PrankWeb 4: a modular web server for protein-ligand binding site prediction and downstream analysis
Language English Country England, Great Britain Media print
Document type Journal Article
Grant support
23-07349S
Czech Science Foundation
LM2018131
ELIXIR CZ Research Infrastructure
Ministry of Education
PubMed
40384566
PubMed Central
PMC12230715
DOI
10.1093/nar/gkaf421
PII: 8136464
Knihovny.cz E-resources
- MeSH
- Internet MeSH
- Protein Conformation MeSH
- Ligands MeSH
- Proteins * chemistry metabolism MeSH
- Molecular Docking Simulation MeSH
- Software * MeSH
- Machine Learning MeSH
- User-Computer Interface MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Ligands MeSH
- Proteins * MeSH
Knowledge of protein-ligand binding sites (LBSs) is crucial for advancing our understanding of biology and developing practical applications in fields such as medicine or biotechnology. PrankWeb is a web server that allows users to predict LBSs from a given three-dimensional structure. It provides access to P2Rank, a state-of-the-art machine learning tool for binding site prediction. Here, we present a new version of PrankWeb enabling the development of both client- and server-side modules acting as postprocessing tasks on the predicted pockets. Furthermore, each module can be associated with a visualization module that acts on the results provided by both client- and server-side modules. This newly developed system was utilized to implement the ability to dock user-provided molecules into the predicted pockets using AutoDock Vina (server-side module) and to interactively visualize the predicted poses (visualization module). In addition to introducing a modular architecture, we revamped PrankWeb's interface to better support the modules and enhance user interaction between the 1D and 3D viewers. We introduced a new, faster P2Rank backend or user-friendly exports, including ChimeraX visualization.
See more in PubMed
Faraji S, Filiz E, Kazemitabar SK et al. The PubMed DOI PMC
Frey B, Aiesi M, Rast BM et al. Searching for new plastic-degrading enzymes from the plastisphere of alpine soils using a metagenomic mining approach. PLoS One. 2024; 19:e0300503. 10.1371/journal.pone.0300503. PubMed DOI PMC
Chen B, Song Y, Zhan Y et al. Fangchinoline inhibits non-small cell lung cancer metastasis by reversing epithelial–mesenchymal transition and suppressing the cytosolic ROS-related Akt-mTOR signaling pathway. Cancer lett. 2022; 543:215783. 10.1016/j.canlet.2022.215783. PubMed DOI
Shahid M, Fazry S, Azfaralariff A et al. Bioactive compound identification and DOI
Laskowski RA SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph. 1995; 13:323–30. 10.1016/0263-7855(95)00073-9. PubMed DOI
Le Guilloux V, Schmidtke P, Tuffery P Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics. 2009; 10:168. 10.1186/1471-2105-10-168. PubMed DOI PMC
Krivák R, Hoksza D P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J Cheminform. 2018; 10:39. 10.1186/s13321-018-0285-8. PubMed DOI PMC
Aggarwal R, Gupta A, Chelur V et al. DeepPocket: ligand binding site detection and segmentation using 3D convolutional neural networks. J Chem Inf Model. 2021; 62:5069–79. 10.1021/acs.jcim.1c00799. PubMed DOI
Kandel J, Tayara H, Chong KT PUResNet: prediction of protein–ligand binding sites using deep residual neural network. J Cheminform. 2021; 13:65. 10.1186/s13321-021-00547-7. PubMed DOI PMC
Smith Z, Strobel M, Vani BP et al. Graph Attention Site Prediction (GrASP): identifying druggable binding sites using graph neural networks with attention. J Chem Inf Model. 2024; 64:2637–44. 10.1021/acs.jcim.3c01698. PubMed DOI PMC
Carbery A, Buttenschoen M, Skyner R et al. Learnt representations of proteins can be used for accurate prediction of small molecule binding sites on experimentally determined and predicted protein structures. J Cheminform. 2024; 16:32. 10.1186/s13321-024-00821-4. PubMed DOI PMC
Sestak F, Schneckenreiter L, Brandstetter J et al. VN-EGNN: E(3)-equivariant graph neural networks with virtual nodes enhance protein binding site identification. arXiv10 April 2024, preprint: not peer reviewedhttps://arxiv.org/abs/2404.07194.
