Jets Downstream of Collisionless Shocks: Recent Discoveries and Challenges
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39735479
PubMed Central
PMC11680644
DOI
10.1007/s11214-024-01129-3
PII: 1129
Knihovny.cz E-zdroje
- Klíčová slova
- Bow shock, Foreshock, Magnetopause, Magnetosheath, Magnetosheath jets, Solar wind,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Plasma flows with enhanced dynamic pressure, known as magnetosheath jets, are often found downstream of collisionless shocks. As they propagate through the magnetosheath, they interact with the surrounding plasma, shaping its properties, and potentially becoming geoeffective upon reaching the magnetopause. In recent years (since 2016), new research has produced vital results that have significantly enhanced our understanding on many aspects of jets. In this review, we summarise and discuss these findings. Spacecraft and ground-based observations, as well as global and local simulations, have contributed greatly to our understanding of the causes and effects of magnetosheath jets. First, we discuss recent findings on jet occurrence and formation, including in other planetary environments. New insights into jet properties and evolution are then examined using observations and simulations. Finally, we review the impact of jets upon interaction with the magnetopause and subsequent consequences for the magnetosphere-ionosphere system. We conclude with an outlook and assessment on future challenges. This includes an overview on future space missions that may prove crucial in tackling the outstanding open questions on jets in the terrestrial magnetosheath as well as other planetary and shock environments.
Department of Physics Aberystwyth University Physical Sciences Building Aberystwyth SY23 3BZ UK
Department of Physics and Astronomy Queen Mary University of London Mile End Road London E1 4NS UK
Department of Physics and Astronomy University of Turku Vesilinnantie 5 Turku 20014 Finland
Department of Physics Imperial College London South Kensington Campus London SW7 2AZ UK
Department of Physics Umeå University Linnaeus väg 24 Umeå 90736 Umeå Sweden
Faculty of Mathematics and Physics Charles University 5 Holešovičkách 2 Prague 180 00 Czech Republic
Institute of Earth Physics and Space Science HUN REN Csatkai E u 6 8 Sopron 9400 Hungary
Institute of Physics University of Graz Universitätsplatz 5 Graz 8010 Austria
Johns Hopkins University Applied Physics Laboratory 11000 Johns Hopkins Rd Laurel 20723 MD USA
Space Research Institute Austrian Academy of Sciences Schmiedlstraße 6 Graz 8042 Austria
Zobrazit více v PubMed
Amata E, Savin SP, Ambrosino D, Bogdanova YV, Marcucci MF, Romanov S, Skalsky A (2011) High kinetic energy density jets in the Earth’s magnetosheath: a case study. Planet Space Sci 59(7):482–494. 10.1016/j.pss.2010.07.021
Amati L, O’Brien P, Götz D, Bozzo E, Tenzer C, Frontera F, et al. (2018) The THESEUS space mission concept: science case, design and expected performances. Adv Space Res 62(1):191–244. 10.1016/j.asr.2018.03.010
Angelopoulos V (2008) The THEMIS mission. Space Sci Rev 141(1–4):5–34. 10.1007/s11214-008-9336-1
Aravindakshan H, Kakad A, Kakad B, Yoon PH (2021) Structural characteristics of ion holes in plasma. Plasma 4(3):435–449. 10.3390/plasma4030032
Archer MO, Horbury TS (2013) Magnetosheath dynamic pressure enhancements: occurrence and typical properties. Ann Geophys 31(2):319–331. 10.5194/angeo-31-319-2013
Archer MO, Plaschke F (2015) What frequencies of standing surface waves can the subsolar magnetopause support? J Geophys Res Space Phys 120(5):3632–3646. 10.1002/2014JA020545
Archer MO, Horbury TS, Eastwood JP (2012) Magnetosheath pressure pulses: generation downstream of the bow shock from solar wind discontinuities. J Geophys Res Space Phys 117(A5):A05228. 10.1029/2011JA017468
Archer MO, Hartinger MD, Horbury TS (2013a) Magnetospheric “magic” frequencies as magnetopause surface eigenmodes. Geophys Res Lett 40(19):5003–5008. 10.1002/grl.50979
