Covalent carbon nanodot-azobenzene hybrid photoswitches: the impact of meta/para connectivity and sp3 spacer on photophysical properties

. 2025 Jun 12 ; 13 (23) : 11879-11889. [epub] 20250507

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40385553

The covalent surface functionalization of carbon nanodots (CNDs) can facilitate the design and development of nanocarbon hybrids with photoswitching properties, which can be applied in a wide range of applications, including sensing, optoelectronics, and even bio-applications. This study underscores the potential utilization of these hybrids as photoresponsive materials, for potential application in optostimulation. In this study, we examine the characteristics of covalent azobenzene-functionalized CNDs, with a particular emphasis on the impact of meta and para connectivity and the additional introduction of a glycine spacer. The CND synthesis process comprises a bottom-up microwave condensation of ethylenediamine and citric acid. Amide coupling to azobenzenes is confirmed through NMR diffusion-ordered spectroscopy and diffusion decay analysis. A comprehensive investigation is conducted into the size and optical properties of the resulting hybrids. Moreover, time-dependent density functional theory computations are employed to understand absorption spectra and charge transfer events. Furthermore, advanced optical characterisation is utilised to examine energy/charge transfer between the constituents. Finally, the switching properties, fatigue resistance, and half-life of the hybrids are studied to evaluate their performance for prospective applications like in optostimulation.

Zobrazit více v PubMed

Paternò G. M. Bondelli G. Lanzani G. Bioelectricity. 2021;3:136–142. doi: 10.1089/bioe.2021.0008. PubMed DOI PMC

Doane T. L. Burda C. Chem. Soc. Rev. 2012;41:2885. doi: 10.1039/C2CS15260F. PubMed DOI

de Souza-Guerreiro T. C. Bondelli G. Grobas I. Donini S. Sesti V. Bertarelli C. Lanzani G. Asally M. Paternò G. M. Adv. Sci. 2023;10:2205007. doi: 10.1002/advs.202205007. PubMed DOI PMC

Mavroidi B. Kaminari A. Sakellis E. Sideratou Z. Tsiourvas D. Pharmaceuticals. 2023;16:833. doi: 10.3390/ph16060833. PubMed DOI PMC

Zhang S. Xiao C. He H. Xu Z. Wang B. Chen X. Li C. Jiang B. Liu Y. Environ. Sci.: Nano. 2020;7:880–890. doi: 10.1039/C9EN00991D. DOI

Döbbelin M. Ciesielski A. Haar S. Osella S. Bruna M. Minoia A. Grisanti L. Mosciatti T. Richard F. Prasetyanto E. A. De Cola L. Palermo V. Mazzaro R. Morandi V. Lazzaroni R. Ferrari A. C. Beljonne D. Samorì P. Nat. Commun. 2016;7:11090. doi: 10.1038/ncomms11090. PubMed DOI PMC

Niedzialek D. Duchemin I. De Queiroz T. B. Osella S. Rao A. Friend R. Blase X. Kümmel S. Beljonne D. Adv. Funct. Mater. 2015;25:1972–1984. doi: 10.1002/adfm.201402682. DOI

Osella S. Wang M. Menna E. Gatti T. Opt. Mater. X. 2021;12:100100.

Ross A. M. Osella S. Policht V. R. Zheng M. Maggini M. Marangi F. Cerullo G. Gatti T. Scotognella F. J. Phys. Chem. C. 2022;126:3569–3581. doi: 10.1021/acs.jpcc.1c10570. PubMed DOI PMC

Langer M. Zdražil L. Medveď M. Otyepka M. Nanoscale. 2023;15:4022–4032. doi: 10.1039/D2NR05114A. PubMed DOI

Banger A. Gautam S. Jadoun S. Jangid N. K. Srivastava A. Pulidindi I. N. Dwivedi J. Srivastava M. Catalysts. 2023;13:858. doi: 10.3390/catal13050858. DOI

Baker S. N. Baker G. A. Angew. Chem., Int. Ed. 2010;49:6726–6744. doi: 10.1002/anie.200906623. PubMed DOI

Sun Y.-P. Zhou B. Lin Y. Wang W. Fernando K. A. S. Pathak P. Meziani M. J. Harruff B. A. Wang X. Wang H. Luo P. G. Yang H. Kose M. E. Chen B. Veca L. M. Xie S.-Y. J. Am. Chem. Soc. 2006;128:7756–7757. doi: 10.1021/ja062677d. PubMed DOI

