Covalent carbon nanodot-azobenzene hybrid photoswitches: the impact of meta/para connectivity and sp3 spacer on photophysical properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40385553
PubMed Central
PMC12076116
DOI
10.1039/d5tc00116a
PII: d5tc00116a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The covalent surface functionalization of carbon nanodots (CNDs) can facilitate the design and development of nanocarbon hybrids with photoswitching properties, which can be applied in a wide range of applications, including sensing, optoelectronics, and even bio-applications. This study underscores the potential utilization of these hybrids as photoresponsive materials, for potential application in optostimulation. In this study, we examine the characteristics of covalent azobenzene-functionalized CNDs, with a particular emphasis on the impact of meta and para connectivity and the additional introduction of a glycine spacer. The CND synthesis process comprises a bottom-up microwave condensation of ethylenediamine and citric acid. Amide coupling to azobenzenes is confirmed through NMR diffusion-ordered spectroscopy and diffusion decay analysis. A comprehensive investigation is conducted into the size and optical properties of the resulting hybrids. Moreover, time-dependent density functional theory computations are employed to understand absorption spectra and charge transfer events. Furthermore, advanced optical characterisation is utilised to examine energy/charge transfer between the constituents. Finally, the switching properties, fatigue resistance, and half-life of the hybrids are studied to evaluate their performance for prospective applications like in optostimulation.
Center for Materials Research Justus Liebig University Heinrich Buff Ring 16 35392 Giessen Germany
Institute of Organic Chemistry Justus Liebig University Heinrich Buff Ring 17 35392 Giessen Germany
Institute of Physical Chemistry Justus Liebig University Heinrich Buff Ring 17 35392 Giessen Germany
Institute of Physical Chemistry University of Muenster Corrensstrasse 28 30 48149 Muenster Germany
Zobrazit více v PubMed
Paternò G. M. Bondelli G. Lanzani G. Bioelectricity. 2021;3:136–142. doi: 10.1089/bioe.2021.0008. PubMed DOI PMC
Doane T. L. Burda C. Chem. Soc. Rev. 2012;41:2885. doi: 10.1039/C2CS15260F. PubMed DOI
de Souza-Guerreiro T. C. Bondelli G. Grobas I. Donini S. Sesti V. Bertarelli C. Lanzani G. Asally M. Paternò G. M. Adv. Sci. 2023;10:2205007. doi: 10.1002/advs.202205007. PubMed DOI PMC
Mavroidi B. Kaminari A. Sakellis E. Sideratou Z. Tsiourvas D. Pharmaceuticals. 2023;16:833. doi: 10.3390/ph16060833. PubMed DOI PMC
Zhang S. Xiao C. He H. Xu Z. Wang B. Chen X. Li C. Jiang B. Liu Y. Environ. Sci.: Nano. 2020;7:880–890. doi: 10.1039/C9EN00991D. DOI
Döbbelin M. Ciesielski A. Haar S. Osella S. Bruna M. Minoia A. Grisanti L. Mosciatti T. Richard F. Prasetyanto E. A. De Cola L. Palermo V. Mazzaro R. Morandi V. Lazzaroni R. Ferrari A. C. Beljonne D. Samorì P. Nat. Commun. 2016;7:11090. doi: 10.1038/ncomms11090. PubMed DOI PMC
Niedzialek D. Duchemin I. De Queiroz T. B. Osella S. Rao A. Friend R. Blase X. Kümmel S. Beljonne D. Adv. Funct. Mater. 2015;25:1972–1984. doi: 10.1002/adfm.201402682. DOI
Osella S. Wang M. Menna E. Gatti T. Opt. Mater. X. 2021;12:100100.