Utgés JS, Barton GJ Comparative evaluation of methods for the prediction of protein–ligand binding sites. J Cheminform. 2024; 16:126. 10.1186/s13321-024-00923-z. PubMed DOI PMC
Feidakis CP, Krivak R, Hoksza D et al. AHoJ: rapid, tailored search and retrieval of apo and holo protein structures for user-defined ligands. Bioinformatics. 2022; 38:5452–3. 10.1093/bioinformatics/btac701. PubMed DOI PMC
Špačková A, Vávra O, Raček T et al. ChannelsDB 2.0: a comprehensive database of protein tunnels and pores in AlphaFold era. Nucleic Acids Res. 2024; 52:D413–8. 10.1093/nar/gkad1012. PubMed DOI PMC
Meng EC, Goddard TD, Pettersen EF et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 2023; 32:e4792. 10.1002/pro.4792. PubMed DOI PMC
Xia Y, Xia C, Pan X et al. BindWeb: a web server for ligand binding residue and pocket prediction from protein structures. Protein Sci. 2022; 31:e4462. 10.1002/pro.4462. PubMed DOI PMC
Bugnon M, Röhrig UF, Goullieux M et al. SwissDock 2024: major enhancements for small-molecule docking with Attracting Cavities and AutoDock Vina. Nucleic Acids Res. 2024; 52:W324–32. 10.1093/nar/gkae300. PubMed DOI PMC
Liu Y, Grimm M, Dai Wt et al. CB-Dock: a web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacol Sin. 2020; 41:138–44. 10.1038/s41401-019-0228-6. PubMed DOI PMC
Guedes IA, da Silva MMP, Galheigo M et al. DockThor-VS: a free platform for receptor–ligand virtual screening. J Mol Biol. 2024; 436:168548. 10.1016/j.jmb.2024.168548. PubMed DOI
Konc J, Miller BT, Štular T et al. ProBiS-CHARMMing: web interface for prediction and optimization of ligands in protein binding sites. J Chem Inf Model. 2015; 55:2308–14. 10.1021/acs.jcim.5b00534. PubMed DOI PMC
Wu Q, Peng Z, Zhang Y et al. COACH-D: improved protein–ligand binding sites prediction with refined ligand-binding poses through molecular docking. Nucleic Acids Res. 2018; 46:W438–42. 10.1093/nar/gky439. PubMed DOI PMC
Trott O, Olson AJ AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31:455–61. 10.1002/jcc.21334. PubMed DOI PMC
Eberhardt J, Santos-Martins D, Tillack AF et al. AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python bindings. J Chem Inf Model. 2021; 61:3891–8. 10.1021/acs.jcim.1c00203. PubMed DOI PMC
Morris GM, Huey R, Lindstrom W et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009; 30:2785–91. 10.1002/jcc.21256. PubMed DOI PMC
O’Boyle NM, Banck M, James CA et al. Open Babel: an open chemical toolbox. J Cheminform. 2011; 3:33. PubMed PMC
Calzolai L, Lysek DA, Güntert P et al. NMR structures of three single-residue variants of the human prion protein. Proc Natl Acad Sci USA. 2000; 97:8340–5. 10.1073/pnas.97.15.8340. PubMed DOI PMC
Pozzi N, Chen Z, Zapata F et al. Autoactivation of thrombin precursors. J Biol Chem. 2013; 288:11601–10. 10.1074/jbc.M113.451542. PubMed DOI PMC
Nagar B, Bornmann WG, Pellicena P et al. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res. 2002; 62:4236–43. PubMed
Forli S, Huey R, Pique ME et al. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc. 2016; 11:905–19. 10.1038/nprot.2016.051. PubMed DOI PMC
Kochnev Y, Hellemann E, Cassidy KC et al. Webina: an open-source library and web app that runs AutoDock Vina entirely in the web browser. Bioinformatics. 2020; 36:4513–5. 10.1093/bioinformatics/btaa579. PubMed DOI PMC
Liu Y, Yang X, Gan J et al. CB-Dock2: improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022; 50:W159–64. 10.1093/nar/gkac394. PubMed DOI PMC
Willighagen EL, Mayfield JW, Alvarsson J et al. The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas, and substructure searching. J Cheminform. 2017; 9:33. PubMed PMC
Sehnal D, Deshpande M, Vareková RS et al. LiteMol suite: interactive web-based visualization of large-scale macromolecular structure data. Nat Methods. 2017; 14:1121–2. 10.1038/nmeth.4499. PubMed DOI
Sehnal D, Bittrich S, Deshpande M et al. Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 2021; 49:W431–7. 10.1093/nar/gkab314. PubMed DOI PMC
Segura J, Rose Y, Westbrook J et al. RCSB Protein Data Bank 1D tools and services. Bioinformatics. 2020; 36:5526–7. 10.1093/bioinformatics/btaa1012. PubMed DOI PMC