Arcudi F. Ďorďević L. Prato M. Acc. Chem. Res. 2019;52:2070–2079. doi: 10.1021/acs.accounts.9b00249. PubMed DOI

Rigodanza F. Burian M. Arcudi F. Đorđević L. Amenitsch H. Prato M. Nat. Commun. 2021;12:2640. doi: 10.1038/s41467-021-22902-w. PubMed DOI PMC

Debes P. P. Langer M. Pagel M. Menna E. Smarsly B. Osella S. Gallego J. Gatti T. ChemNanoMat. 2024;10:e202300471. doi: 10.1002/cnma.202300471. DOI

Park Y. Yoo J. Lim B. Kwon W. Rhee S.-W. J. Mater. Chem. A. 2016;4:11582–11603. doi: 10.1039/C6TA04813G. DOI

Arcudi F. Strauss V. Đorđević L. Cadranel A. Guldi D. M. Prato M. Angew. Chem. 2017;129:12265–12269. doi: 10.1002/ange.201704544. PubMed DOI

Liao B. Long P. He B. Yi S. Ou B. Shen S. Chen J. J. Mater. Chem. C. 2013;1:3716. doi: 10.1039/C3TC00906H. DOI

Zhang X. Hou L. Samorì P. Nat. Commun. 2016;7:11118. doi: 10.1038/ncomms11118. PubMed DOI PMC

Nakatani K., Piard J., Yu P. and Métivier R., in Photochromic Materials: Preparation, Properties and Applications, ed. H. Tian and J. Zhang, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2016, pp. 1–45

Nägele T. Hoche R. Zinth W. Wachtveitl J. Chem. Phys. Lett. 1997;272:489–495. doi: 10.1016/S0009-2614(97)00531-9. DOI

Oudar J. L. J. Chem. Phys. 1977;67:446–457. doi: 10.1063/1.434888. DOI

Moran M. J. Magrini M. Walba D. M. Aprahamian I. J. Am. Chem. Soc. 2018;140:13623–13627. doi: 10.1021/jacs.8b09622. PubMed DOI

Hegedüsová L. Blaise N. Pašteka L. F. Budzák Š. Medveď M. Filo J. Mravec B. Slavov C. Wachtveitl J. Grabarz A. M. Cigáň M. Chem. – Eur. J. 2024;30:e202303509. doi: 10.1002/chem.202303509. PubMed DOI

Mravec B. Budzák Š. Medved’ M. Pašteka L. F. Slavov C. Saßmannshausen T. Wachtveitl J. Kožíšek J. Hegedüsová L. Filo J. Cigáň M. J. Org. Chem. 2021;86:11633–11646. doi: 10.1021/acs.joc.1c01174. PubMed DOI

Tobin J. C. Hegarty A. F. Scott F. L. J. Chem. Soc. B Phys. Org. 1971:2198–2202. doi: 10.1039/J29710002198. DOI

Soliman A. I. A. Sayed M. Elshanawany M. M. Younis O. Ahmed M. Kamal El-Dean A. M. Abdel-Wahab A.-M. A. Wachtveitl J. Braun M. Fatehi P. Tolba M. S. ACS Omega. 2022;7:10178–10186. doi: 10.1021/acsomega.1c06636. PubMed DOI PMC

Wang Z. Losantos R. Sampedro D. Morikawa M. Börjesson K. Kimizuka N. Moth-Poulsen K. J. Mater. Chem. A. 2019;7:15042–15047. doi: 10.1039/C9TA04905C. DOI

Dong L. Feng Y. Wang L. Feng W. Chem. Soc. Rev. 2018;47:7339–7368. doi: 10.1039/C8CS00470F. PubMed DOI

Kreger K. Wolfer P. Audorff H. Kador L. Stingelin-Stutzmann N. Smith P. Schmidt H.-W. J. Am. Chem. Soc. 2010;132:509–516. doi: 10.1021/ja9091038. PubMed DOI

Gerkman M. A. Han G. G. D. Joule. 2020;4:1621–1625. doi: 10.1016/j.joule.2020.07.011. DOI

