A Novel Determination of the Foreshock ULF Boundary: Statistical Approach
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
39618906
PubMed Central
PMC11606384
DOI
10.1029/2024ja033195
PII: JGRA58828
Knihovny.cz E-resources
- Keywords
- ULF wave foreshock boundary, ULF waves, bow shock, foreshock, solar wind,
- Publication type
- Journal Article MeSH
The location and spatial extent of the region populated by the foreshock waves depend on the IMF orientation. We performed a systematic statistical study of wave activity in the frequency range of 0.03 - 0.15 Hz observed during an initial phase of the THEMIS mission. Wave activity is quantified by standard deviations of the IMF magnitude and its components over 10-min intervals. We apply the foreshock coordinate system defined as the angle between the bow shock normal and upstream magnetic field vectors and the distance from the spacecraft to bow shock along the magnetic field line. We have found that the Ultra-low Frequency (ULF) foreshock boundary (a) is well defined in these coordinates, (b) it tends to shift outward with an increasing solar wind bulk speed, and (c) with an increasing Mach number. However, the change of the fluctuation level in the foreshock is not uniform because the increasing solar wind bulk speed enhances the fluctuation level mainly in a close proximity of the bow shock whereas the increasing Mach number leads to an intensification of fluctuation levels at the foreshock boundary.
See more in PubMed
Andres, N. , Gomez, D. O. , Bertucci, C. , Mazelle, C. , & Dougherty, M. K. (2013). Saturn's ULF wave foreshock boundary: Cassini observations. Planetary and Space Science, 79–80, 64–75. 10.1016/j.pss.2013.01.014 DOI
Andres, N. , Meziane, K. , Mazelle, C. , Bertucci, C. , & Gomez, D. (2015). The ULF wave foreshock boundary: Cluster observations. Journal of Geophysical Research: Space Physics, 120(6), 4181–4193. 10.1002/2014JA020783 DOI
Auster, H. U. , Glassmeier, K. H. , Magnes, W. , Aydogar, O. , Baumjohann, W. , Constantinescu, D. , et al. (2008). The THEMIS fluxgate magnetometer. Space Science Reviews, 141(1), 235–264. 10.1007/s11214-008-9365-9 DOI
Berdichevsky, D. , Thejappa, G. , Fitzenreiter, R. J. , Lepping, R. L. , Yamamoto, T. , Kokubun, S. , et al. (1999). Widely spaced wave‐particle observations during GEOTAIL and Wind magnetic conjunctions in the Earth's ion foreshock with near‐radial interplanetary magnetic field. Journal of Geophysical Research, 104(A1), 463–482. 10.1029/1998JA900018 DOI
Blanco‐Cano, X. , Omidi, N. , & Russell, C. T. (2009). Global hybrid simulations: Foreshock waves and Cavitons under radial interplanetary magnetic field geometry. Journal of Geophysical Research, 114(A1). 10.1029/2008JA013406 DOI
Blanco‐Cano, X. , & Schwartz, S. J. (1997). Identification of low‐frequency kinetic wave modes in the Earth's ion foreshock. Annals of Geophysics, 15(3), 273–288. 10.1007/s00585-997-0273-1 DOI
Bonifazi, C. , & Moreno, G. (1981). Reflected and diffuse ions backstreaming from the Earth's bow shock. 1. Basic properties. Journal of Geophysical Research, 86(NA6), 4397–4404. 10.1029/JA086iA06p04397 DOI
Burgess, D. , Möbius, E. , & Scholer, M. (2012). Ion acceleration at the Earth's bow shock. Space Science Reviews, 173(1), 5–47. 10.1007/s11214-012-9901-5 DOI