Archer MO, Horbury TS, Eastwood JP, Weygand JM, Yeoman TK (2013b) Magnetospheric response to magnetosheath pressure pulses: a low-pass filter effect. J Geophys Res Space Phys 118(9):5454–5466. 10.1002/jgra.50519
Archer MO, Hietala H, Hartinger MD, Plaschke F, Angelopoulos V (2019) Direct observations of a surface eigenmode of the dayside magnetopause. Nat Commun 10(1):615. 10.1038/s41467-018-08134-5 PubMed PMC
Archer MO, Hartinger MD, Plaschke F, Southwood DJ, Rastaetter L (2021) Magnetopause ripples going against the flow form azimuthally stationary surface waves. Nat Commun 12(1):5697. 10.1038/s41467-021-25923-7 PubMed PMC
Bale S, Balikhin M, Horbury T, Krasnoselskikh V, Kucharek H, Möbius E, et al. (2005) Quasi-perpendicular shock structure and processes. Space Sci Rev 118:161–203. 10.1007/s11214-005-3827-0
Benkhoff J, Van Casteren J, Hayakawa H, Fujimoto M, Laakso H, Novara M, Ziethe R (2010) BepiColombo—comprehensive exploration of Mercury: mission overview and science goals. Planet Space Sci 58(1–2):2–20. 10.1016/j.pss.2009.09.020
Blanco-Cano X, Schwartz S (1997) Kinetic theory mode properties: application to low frequency waves in the ion foreshock. Adv Space Res 20(4):707–711. 10.1016/S0273-1177(97)00460-2
Blanco-Cano X, Omidi N, Russell C (2009) Global hybrid simulations: Foreshock waves and cavitons under radial interplanetary magnetic field geometry. J Geophys Res Space Phys 114(A1). 10.1029/2008JA013406
Blanco-Cano X, Preisser L, Kajdič P, Rojas-Castillo D (2020) Magnetosheath Microstructure: Mirror Mode Waves and Jets during Southward IP Magnetic Field. J Geophys Res Space Phys 125(9). 10.1029/2020JA027940
Blanco-Cano X, Rojas-Castillo D, Kajdič P, Preisser L (2023) Jets and mirror mode waves in Earth’s magnetosheath. J Geophys Res Space Phys 128(7):e2022JA031221. 10.1029/2022JA031221 PubMed PMC
Branduardi-Raymont G, Wang C (2024) The SMILE Mission. In: Bambi C, Santangelo A (eds) Handbook of X-ray and gamma-ray astrophysics, Springer, Singapore. 10.1007/978-981-19-6960-7_39
Burch J, Moore T, Torbert R, Giles B-H (2016) Magnetospheric multiscale overview and science objectives. Space Sci Rev 199:5–21. 10.1007/s11214-015-0164-9
Burkholder B, Nykyri K, Ma X (2021) Magnetospheric multiscale statistics of high energy electrons trapped in diamagnetic cavities. J Geophys Res Space Phys 126(1):e2020JA028341. 10.1029/2020JA028341
Chen L, Hasegawa A (1974) A theory of long-period magnetic pulsations: 2. Impulse excitation of surface eigenmode. J Geophys Res 79(7):1033–1037. 10.1029/ja079i007p01033
Dmitriev AV, Suvorova AV (2015) Large-scale jets in the magnetosheath and plasma penetration across the magnetopause: THEMIS observations. J Geophys Res Space Phys 120(6):4423–4437. 10.1002/2014JA020953
Dmitriev AV, Suvorova AV (2023) Atmospheric effects of magnetosheath jets. Atmosphere 14(1):45. 10.3390/atmos14010045
Eastwood JP, Lucek EA, Mazelle C, Meziane K, Narita Y, Pickett J, Treumann RA (2005) The foreshock. Space Sci Rev 118(1–4):41–94. 10.1007/s11214-005-3824-3
Echim M, Voiculescu M, Munteanu C, Teodorescu E, Voitcu G, Negrea C, Dănilă EB (2023) On the phenomenology of magnetosheath jets with insight from theory, modelling, numerical simulations and observations by cluster spacecraft. Front Astron Space Sci 10:1094282. 10.3389/fspas.2023.1094282
Eriksson E, Vaivads A, Graham DB, Khotyaintsev YuV, Yordanova E, Hietala H, Burch J (2016) Strong current sheet at a magnetosheath jet: kinetic structure and electron acceleration. J Geophys Res Space Phys 121(10):9608–9618. 10.1002/2016JA023146
Escoubet CP, Hwang K-J, Toledo-Redondo S, Turc L, Haaland SE, Aunai N, Torbert RB (2020) Cluster and MMS simultaneous observations of magnetosheath high speed jets and their impact on the magnetopause. Front Astron Space Sci 6:78. 10.3389/fspas.2019.00078
Fatemi S, Poppe AR, Delory GT, Farrell WM (2017) Amitis: a 3d gpu-based hybrid-pic model for space and plasma physics. J Phys Conf Ser 837:012017
Fatemi S, Hamrin M, Krämer E, Gunell H, Nordin G, Karlsson T, Goncharov O (2024) Unveiling the 3d structure of magnetosheath jets. Mon Not R Astron Soc 531(4):4692–4713. 10.1093/mnras/stae1456