Wang Z. Erhart P. Li T. Zhang Z.-Y. Sampedro D. Hu Z. Wegner H. A. Brummel O. Libuda J. Nielsen M. B. Moth-Poulsen K. Joule. 2021;5:3116–3136. doi: 10.1016/j.joule.2021.11.001. DOI

Schatz D. Baumert M. E. Kersten M. C. Schneider F. M. Nielsen M. B. Hansmann M. M. Wegner H. A. Angew. Chem., Int. Ed. 2024;63:e202405618. doi: 10.1002/anie.202405618. PubMed DOI

Hüll K. Morstein J. Trauner D. Chem. Rev. 2018;118:10710–10747. doi: 10.1021/acs.chemrev.8b00037. PubMed DOI

Lenz M. O. Woerner A. C. Glaubitz C. Wachtveitl J. Photochem. Photobiol. 2007;83:226–231. PubMed

Liu M. Yan X. Hu M. Chen X. Zhang M. Zheng B. Hu X. Shao S. Huang F. Org. Lett. 2010;12:2558–2561. doi: 10.1021/ol100770j. PubMed DOI

Averdunk C. Hanke K. Schatz D. Wegner H. A. Acc. Chem. Res. 2024;57:257–266. doi: 10.1021/acs.accounts.3c00616. PubMed DOI

Norikane Y. Tamaoki N. Org. Lett. 2004;6:2595–2598. doi: 10.1021/ol049082c. PubMed DOI

Hartley G. S. Nature. 1937;140:281.

Merino E. Ribagorda M. Beilstein J. Org. Chem. 2012;8:1071–1090. PubMed PMC

Schulte-Frohlinde D. Ann. Chem. 1958;612:138–152.

Goulet-Hanssens A. Rietze C. Titov E. Abdullahu L. Grubert L. Saalfrank P. Hecht S. Chem. 2018;4:1740–1755.

Slavov C. Yang C. Schweighauser L. Boumrifak C. Dreuw A. Wegner H. A. Wachtveitl J. Phys. Chem. Chem. Phys. 2016;18:14795–14804. doi: 10.1039/C6CP00603E. PubMed DOI

Bellotto S. Reuter R. Heinis C. Wegner H. A. J. Org. Chem. 2011;76:9826–9834. doi: 10.1021/jo201996w. PubMed DOI

Reuter R. Hostettler N. Neuburger M. Wegner H. A. Eur. J. Org. Chem. 2009:5647–5652. doi: 10.1002/ejoc.200900861. DOI

Ziessel R. Stachelek P. Harriman A. Hedley G. J. Roland T. Ruseckas A. Samuel I. D. W. J. Phys. Chem. A. 2018;122:4437–4447. doi: 10.1021/acs.jpca.8b02415. PubMed DOI

Raymo F. Tomasulo M. Chem. Soc. Rev. 2005;34:327–336. doi: 10.1039/B400387J. PubMed DOI

Gomez I. J. Arnaiz B. Cacioppo M. Arcudi F. Prato M. J. Mater. Chem. B. 2018;6:5540–5548. doi: 10.1039/C8TB01796D. PubMed DOI

Price W. S., NMR Studies of Translational Motion: Principles and Applications, Cambridge University Press, Cambridge, 2009

Sarkar S. Dinda S. Choudhury P. Das P. K. Soft Matter. 2019;15:2863–2875. doi: 10.1039/C9SM00051H. PubMed DOI

Luther R. Nikolopulos A. Z. Physiol. Chem. 1913;82U:361–384. doi: 10.1515/zpch-1913-8229. DOI

Debes P. P. Pagel M. Muntean S. Hessling J. Smarsly B. M. Schönhoff M. Gatti T. Photochem. 2025;5:1. doi: 10.3390/photochem5010001. DOI

Filippini G. Amato F. Rosso C. Ragazzon G. Vega-Peñaloza A. Companyó X. Dell’Amico L. Bonchio M. Prato M. Chem. 2020;6:3022–3037.