Dorfman, S. , Zhang, K. , Turc, L. , Ganse, U. , & Palmroth, M. (2023). Probing the foreshock wave boundary with single spacecraft techniques. Journal of Geophysical Research: Space Physics, 128(9). 10.1029/2023JA031724 DOI
Eastwood, J. P. , Lucek, E. A. , Mazelle, C. , Meziane, K. , Narita, Y. , Pickett, J. , & Treumann, R. A. (2005). The foreshock. Space Science Reviews, 118(1–4), 41–94. 10.1007/s11214-005-3824-3 DOI
Fairfield, D. H. (1969). Bow shock associated waves observed in the far upstream interplanetary medium. Journal of Geophysical Research, 74(14), 3541–3553. 10.1029/JA074i014p03541 DOI
Fairfield, D. H. (1974). Whistler waves observed upstream from Collisionless shocks. Journal of Geophysical Research, 79(10), 1368–1378. 10.1029/JA079i010p01368 DOI
Farris, M. H. , Petrinec, S. M. , & Russell, C. T. (1991). The thickness of the magnetosheath—Constraints on the Polytropic index. Geophysical Research Letters, 18(10), 1821–1824. 10.1029/91GL02090 DOI
Fuselier, S. A. , Thomsen, M. F. , Gosling, J. T. , Bame, S. J. , & Russell, C. T. (1986). Gyrating and intermediate ion distributions upstream from the Earth's bow shock. Journal of Geophysical Research, 91(A1), 91–99. 10.1029/JA091iA01p00091 DOI
Gary, S. P. (1991). Electromagnetic ion/ion instabilities and their consequences in space plasmas: A review. Space Science Reviews, 56(3), 373–415. 10.1007/BF00196632 DOI
Greenstadt, E. W. (1976). Energies of backstreaming protons in the foreshock. Geophysical Research Letters, 3(9), 553–556. 10.1029/GL003i009p00553 DOI
Greenstadt, E. W. , & Baum, L. W. (1986). Earth's compressional foreshock boundary revisited—Observations by the ISEE 1 magnetometer. Journal of Geophysical Research, 91(A8), 9001–9006. 10.1029/JA091iA08p09001 DOI
Hoppe, M. M. , & Russell, C. T. (1981). On the nature of ULF waves upstream of planetary bow shocks. Advances in Space Research, 1(A1), 327–332. 10.1016/0273-1177(81)90129-0 DOI
Hoppe, M. M. , & Russell, C. T. (1983). Plasma rest frame Frequencies and polarizations of the low‐frequency upstream waves: ISEE 1 and 2 observations. Journal of Geophysical Research, 88(A3), 2021–2027. 10.1029/JA088iA03p02021 DOI
Hoppe, M. M. , Russell, C. T. , Frank, L. A. , Eastman, T. E. , & Greenstadt, E. W. (1981). Upstream hydromagnetic waves and their association with backstreaming ion populations: ISEE 1 and 2 observations. Journal of Geophysical Research, 86(A6), 4471–4492. 10.1029/JA086iA06p04471 DOI
Jelínek, K. , Němeček, Z. , & Šafránková, J. (2012). A new approach to magnetopause and bow shock modeling based on automated region identification. Journal of Geophysical Research, 117(A5), A05208. 10.1029/2011JA017252 DOI
Jeřáb, M. , Němeček, Z. , Šafránková, J. , Jelínek, K. , & Merka, J. (2005). Improved bow shock model with dependence on the IMF strength. Planetary and Space Science, 53(1), 85–93. 10.1016/j.pss.2004.09.032 DOI
Jurac, S. , & Richardson, J. D. (2001). The dependence of plasma and magnetic field correlations in the solar wind on geomagnetic activity. Journal of Geophysical Research, 106(A12), 195–205. 10.1029/2000JA000180 DOI
Kajdič, P. , Pfau‐Kempf, Y. , Turc, L. , Dimmock, A. P. , Palmroth, M. , Takahashi, K. , et al. (2021). ULF wave transmission across collisionless shocks: 2.5D local hybrid simulations. Journal of Geophysical Research: Space Physics, 126(11). 10.1029/2021JA029283 DOI