Formisano V, Hedgecock P (1973) Solar wind interaction with the Earth’s magnetic field: 3. On the Earth’s bow shock structure. J Geophys Res 78(19):3745–3760. 10.1029/JA078i019p03745
Ganse U, Koskela T, Battarbee M, Pfau-Kempf Y, Papadakis K, Alho M, Palmroth M (2023) Enabling technology for global 3D + 3V hybrid-Vlasov simulations of near-Earth space. Phys Plasmas 30(4):042902. 10.1063/5.0134387
Gedalin M (2023) Rankine–Hugoniot relations and magnetic field enhancement in turbulent shocks. Astrophys J 958(1):2. 10.3847/1538-4357/ad0461
Goncharov O, Gunell H, Hamrin M, Chong S (2020) Evolution of high-speed jets and plasmoids downstream of the quasi-perpendicular bow shock. J Geophys Res Space Phys 125(6):e2019JA027667. 10.1029/2019JA027667
Gunell H, Nilsson H, Stenberg G, Hamrin M, Karlsson T, Maggiolo R, Dandouras I (2012) Plasma penetration of the dayside magnetopause. Phys Plasmas 19(7). 10.1063/1.4739446
Gunell H, Stenberg Wieser G, Mella M, Maggiolo R, Nilsson H, Darrouzet F, Dandouras I (2014) Waves in high-speed plasmoids in the magnetosheath and at the magnetopause. Ann Geophys 32(8):991–1009. 10.5194/angeo-32-991-2014
Gunell H, Hamrin M, Nesbit-Östman S, Krämer E, Nilsson H (2023) Magnetosheath jets at Mars. Sci Adv 9(22):eadg5703. 10.1126/sciadv.adg5703 PubMed PMC
Guo J, Lu S, Lu Q, Lin Y, Wang X, Ren J, Gao X (2022) Large-Scale High-Speed Jets in Earth’s Magnetosheath: Global Hybrid Simulations. J Geophys Res Space Phys 127(6). 10.1029/2022JA030477
Guo J, Sun T, Lu S, Lu Q, Lin Y, Wang X, Huang K (2023) Global hybrid simulations of soft X-ray emissions in the Earth’s magnetosheath. Earth Planet Phys 7. 10.26464/epp2023053
Gutynska O, Sibeck DG, Omidi N (2015) Magnetosheath plasma structures and their relation to foreshock processes. J Geophys Res Space Phys 120:7687–7697. 10.1002/2014JA020880
Han D (2019) Ionospheric polarization electric field guiding magnetopause reconnection: a conceptual model of throat aurora. Sci China Earth Sci 62(12):2099–2105. 10.1007/s11430-019-9358-8
Han D-S, Nishimura Y, Lyons LR, Hu H-Q, Yang H-G (2016) Throat aurora: the ionospheric signature of magnetosheath particles penetrating into the magnetosphere. Geophys Res Lett 43(5):1819–1827. 10.1002/2016GL068181
Han DS, Hietala H, Chen XC, Nishimura Y, Lyons LR, Liu JJ, Yang HG (2017) Observational properties of dayside throat aurora and implications on the possible generation mechanisms. J Geophys Res Space Phys 122(2):1853–1870. 10.1002/2016JA023394
Han DS, Liu JJ, Chen XC, Xu T, Li B, Hu ZJ, Pollock CJ (2018) Direct evidence for throat aurora being the ionospheric signature of magnetopause transient and reflecting localized magnetopause indentations. J Geophys Res Space Phys 123(4):2658–2667. 10.1002/2017JA024945
Han D-S, Xu T, Jin Y, Oksavik K, Chen X-C, Liu J-J, Herlingshaw K (2019) Observational evidence for throat aurora being associated with magnetopause reconnection. Geophys Res Lett 46(13):7113–7120. 10.1029/2019GL083593
Hao Y, Lembege B, Lu Q, Guo F (2016) Formation of downstream high-speed jets by a rippled nonstationary quasi-parallel shock: 2-D hybrid simulations. J Geophys Res Space Phys 121(3):2080–2094. 10.1002/2015JA021419
Hartinger M, Plaschke F, Archer M, Welling D, Moldwin M, Ridley A (2015) The global structure and time evolution of dayside magnetopause surface eigenmodes. Geophys Res Lett 42(8):2594–2602. 10.1002/2015GL063623
Hietala H, Plaschke F (2013) On the generation of magnetosheath high-speed jets by bow shock ripples. J Geophys Res Space Phys 118(11):7237–7245. 10.1002/2013JA019172 PubMed PMC
Hietala H, Laitinen TV, Andréeová K, Vainio R, Vaivads A, Palmroth M, Rème H (2009) Supermagnetosonic jets behind a collisionless quasiparallel shock. Phys Rev Lett 103(24):20. 10.1103/PhysRevLett.103.245001 PubMed
Hietala H, Partamies N, Laitinen TV, Clausen LBN, Facskó G, Vaivads A, Lucek EA (2012) Supermagnetosonic subsolar magnetosheath jets and their effects: from the solar wind to the ionospheric convection. Ann Geophys 30(1):33–48. 10.5194/angeo-30-33-2012
Hietala H, Phan TD, Angelopoulos V, Oieroset M, Archer MO, Karlsson T, Plaschke F (2018) In situ observations of a magnetosheath high-speed jet triggering magnetopause reconnection. Geophys Res Lett 45(4):1732–1740. 10.1002/2017GL076525