Langer M. Hrivnák T. Medved M. Otyepka M. J. Phys. Chem. C. 2021;125:12140–12148. doi: 10.1021/acs.jpcc.1c02243. DOI

Langer M. Paloncýová M. Medved M. Otyepka M. J. Phys. Chem. Lett. 2020;11:8252–8258. doi: 10.1021/acs.jpclett.0c01873. PubMed DOI

Krysmann M. J. Kelarakis A. Dallas P. Giannelis E. P. J. Am. Chem. Soc. 2012;134:747–750. doi: 10.1021/ja204661r. PubMed DOI

Vallan L. Urriolabeitia E. P. Ruipérez F. Matxain J. M. Canton-Vitoria R. Tagmatarchis N. Benito A. M. Maser W. K. J. Am. Chem. Soc. 2018;140:12862–12869. doi: 10.1021/jacs.8b06051. PubMed DOI

Zhao X. Wei J. Song T. Wang Z. Yang D. Zhang X. Huo F. Zhang Y. Xiong H.-M. Chem. Eng. J. 2024;481:148779. doi: 10.1016/j.cej.2024.148779. DOI

Xia C. Zhu S. Feng T. Yang M. Yang B. Adv. Sci. 2019;6:1901316. doi: 10.1002/advs.201901316. PubMed DOI PMC

Ehrat F. Bhattacharyya S. Schneider J. Löf A. Wyrwich R. Rogach A. L. Stolarczyk J. K. Urban A. S. Feldmann J. Nano Lett. 2017;17:7710–7716. doi: 10.1021/acs.nanolett.7b03863. PubMed DOI

Kok C. M. Rudin A. Makromol. Chem., Rapid Commun. 1981;2:655–659. doi: 10.1002/marc.1981.030021102. DOI

Bannwarth C. Caldeweyher E. Ehlert S. Hansen A. Pracht P. Seibert J. Spicher S. Grimme S. WIREs Comput. Mol. Sci. 2021;11:e1493. doi: 10.1002/wcms.1493. DOI

Bannwarth C. Ehlert S. Grimme S. J. Chem. Theory Comput. 2019;15:1652–1671. doi: 10.1021/acs.jctc.8b01176. PubMed DOI

Yildiz I. Tomasulo M. Raymo F. M. Proc. Natl. Acad. Sci. U. S. A. 2006;103:11457–11460. doi: 10.1073/pnas.0602384103. PubMed DOI PMC

Sykora M. Petruska M. A. Alstrum-Acevedo J. Bezel I. Meyer T. J. Klimov V. I. J. Am. Chem. Soc. 2006;128:9984–9985. doi: 10.1021/ja061556a. PubMed DOI

Moroz P. Jin Z. Sugiyama Y. Lara D. Razgoniaeva N. Yang M. Kholmicheva N. Khon D. Mattoussi H. Zamkov M. ACS Nano. 2018;12:5657–5665. doi: 10.1021/acsnano.8b01451. PubMed DOI

Stewart M. H. Huston A. L. Scott A. M. Efros A. L. Melinger J. S. Gemmill K. B. Trammell S. A. Blanco-Canosa J. B. Dawson P. E. Medintz I. L. ACS Nano. 2012;6:5330–5347. doi: 10.1021/nn301177h. PubMed DOI

Piston D. W. Kremers G.-J. Trends Biochem. Sci. 2007;32:407–414. doi: 10.1016/j.tibs.2007.08.003. PubMed DOI

Valeev E. F. Coropceanu V. da Silva Filho D. A. Salman S. Brédas J.-L. J. Am. Chem. Soc. 2006;128:9882–9886. doi: 10.1021/ja061827h. PubMed DOI

Brédas J. L. Calbert J. P. da Silva Filho D. A. Cornil J. Proc. Natl. Acad. Sci. U. S. A. 2002;99:5804–5809. PubMed PMC

Canton M. Grommet A. B. Pesce L. Gemen J. Li S. Diskin-Posner Y. Credi A. Pavan G. M. Andréasson J. Klajn R. J. Am. Chem. Soc. 2020;142:14557–14565. doi: 10.1021/jacs.0c06146. PubMed DOI PMC

Shirai Y. Sasaki T. Guerrero J. M. Yu B.-C. Hodge P. Tour J. M. ACS Nano. 2008;2:97–106. doi: 10.1021/nn700294m. PubMed DOI

Feng Y. Liu H. Luo W. Liu E. Zhao N. Yoshino K. Feng W. Sci. Rep. 2013;3:3260. doi: 10.1038/srep03260. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...