Le, G. , & Russell, C. (1992). A study of ULF wave foreshock morphology—1: ULF foreshock boundary. Planetary and Space Science, 40(9), 1203–1213. 10.1016/0032-0633(92)90077-2 DOI
McFadden, J. P. , Carlson, C. W. , Larson, D. , Ludlam, M. , Abiad, R. , Elliott, B. , et al. (2008). The THEMIS ESA plasma instrument and in‐flight calibration. Space Science Reviews, 141(1), 277–302. 10.1007/s11214-008-9440-2 DOI
Meziane, K. , & d'Uston, C. (1998). A statistical study of the upstream intermediate ion boundary in the Earth foreshock. Annals of Geophysics, 16(2), 125–133. 10.1007/s005850050585 DOI
Meziane, K. , Mazelle, C. , Lin, R. P. , LeQuéau, D. , Larson, D. E. , Parks, G. K. , & Lepping, R. P. (2001). Three‐dimensional observations of gyrating ion distributions far upstream from the earth's bow shock and their association with low‐frequency waves. Journal of Geophysical Research, 106(A4), 5731–5742. 10.1029/2000JA900079 DOI
Meziane, K. , Mazelle, C. , Wilber, M. , LeQueau, D. , Eastwood, J. P. , Reme, H. , et al. (2004). Bow shock Specularly reflected ions in the presence of low‐frequency electromagnetic waves: A case study. Annals of Geophysics, 22(7), 2325–2335. 10.5194/angeo-22-2325-2004 DOI
Motoba, T. , Ebihara, Y. , Ogawa, Y. , Kadokura, A. , Engebretson, M. J. , Angelopoulos, V. , et al. (2019). On the driver of daytime Pc3 Auroral pulsations. Geophysical Research Letters, 46(2), 553–561. 10.1029/2018GL080842 DOI
Narita, Y. , Glassmeier, K.‐H. , Fornaçon, K.‐H. , Richter, I. , Schäfer, S. , Motschmann, U. , et al. (2006). Low‐frequency wave characteristics in the upstream and downstream regime of the terrestrial bow shock. Journal of Geophysical Research, 111(A1), A01203. 10.1029/2005JA011231 DOI
Narita, Y. , Glassmeier, K. H. , Schäffer, S. , Motschmann, U. , Fränz, M. , Dandouras, I. , et al. (2004). Alfven waves in the foreshock propagating upstream in the plasma rest frame: Statistics from Cluster observations. Annals of Geophysics, 22(7), 2315–2323. 10.5194/angeo-22-2315-2004 DOI
Němeček, Z. , Šafránková, J. , Grygorov, K. , Mokrý, A. , Pi, G. , Aghabozorgi Nafchi, M. , et al. (2023). Extremely distant magnetopause locations caused by magnetosheath jets. Geophysical Research Letters, 50(24). 10.1029/2023GL106131 DOI
Omidi, N. , Sibeck, D. , Blanco‐Cano, X. , Rojas‐Castillo, D. , Turner, D. , Zhang, H. , & Kajdič, P. (2013). Dynamics of the foreshock compressional boundary and its connection to foreshock cavities. Journal of Geophysical Research: Space Physics, 118(2), 823–831. 10.1002/jgra.50146 DOI
Omidi, N. , Sibeck, D. G. , & Blanco‐Cano, X. (2009). Foreshock compressional boundary. Journal of Geophysical Research, 114(A8), A08205. 10.1029/2008JA013950 DOI
Palmroth, M. , Archer, M. , Vainio, R. , Hietala, H. , Pfau‐Kempf, Y. , Hoilijoki, S. , et al. (2015). ULF foreshock under radial IMF: THEMIS observations and global kinetic simulation Vlasiator results compared. Journal of Geophysical Research: Space Physics, 120(10), 8782–8798. 10.1002/2015JA021526 DOI
Rojas‐Castillo, D. , Blanco‐Cano, X. , Kajdič, P. , & Omidi, N. (2013). Foreshock compressional boundaries observed by Cluster. Journal of Geophysical Research: Space Physics, 118(2), 698–715. 10.1029/2011JA017385 DOI
Romanelli, N. , DiBraccio, G. , Gershman, D. , Le, G. , Mazelle, C. , Meziane, K. , et al. (2020). Upstream Ultra‐Low Frequency Waves observed by MESSENGER's magnetometer: Implications for particle acceleration at mercury's bow shock. Geophysical Research Letters, 47(9). 10.1029/2020GL087350 DOI