Hietala H, Trotta D, Fedeli A, Wilson LB, Vuorinen L, Coburn JT (2024) Candidates for downstream jets at interplanetary shocks. Mon Not R Astron Soc 531(2):2415–2421. 10.1093/mnras/stae1294
Hoppe M, Russell C, Frank L, Eastman T, Greenstadt E (1981) Upstream hydromagnetic waves and their association with backstreaming ion populations: Isee 1 and 2 observations. J Geophys Res Space Phys 86(A6):4471–4492. 10.1029/JA086iA06p04471
Jakosky BM, Lin RP, Grebowsky JM, Luhmann JG, Mitchell DF, Beutelschies G, Zurek R (2015) The Mars Atmosphere and Volatile Evolution (MAVEN) mission. Space Sci Rev 195(1):3–48. 10.1007/s11214-015-0139-x
Johlander A, Schwartz SJ, Vaivads A, Khotyaintsev YV, Gingell I, Peng IB, Burch JL (2016) Rippled quasiperpendicular shock observed by the magnetospheric multiscale spacecraft. Phys Rev Lett 117:165101. 10.1103/PhysRevLett.117.165101 PubMed
Kajdič P, Raptis S, Blanco-Cano X, Karlsson T (2021) Causes of jets in the quasi-perpendicular magnetosheath. Geophys Res Lett 48(13):e93173. 10.1029/2021GL093173
Karimabadi H, Roytershteyn V, Vu HX, Omelchenko YA, Scudder J, Daughton W, Geveci B (2014) The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas. Phys Plasmas 21(6):06. 10.1063/1.4882875
Karlsson T, Brenning N, Nilsson H, Trotignon JG, Valliéres X, Facsko G (2012) Localized density enhancements in the magnetosheath: three-dimensional morphology and possible importance for impulsive penetration. J Geophys Res Space Phys 117(3):1–14. 10.1029/2011JA017059
Karlsson T, Kullen A, Liljeblad E, Brenning N, Nilsson H, Gunell H, Hamrin M (2015) On the origin of magnetosheath plasmoids and their relation to magnetosheath jets. J Geophys Res Space Phys 120(9):7390–7403. 10.1002/2015JA021487
Karlsson T, Liljeblad E, Kullen A, Raines JM, Slavin JA, Sundberg T (2016) Isolated magnetic field structures in Mercury’s magnetosheath as possible analogues for terrestrial magnetosheath plasmoids and jets. Planet Space Sci 129:61–73. 10.1016/j.pss.2016.06.002
Karlsson T, Plaschke F, Hietala H, Archer M, Blanco-Cano X, Kajdič P, Gershman DJ (2018) Investigating the anatomy of magnetosheath jets - MMS observations. Ann Geophys 36(2):655–677. 10.5194/angeo-36-655-2018
Karlsson T, Raptis S, Trollvik H, Nilsson H (2021) Classifying the magnetosheath behind the quasi-parallel and quasi-perpendicular bow shock by local measurements. J Geophys Res Space Phys 126(9):e2021JA029269. 10.1029/2021JA029269
Katsavrias C, Raptis S, Daglis IA, Karlsson T, Georgiou M, Balasis G (2021) On the generation of Pi2 pulsations due to plasma flow patterns around magnetosheath jets. Geophys Res Lett 48(15). 10.1029/2021GL093611
King JH, Papitashvili NE (2005) Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data. J Geophys Res Space Phys 110(A2):A02104. 10.1029/2004JA010649
Klein K, Alexandrova O, Bookbinder J, Caprioli D, Case A, Chandran B, et al. (2019) Multipoint measurements of the solar wind: a proposed advance for studying magnetized turbulence. ArXiv preprint. arXiv:1903.05740
Klein KG, Spence H, Alexandrova O, Argall M, Arzamasskiy L, Bookbinder J, et al. (2023) HelioSwarm: a multipoint, multiscale mission to characterize turbulence. Space Sci Rev 219(8):74. 10.1007/s11214-023-01019-0
Kohlhase CE, Penzo PA (1977) Voyager mission description. Space Sci Rev 21(2). 10.1007/BF00200846
Koller F, Temmer M, Preisser L, Plaschke F, Geyer P, Jian LK, LaMoury AT (2022) Magnetosheath Jet Occurrence Rate in Relation to CMEs and SIRs. J Geophys Res Space Phys 127(4). 10.1029/2021JA030124 PubMed PMC
Koller F, Plaschke F, Temmer M, Preisser L, Roberts OW, Vörös Z (2023) Magnetosheath jet formation influenced by parameters in solar wind structures. J Geophys Res Space Phys 128(4):e2023JA031339. 10.1029/2023JA031339 PubMed PMC
Koller F, Raptis S, Temmer M, Karlsson T (2024) The effect of fast solar wind on ion distribution downstream of Earth’s bow shock. Astrophys J Lett 964(1):L5. 10.3847/2041-8213/ad2ddf