Ross A. M. Osella S. Policht V. R. Zheng M. Maggini M. Marangi F. Cerullo G. Gatti T. Scotognella F. J. Phys. Chem. C. 2022;126:3569–3581. doi: 10.1021/acs.jpcc.1c10570. PubMed DOI PMC
Langer M. Zdražil L. Medveď M. Otyepka M. Nanoscale. 2023;15:4022–4032. doi: 10.1039/D2NR05114A. PubMed DOI
Banger A. Gautam S. Jadoun S. Jangid N. K. Srivastava A. Pulidindi I. N. Dwivedi J. Srivastava M. Catalysts. 2023;13:858. doi: 10.3390/catal13050858. DOI
Baker S. N. Baker G. A. Angew. Chem., Int. Ed. 2010;49:6726–6744. doi: 10.1002/anie.200906623. PubMed DOI
Sun Y.-P. Zhou B. Lin Y. Wang W. Fernando K. A. S. Pathak P. Meziani M. J. Harruff B. A. Wang X. Wang H. Luo P. G. Yang H. Kose M. E. Chen B. Veca L. M. Xie S.-Y. J. Am. Chem. Soc. 2006;128:7756–7757. doi: 10.1021/ja062677d. PubMed DOI
Arcudi F. Ďorďević L. Prato M. Acc. Chem. Res. 2019;52:2070–2079. doi: 10.1021/acs.accounts.9b00249. PubMed DOI
Rigodanza F. Burian M. Arcudi F. Đorđević L. Amenitsch H. Prato M. Nat. Commun. 2021;12:2640. doi: 10.1038/s41467-021-22902-w. PubMed DOI PMC
Debes P. P. Langer M. Pagel M. Menna E. Smarsly B. Osella S. Gallego J. Gatti T. ChemNanoMat. 2024;10:e202300471. doi: 10.1002/cnma.202300471. DOI
Park Y. Yoo J. Lim B. Kwon W. Rhee S.-W. J. Mater. Chem. A. 2016;4:11582–11603. doi: 10.1039/C6TA04813G. DOI
Arcudi F. Strauss V. Đorđević L. Cadranel A. Guldi D. M. Prato M. Angew. Chem. 2017;129:12265–12269. doi: 10.1002/ange.201704544. PubMed DOI
Liao B. Long P. He B. Yi S. Ou B. Shen S. Chen J. J. Mater. Chem. C. 2013;1:3716. doi: 10.1039/C3TC00906H. DOI
Zhang X. Hou L. Samorì P. Nat. Commun. 2016;7:11118. doi: 10.1038/ncomms11118. PubMed DOI PMC
Nakatani K., Piard J., Yu P. and Métivier R., in Photochromic Materials: Preparation, Properties and Applications, ed. H. Tian and J. Zhang, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2016, pp. 1–45
Nägele T. Hoche R. Zinth W. Wachtveitl J. Chem. Phys. Lett. 1997;272:489–495. doi: 10.1016/S0009-2614(97)00531-9. DOI
Oudar J. L. J. Chem. Phys. 1977;67:446–457. doi: 10.1063/1.434888. DOI
Moran M. J. Magrini M. Walba D. M. Aprahamian I. J. Am. Chem. Soc. 2018;140:13623–13627. doi: 10.1021/jacs.8b09622. PubMed DOI
Hegedüsová L. Blaise N. Pašteka L. F. Budzák Š. Medveď M. Filo J. Mravec B. Slavov C. Wachtveitl J. Grabarz A. M. Cigáň M. Chem. – Eur. J. 2024;30:e202303509. doi: 10.1002/chem.202303509. PubMed DOI
Mravec B. Budzák Š. Medved’ M. Pašteka L. F. Slavov C. Saßmannshausen T. Wachtveitl J. Kožíšek J. Hegedüsová L. Filo J. Cigáň M. J. Org. Chem. 2021;86:11633–11646. doi: 10.1021/acs.joc.1c01174. PubMed DOI
Tobin J. C. Hegarty A. F. Scott F. L. J. Chem. Soc. B Phys. Org. 1971:2198–2202. doi: 10.1039/J29710002198. DOI
Soliman A. I. A. Sayed M. Elshanawany M. M. Younis O. Ahmed M. Kamal El-Dean A. M. Abdel-Wahab A.-M. A. Wachtveitl J. Braun M. Fatehi P. Tolba M. S. ACS Omega. 2022;7:10178–10186. doi: 10.1021/acsomega.1c06636. PubMed DOI PMC
