. Geophys. Res. Space Phys. 2010;115:A04206. doi: 10.1029/2009JA014724. DOI

Robert P, Dunlop MW, Roux A, Chanteur G. Accuracy of current density determination. ISSI Sci. Rep. Ser. 1998;1:395–418.

Quest KB. Theory and simulation of collisionless parallel shocks. J. Geophys. Res. 1988;93:9649–9680. doi: 10.1029/JA093iA09p09649. DOI

Sandroos, A. Vlsv: file format and tools. GitHubhttps://github.com/fmihpc/vlsv/ (2022).

Hannuksela, O. & the Vlasiator team. Analysator: Python analysis toolkit. GitHubhttps://github.com/fmihpc/analysator/ (2022).

Battarbee, M. & the Vlasiator team. Analysator: Python analysis toolkit. Zenodo10.5281/zenodo.4462515 (2021).

Palmroth, M. Vlasiator web site. Univ. of Helsinkihttps://www.helsinki.fi/en/researchgroups/vlasiator/ (2022).

Pfau-Kempf, Y. & the Vlasiator team. fmihpc/vlasiator: Vlasiator 5.1. Zenodo10.5281/zenodo.4719554 (2021).

Palmroth, M. & the Vlasiator team. Vlasiator: hybrid-Vlasov simulation code. GitHubhttps://github.com/fmihpc/vlasiator/ (2022).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...