Krämer E, Hamrin M, Gunell H, Karlsson T, Steinvall K, Goncharov O, André M (2023) Waves in magnetosheath jets—classification and the search for generation mechanisms using MMS burst mode data. J Geophys Res Space Phys 128(7):e2023JA031621. 10.1029/2023JA031621
Kullen A, Thor S, Karlsson T (2019) The difference between isolated flux transfer events and flux transfer event cascades. J Geophys Res Space Phys 124(10):7850–7871. 10.1029/2019JA026629
LaMoury AT, Hietala H, Plaschke F, Vuorinen L, Eastwood JP (2021) Solar wind control of magnetosheath jet formation and propagation to the magnetopause. J Geophys Res Space Phys 126(9). 10.1029/2021JA029592
Lin Y (2003) Global-scale simulation of foreshock structures at the quasi-parallel bow shock. J Geophys Res Space Phys 108(A11). 10.1029/2003JA009991
Liou Y-L, Nykyri K, Kavosi S, Ma X (2023) Statistical study of the energetic electron microinjections at the high-latitude magnetosphere. J Geophys Res Space Phys 128(10):e2023JA031595. 10.1029/2023JA031595
Liu TZ, Hietala H, Angelopoulos V, Omelchenko Y, Roytershteyn V, Vainio R (2019) THEMIS observations of particle acceleration by a magnetosheath jet-driven bow wave. Geophys Res Lett 46(14):7929–7936. 10.1029/2019GL082614
Liu TZ, Hietala H, Angelopoulos V, Omelchenko Y, Plaschke F (2020) Statistical Study of Magnetosheath Jet-Driven Bow Waves. J Geophys Res 125(7). 10.1029/2019ja027710
Liu TZ, Hietala H, Angelopoulos V, Vainio R, Omelchenko Y (2020) Electron Acceleration by Magnetosheath Jet-Driven Bow Waves. J Geophys Res Space Phys 125(7). 10.1029/2019JA027709
Luhmann J, Russell C, Elphic R (1986) Spatial distributions of magnetic field fluctuations in the dayside magnetosheath. J Geophys Res Space Phys 91(A2):1711–1715. 10.1029/ja091ia02p01711
Ma J, Tang B, Gao X, Li W, Lu Q, Guo W, Wang C (2024) The comprehensive response of the magnetopause to the impact of an isolated magnetosheath high-speed jet. Geophys Res Lett 51(21):e2024GL111132. 10.1029/2024GL111132
Němeček Z, Šafránková J, Přech L, Sibeck DG, Kokubun S, Mukai T (1998) Transient flux enhancements in the magnetosheath. Geophys Res Lett 25(8):1273–1276. 10.1029/98GL50873
Němeček Z, Šafránková J, Grygorov K, Mokrý A, Pi G, Aghabozorgi Nafchi M, Šimůnek J (2023) Extremely distant magnetopause locations caused by magnetosheath jets. Geophys Res Lett 50(24):e2023GL106131. 10.1029/2023GL106131
Ng J, Chen L-J, Omelchenko YA (2021) Bursty magnetic reconnection at the Earth’s magnetopause triggered by high-speed jets. Phys Plasmas 28(9):092902. 10.1063/5.0054394
Ng J, Chen L-J, Omelchenko Y, Zou Y, Lavraud B (2022) Hybrid simulations of the cusp and dayside magnetosheath dynamics under quasi-radial interplanetary magnetic fields. J Geophys Res Space Phys 127(10):e2022JA030359. 10.1029/2022JA030359 PubMed PMC
Ng J, Walsh B, Chen L-J, Omelchenko Y (2023) Soft X-ray imaging of Earth’s dayside magnetosheath and cusps using hybrid simulations. Geophys Res Lett 50(10):e2023GL103347. 10.1029/2023GL103347
Nishimura Y, Wang B, Zou Y, Donovan EF, Angelopoulos V, Moen JI, Nagatsuma T (2020) Transient solar wind–magnetosphere–ionosphere interaction associated with foreshock and magnetosheath transients and localized magnetopause reconnection. In: Zhong Q et al. (eds) Dayside magnetosphere interactions. AGU, Washington, pp 39–53
Norenius L, Hamrin M, Goncharov O, Gunell H, Opgenoorth H, Pitkänen T, Baddeley L (2021) Ground-based magnetometer response to impacting magnetosheath jets. J Geophys Res Space Phys 126(8). 10.1029/2021JA029115
Nykyri K, Bengtson M, Angelopoulos V, Nishimura Y, Wing S (2019) Can enhanced flux loading by high-speed jets lead to a substorm? Multipoint detection of the christmas day substorm onset at 08:17 UT, 2015. J Geophys Res Space Phys 124(6):4314–4340. 10.1029/2018JA026357
Omelchenko YA, Chen L-J, Ng J (2021) 3D space-time adaptive hybrid simulations of magnetosheath high-speed jets. J Geophys Res Space Phys 126(7):e2020JA029035. 10.1029/2020JA029035
Omidi N, Sibeck D (2007) Formation of hot flow anomalies and solitary shocks. J Geophys Res Space Phys 112(A1). 10.1029/2006JA011663