Wang Z. Losantos R. Sampedro D. Morikawa M. Börjesson K. Kimizuka N. Moth-Poulsen K. J. Mater. Chem. A. 2019;7:15042–15047. doi: 10.1039/C9TA04905C. DOI
Dong L. Feng Y. Wang L. Feng W. Chem. Soc. Rev. 2018;47:7339–7368. doi: 10.1039/C8CS00470F. PubMed DOI
Kreger K. Wolfer P. Audorff H. Kador L. Stingelin-Stutzmann N. Smith P. Schmidt H.-W. J. Am. Chem. Soc. 2010;132:509–516. doi: 10.1021/ja9091038. PubMed DOI
Gerkman M. A. Han G. G. D. Joule. 2020;4:1621–1625. doi: 10.1016/j.joule.2020.07.011. DOI
Wang Z. Erhart P. Li T. Zhang Z.-Y. Sampedro D. Hu Z. Wegner H. A. Brummel O. Libuda J. Nielsen M. B. Moth-Poulsen K. Joule. 2021;5:3116–3136. doi: 10.1016/j.joule.2021.11.001. DOI
Schatz D. Baumert M. E. Kersten M. C. Schneider F. M. Nielsen M. B. Hansmann M. M. Wegner H. A. Angew. Chem., Int. Ed. 2024;63:e202405618. doi: 10.1002/anie.202405618. PubMed DOI
Hüll K. Morstein J. Trauner D. Chem. Rev. 2018;118:10710–10747. doi: 10.1021/acs.chemrev.8b00037. PubMed DOI
Lenz M. O. Woerner A. C. Glaubitz C. Wachtveitl J. Photochem. Photobiol. 2007;83:226–231. PubMed
Liu M. Yan X. Hu M. Chen X. Zhang M. Zheng B. Hu X. Shao S. Huang F. Org. Lett. 2010;12:2558–2561. doi: 10.1021/ol100770j. PubMed DOI
Averdunk C. Hanke K. Schatz D. Wegner H. A. Acc. Chem. Res. 2024;57:257–266. doi: 10.1021/acs.accounts.3c00616. PubMed DOI
Norikane Y. Tamaoki N. Org. Lett. 2004;6:2595–2598. doi: 10.1021/ol049082c. PubMed DOI
Hartley G. S. Nature. 1937;140:281.
Merino E. Ribagorda M. Beilstein J. Org. Chem. 2012;8:1071–1090. PubMed PMC
Schulte-Frohlinde D. Ann. Chem. 1958;612:138–152.
Goulet-Hanssens A. Rietze C. Titov E. Abdullahu L. Grubert L. Saalfrank P. Hecht S. Chem. 2018;4:1740–1755.
Slavov C. Yang C. Schweighauser L. Boumrifak C. Dreuw A. Wegner H. A. Wachtveitl J. Phys. Chem. Chem. Phys. 2016;18:14795–14804. doi: 10.1039/C6CP00603E. PubMed DOI
Bellotto S. Reuter R. Heinis C. Wegner H. A. J. Org. Chem. 2011;76:9826–9834. doi: 10.1021/jo201996w. PubMed DOI
Reuter R. Hostettler N. Neuburger M. Wegner H. A. Eur. J. Org. Chem. 2009:5647–5652. doi: 10.1002/ejoc.200900861. DOI
Ziessel R. Stachelek P. Harriman A. Hedley G. J. Roland T. Ruseckas A. Samuel I. D. W. J. Phys. Chem. A. 2018;122:4437–4447. doi: 10.1021/acs.jpca.8b02415. PubMed DOI
Raymo F. Tomasulo M. Chem. Soc. Rev. 2005;34:327–336. doi: 10.1039/B400387J. PubMed DOI
Gomez I. J. Arnaiz B. Cacioppo M. Arcudi F. Prato M. J. Mater. Chem. B. 2018;6:5540–5548. doi: 10.1039/C8TB01796D. PubMed DOI
Price W. S., NMR Studies of Translational Motion: Principles and Applications, Cambridge University Press, Cambridge, 2009
Sarkar S. Dinda S. Choudhury P. Das P. K. Soft Matter. 2019;15:2863–2875. doi: 10.1039/C9SM00051H. PubMed DOI
Luther R. Nikolopulos A. Z. Physiol. Chem. 1913;82U:361–384. doi: 10.1515/zpch-1913-8229. DOI
Debes P. P. Pagel M. Muntean S. Hessling J. Smarsly B. M. Schönhoff M. Gatti T. Photochem. 2025;5:1. doi: 10.3390/photochem5010001. DOI
Filippini G. Amato F. Rosso C. Ragazzon G. Vega-Peñaloza A. Companyó X. Dell’Amico L. Bonchio M. Prato M. Chem. 2020;6:3022–3037.