Šafránková, J. , Němeček, Z. , Němec, F. , Verscharen, D. , Horbury, T. S. , Bale, S. D. , & Přech, L. (2023). Evolution of magnetic field fluctuations and their spectral properties within the heliosphere: Statistical approach. The Astrophysical Journal Letters, 946(2). 10.3847/2041-8213/acc531 DOI
Salohub, A. , Šafránková, J. , Němeček, Z. , Němec, F. , & Pi, G. (2022). ULF waves/fluctuations in the distant foreshock: Statistical approach. Journal of Geophysical Research: Space Physics, 127(12). 10.1029/2022JA030802 DOI
Sandhu, J. K. , Rae, I. J. , Staples, F. A. , Hartley, D. P. , Walach, M. t. , Elsden, T. , & Murphy, K. R. (2021). The roles of the magnetopause and Plasmapause in storm‐time ULF wave power enhancements. Journal of Geophysical Research: Space Physics, 126(7). 10.1029/2021JA029337 DOI
Shan, L. , Ge, Y. , & Du, A. (2020). A case study of large‐amplitude ULF waves in the Martian foreshock. Earth Planet. Phys., 4(1), 45–50. 10.26464/epp2020004 DOI
Shan, L. , Mazelle, C. , Meziane, K. , Romanelli, N. , Ge, Y. S. , Du, A. , et al. (2018). The quasi‐monochromatic ULF wave boundary in the Venusian foreshock: Venus Express Observations. Journal of Geophysical Research: Space Physics, 123(1), 374–384. 10.1002/2017JA024054 DOI
Shue, J. H. , Chao, J. K. , Fu, H. C. , Russell, C. T. , Song, P. , Khurana, K. K. , & Singer, H. J. (1997). A new functional form to study the solar wind control of the magnetopause size and shape. Journal of Geophysical Research, 102(A5), 9497–9511. 10.1029/97JA00196 DOI
Skadron, G. , Holdaway, R. D. , & Lee, M. A. (1988). Formation of the wave compressional boundary in the Earth's foreshock. Journal of Geophysical Research, 93(A10), 11354–11362. 10.1029/JA093iA10p11354 DOI
Takahashi, K. , McPherron, R. L. , & Terasawa, T. (1984). Dependence of the spectrum of PC3‐4 pulsations on the interplanetary magnetic‐field. Journal of Geophysical Research, 89(NA5), 2770–2780. 10.1029/JA089iA05p02770 DOI
Thomsen, M. F. (1985). Upstream suprathermal ions. In Tsurutani B. T. & Stone R. G. (Eds.), Collisionless shocks in the heliosphere: Reviews of current research (pp. 253–270). American Geophysical Union. 10.1029/GM035p0253 DOI
Turc, L. , Roberts, O. W. , Verscharen, D. , Dimmock, A. P. , Kajdic, P. , Palmroth, M. , et al. (2023). Transmission of foreshock waves through Earth's bow shock. Nature Physics, 19(1), 78–86. 10.1038/s41567-022-01837-z PubMed DOI PMC
Urbář, J. , Němeček, Z. , Šafránková, J. , & Přech, L. (2019). Solar wind proton deceleration in front of the terrestrial bow shock. Journal of Geophysical Research: Space Physics, 124(8), 6553–6565. 10.1029/2019JA026734 DOI
Wilson, L. B. III. (2016). Low frequency waves at and upstream of collisionless shocks. In Keiling A., Lee D.‐H., & Nakariakov V. (Eds.), Low frequency waves in space plasmas (Vol. 216, pp. 269–291). American Geophysical Union. 10.1002/9781119055006.ch16 DOI
Xirogiannopoulou, N. , Goncharov, O. , Šafránková, J. , & Němeček, Z. (2024). Characteristics of foreshock subsolar compressive structures. Journal of Geophysical Research: Space Physics, 129(2). 10.1029/2023JA032033 DOI
Zhang, H. , & Liu, T. Z. (2023). Travel through the shock. Nature Physics, 19(1), 15–16. 10.1038/s41567-022-01854-y DOI