Omidi N, Eastwood J, Sibeck D (2010) Foreshock bubbles and their global magnetospheric impacts. J Geophys Res Space Phys 115(A6). 10.1029/2009JA014828
Osmane A, Raptis S (2024) On the formation of super-Alfvénic flows downstream of collisionless shocks. Astrophys J 976:104. 10.3847/1538-4357/ad8570
Palmroth M, Hietala H, Plaschke F, Archer M, Karlsson T, Blanco-Cano X, Turc L (2018) Magnetosheath jet properties and evolution as determined by a global hybrid-Vlasov simulation. Ann Geophys 36(5):1171–1182. 10.5194/angeo-36-1171-2018
Palmroth M, Raptis S, Suni J, Karlsson T, Turc L, Johlander A, Osmane A (2021) Magnetosheath jet evolution as a function of lifetime: global hybrid-Vlasov simulations compared to MMS observations. Ann Geophys 39(2):289–308. 10.5194/angeo-39-289-2021
Pandey S, Kakad A, Kakad B (2024) First observational evidence of plasma waves in the Martian magnetosheath jet. Mon Not R Astron Soc Lett slae105. 10.1093/mnrasl/slae105
Phan TD, Gosling JT, Paschmann G, Pasma C, Drake JF, Øieroset M, Davis MS (2010) The dependence of magnetic reconnection on plasma [Image: see text] and magnetic shear: evidence from solar wind observations. Astrophys J Lett 719(2 PART 2):199–203. 10.1088/2041-8205/719/2/L199
Phan TD, Paschmann G, Gosling JT, Oieroset M, Fujimoto M, Drake JF, Angelopoulos V (2013) The dependence of magnetic reconnection on plasma [Image: see text] and magnetic shear: evidence from magnetopause observations. Geophys Res Lett 40(1):11–16. 10.1029/2012GL054528
Phan TD, Eastwood JP, Shay MA, Drake JF, Sonnerup BUÖ, Fujimoto M, Magnes W (2018) Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath. Nature 557(7704):202–206. 10.1038/s41586-018-0091-5 PubMed
Plaschke F, Hietala H (2018) Plasma flow patterns in and around magnetosheath jets. Ann Geophys 36(3):695–703. 10.5194/angeo-36-695-2018
Plaschke F, Hietala H, Angelopoulos V (2013) Anti-sunward high-speed jets in the subsolar magnetosheath. Ann Geophys 31(10):1877–1889. 10.5194/angeo-31-1877-2013
Plaschke F, Hietala H, Angelopoulos V, Nakamura R (2016) Geoeffective jets impacting the magnetopause are very common. J Geophys Res Space Phys 121(4):3240–3253. 10.1002/2016JA022534 PubMed PMC
Plaschke F, Karlsson T, Hietala H, Archer M, Vörös Z, Nakamura R, Giles BL (2017) Magnetosheath high-speed jets: internal structure and interaction with ambient plasma. J Geophys Res Space Phys 122(10):10,157–10,175. 10.1002/2017JA024471
Plaschke F, Hietala H, Archer M, Blanco-Cano X, Kajdič P, Karlsson T, Sibeck D (2018) Jets downstream of collisionless shocks. Space Sci Rev 214(5):81. 10.1007/s11214-018-0516-3 PubMed PMC
Plaschke F, Hietala H, Vörös Z (2020a) Scale sizes of magnetosheath jets. J Geophys Res Space Phys 125(9). 10.1029/2020JA027962
Plaschke F, Jernej M, Hietala H, Vuorinen L (2020b) On the alignment of velocity and magnetic fields within magnetosheath jets. Ann Geophys 38(2):287–296. 10.5194/angeo-38-287-2020
Pöppelwerth A, Glebe G, Mieth JZD, Koller F, Karlsson T, Vörös Z, Plaschke F (2024a) Scale size estimation and flow pattern recognition around a magnetosheath jet. Ann Geophys 42(1):271–284. 10.5194/angeo-42-271-2024
Pöppelwerth A, Koller F, Grimmich N, Constantinescu D, Glebe G, Vörös Z, Plaschke F (2024b) Cluster: list of plasma jets in the subsolar magnetosheath. Front Astron Space Sci 11:1388307. 10.3389/fspas.2024.1388307
Preisser L, Blanco-Cano X, Kajdič P, Burgess D, Trotta D (2020) Magnetosheath jets and plasmoids: characteristics and formation mechanisms from hybrid simulations. Astrophys J Lett 900(1):L6. 10.3847/2041-8213/abad2b
Qiu H-X, Han D-S, Shi R, Liu J (2024) Magnetosheath high-speed jet drives multiple auroral arcs near local noon. AGU Advances 5(5):e2024AV001197. 10.1029/2024AV001197
Rakhmanova L, Riazantseva M, Zastenker G, Yermolaev Y, Lodkina I (2020) Dynamics of plasma turbulence at Earth’s bow shock and through the magnetosheath. Astrophys J 901(1):30. 10.3847/1538-4357/abae00
Raptis S (2022) High-speed jets and related phenomena at Earth’s bow shock and magnetosheath (Unpublished doctoral dissertation)
Raptis S, Aminalragia-Giamini S, Karlsson T, Lindberg M (2020b) Classification of magnetosheath jets using neural networks and high resolution OMNI (HRO) data. Front Astron Space Sci 7:24. 10.3389/fspas.2020.00024
Raptis S, Karlsson T, Plaschke F, Kullen A, Lindqvist P-A (2020a) Classifying magnetosheath jets using MMS: statistical properties. J Geophys Res Space Phys 125(11):e2019JA027754. 10.1029/2019JA027754
Raptis S, Karlsson T, Vaivads A, Lindberg M, Johlander A, Trollvik H (2022a) On magnetosheath jet kinetic structure and plasma properties. Geophys Res Lett 49(21). 10.1029/2022GL100678
Raptis S, Karlsson T, Vaivads A, Pollock C, Plaschke F, Johlander A, Lindqvist P-A (2022b) Downstream high-speed plasma jet generation as a direct consequence of shock reformation. Nat Commun 13(1):598. 10.1038/s41467-022-28110-4 PubMed PMC
Ren J, Lu Q, Guo J, Gao X, Lu S, Wang S, Wang R (2023) Two-dimensional hybrid simulations of high-speed jets downstream of quasi-parallel shocks. J Geophys Res Space Phys 128(8):e2023JA031699. 10.1029/2023JA031699
Ren J, Guo J, Lu Q, Lu S, Gao X, Ma J, Wang R (2024a) Honeycomb-like magnetosheath structure formed by jets: three-dimensional global hybrid simulations. Geophys Res Lett 51(12):e2024GL109925. 10.1029/2024GL109925
Ren J, Lu Q, Gao X, Gedalin M, Qiu H, Han D, Wang R (2024b) Hybrid simulation of magnetosheath jet-driven bow waves. Geophys Res Lett 51(5):e2023GL106606. 10.1029/2023GL106606
Retinò A, Kepko L, Kucharek H, Marcucci MF, Nakamura R, Amano T, Valentini F (2023) Unveiling plasma energization and energy transport in the Earth magnetospheric system: the need for future coordinated multiscale observations. arXiv e-print arXiv:2311.09920
Samsonov A, Sembay S, Read A, Carter JA, Branduardi-Raymont G, Sibeck D, Escoubet P (2022) Finding magnetopause standoff distance using a soft X-ray imager: 2. Methods to analyze 2-d X-ray images. J Geophys Res Space Phys 127(12):e2022JA030850. 10.1029/2022JA030850
Sánchez-Cano B (2023) Mars’ ionosphere: the key for systematic exploration of the red planet. Front Astron Space Sci 9. 10.3389/fspas.2022.1101945
Sanchez-Cano B, Opgenoorth H, Leblanc F, Andrews D, Lester M (2022) The M-MATISSE mission: Mars magnetosphere ATmosphere ionosphere and surface SciencE. In: 44th COSPAR scientific assembly. Held 16–24 July, p 421
Savin S, Amata E, Zelenyi L, Lutsenko V, Safrankova J, Nemecek Z, Lezhen L (2012) Super fast plasma streams as drivers of transient and anomalous magnetospheric dynamics. Ann Geophys 30(1):1–7. 10.5194/angeo-30-1-2012
Schwartz SJ, Chaloner CP, Christiansen PJ, Coates AJ, Hall DS, Johnstone AD, et al. (1985) An active current sheet in the solar wind. Nature 318(6043):269–271. 10.1038/318269a0
Shue J-H, Chao J, Fu H, Russell C, Song P, Khurana K, Singer H (1997) A new functional form to study the solar wind control of the magnetopause size and shape. J Geophys Res Space Phys 102(A5):9497–9511. 10.1029/97JA00196
Sibeck DG, Allen R, Aryan H, Bodewits D, Brandt P, Branduardi-Raymont G, Wing S (2018) Imaging plasma density structures in the soft X-rays generated by solar wind charge exchange with neutrals. Space Sci Rev 214(4):79. 10.1007/s11214-018-0504-7
Sibeck DG, Lee S-H, Omidi N, Angelopoulos V (2021) Foreshock cavities: direct transmission through the bow shock. J Geophys Res Space Phys 126(5):e2021JA029201. 10.1029/2021JA029201
Solomon SC, McNutt RL, Gold RE, Acuña MH, Baker DN, Boynton WV, Zuber MT (2001) The MESSENGER mission to Mercury: scientific objectives and implementation. Planet Space Sci 49(14–15). 10.1016/S0032-0633(01)00085-X
Suni J, Palmroth M, Turc L, Battarbee M, Johlander A, Tarvus V, Zhou H (2021) Connection between foreshock structures and the generation of magnetosheath jets: Vlasiator results. Geophys Res Lett 48(20). 10.1029/2021GL095655
Suni J, Palmroth M, Turc L, Battarbee M, Cozzani G, Dubart M, Zhou H (2023) Local bow shock environment during magnetosheath jet formation: results from a hybrid-Vlasov simulation. Ann Geophys 41(2):551–568. 10.5194/angeo-41-551-2023
Swisdak M, Opher M, Drake JF, Alouani Bibi F (2010) The vector direction of the interstellar magnetic field outside the heliosphere. Astrophys J 710(2):1769–1775. 10.1088/0004-637X/710/2/1769
Temmer M (2021) Space weather: the solar perspective. Living Rev Sol Phys 18(1):4. 10.1007/s41116-021-00030-3
Tinoco-Arenas A, Kajdič P, Preisser L, Blanco-Cano X, Trotta D, Burgess D (2022) Parametric study of magnetosheath jets in 2d local hybrid simulations. Front Astron Space Sci 9:793195. 10.3389/fspas.2022.793195
Trotta D, Pecora F, Settino A, Perrone D, Hietala H, Horbury T, Valentini F (2022) On the transmission of turbulent structures across the Earth’s bow shock. Astrophys J 933(2):167. 10.3847/1538-4357/ac7798
Tsurutani BT, Lakhina GS, Verkhoglyadova OP, Echer E, Guarnieri FL, Narita Y, Constantinescu DO (2011) Magnetosheath and heliosheath mirror mode structures, interplanetary magnetic decreases, and linear magnetic decreases: Differences and distinguishing features. J Geophys Res Space Phys 116(A2). 10.1029/2010JA015913
Turc L, Roberts OW, Verscharen D, Dimmock AP, Kajdič P, Palmroth M, Ganse U (2023) Transmission of foreshock waves through Earth’s bow shock. Nat Phys 19(1):78–86. 10.1038/s41567-022-01837-z PubMed PMC
Turner J, Burlaga L, Ness N, Lemaire J (1977) Magnetic holes in the solar wind. J Geophys Res 82(13):1921–1924. 10.1029/JA082i013p01921
Turner D, Omidi N, Sibeck D, Angelopoulos V (2013) First observations of foreshock bubbles upstream of Earth’s bow shock: characteristics and comparisons to hfas. J Geophys Res Space Phys 118(4):1552–1570. 10.1002/jgra.50198
Vuorinen L, Hietala H, Plaschke F (2019) Jets in the magnetosheath: IMF control of where they occur. Ann Geophys 37(4):689–697. 10.5194/angeo-37-689-2019
Vuorinen L, Hietala H, Plaschke F, LaMoury AT (2021) Magnetic Field in Magnetosheath Jets: a Statistical Study of [Image: see text] Near the Magnetopause. J Geophys Res Space Phys 126(9). 10.1029/2021JA029188
Vuorinen L, Vainio R, Hietala H, Liu TZ (2022) Monte Carlo simulations of electron acceleration at bow waves driven by fast jets in the Earth’s magnetosheath. Astrophys J 934(2):165. 10.3847/1538-4357/ac7f42
Vuorinen L, Hietala H, LaMoury AT, Plaschke F (2023a) Solar wind parameters influencing magnetosheath jet formation: low and high IMF cone angle regimes. J Geophys Res Space Phys 128(10):e2023JA031494. 10.1029/2023JA031494
Vuorinen L, LaMoury AT, Hietala H, Koller F (2023b) Magnetosheath jets over solar cycle 24: an empirical model. J Geophys Res Space Phys 128(8):e2023JA031493. 10.1029/2023JA031493 PubMed PMC
Wang B, Nishimura Y, Hietala H, Lyons L, Angelopoulos V, Plaschke F, Weatherwax A (2018) Impacts of magnetosheath high-speed jets on the magnetosphere and ionosphere measured by optical imaging and satellite observations. J Geophys Res Space Phys 123(6):4879–4894. 10.1029/2017JA024954
Wang B, Nishimura Y, Hietala H, Angelopoulos V (2022) Investigating the role of magnetosheath high-speed jets in triggering dayside ground magnetic ultra-low frequency waves. Geophys Res Lett 49(22). 10.1029/2022GL099768
Wilson LB III, Brosius AL, Gopalswamy N, Nieves-Chinchilla T, Szabo A, Hurley K, et al. (2021) A quarter century of wind spacecraft discoveries. Wiley, New York
Xirogiannopoulou N, Goncharov O, Šafránková J, Němeček Z (2024) Characteristics of foreshock subsolar compressive structures. J Geophys Res Space Phys 129(2):e2023JA032033. 10.1029/2023JA032033
Yang Z, Jarvinen R, Guo X, Sun T, Koutroumpa D, Parks GK, Wang C (2024) Deformations at Earth’s dayside magnetopause during quasi-radial imf conditions: global kinetic simulations and soft X-ray imaging. Earth Planet Phys 8(1):59–69. 10.26464/epp2023059
Zhang H, Zong Q, Connor H, Delamere P, Facskó G, Han D, Yao S (2022) Dayside transient phenomena and their impact on the magnetosphere and ionosphere. Space Sci Rev 218(5), 40. 10.1007/s11214-021-00865-0 PubMed PMC
Zhou Y, Shen C, Ji Y (2023) Undulated shock surface formed after a shock–discontinuity interaction. Geophys Res Lett 50(10):e2023GL103848. 10.1029/2023GL103848
Zhou Y, Raptis S, Wang S, Shen C, Ren N, Ma L (2024) Magnetosheath jets at Jupiter and across the Solar System. Nat Commun 15(1):4. 10.1038/s41467-023-43942-4 PubMed PMC