Langer M. Hrivnák T. Medved M. Otyepka M. J. Phys. Chem. C. 2021;125:12140–12148. doi: 10.1021/acs.jpcc.1c02243. DOI
Langer M. Paloncýová M. Medved M. Otyepka M. J. Phys. Chem. Lett. 2020;11:8252–8258. doi: 10.1021/acs.jpclett.0c01873. PubMed DOI
Krysmann M. J. Kelarakis A. Dallas P. Giannelis E. P. J. Am. Chem. Soc. 2012;134:747–750. doi: 10.1021/ja204661r. PubMed DOI
Vallan L. Urriolabeitia E. P. Ruipérez F. Matxain J. M. Canton-Vitoria R. Tagmatarchis N. Benito A. M. Maser W. K. J. Am. Chem. Soc. 2018;140:12862–12869. doi: 10.1021/jacs.8b06051. PubMed DOI
Zhao X. Wei J. Song T. Wang Z. Yang D. Zhang X. Huo F. Zhang Y. Xiong H.-M. Chem. Eng. J. 2024;481:148779. doi: 10.1016/j.cej.2024.148779. DOI
Xia C. Zhu S. Feng T. Yang M. Yang B. Adv. Sci. 2019;6:1901316. doi: 10.1002/advs.201901316. PubMed DOI PMC
Ehrat F. Bhattacharyya S. Schneider J. Löf A. Wyrwich R. Rogach A. L. Stolarczyk J. K. Urban A. S. Feldmann J. Nano Lett. 2017;17:7710–7716. doi: 10.1021/acs.nanolett.7b03863. PubMed DOI
Kok C. M. Rudin A. Makromol. Chem., Rapid Commun. 1981;2:655–659. doi: 10.1002/marc.1981.030021102. DOI
Bannwarth C. Caldeweyher E. Ehlert S. Hansen A. Pracht P. Seibert J. Spicher S. Grimme S. WIREs Comput. Mol. Sci. 2021;11:e1493. doi: 10.1002/wcms.1493. DOI
Bannwarth C. Ehlert S. Grimme S. J. Chem. Theory Comput. 2019;15:1652–1671. doi: 10.1021/acs.jctc.8b01176. PubMed DOI
Yildiz I. Tomasulo M. Raymo F. M. Proc. Natl. Acad. Sci. U. S. A. 2006;103:11457–11460. doi: 10.1073/pnas.0602384103. PubMed DOI PMC
Sykora M. Petruska M. A. Alstrum-Acevedo J. Bezel I. Meyer T. J. Klimov V. I. J. Am. Chem. Soc. 2006;128:9984–9985. doi: 10.1021/ja061556a. PubMed DOI
Moroz P. Jin Z. Sugiyama Y. Lara D. Razgoniaeva N. Yang M. Kholmicheva N. Khon D. Mattoussi H. Zamkov M. ACS Nano. 2018;12:5657–5665. doi: 10.1021/acsnano.8b01451. PubMed DOI
Stewart M. H. Huston A. L. Scott A. M. Efros A. L. Melinger J. S. Gemmill K. B. Trammell S. A. Blanco-Canosa J. B. Dawson P. E. Medintz I. L. ACS Nano. 2012;6:5330–5347. doi: 10.1021/nn301177h. PubMed DOI
Piston D. W. Kremers G.-J. Trends Biochem. Sci. 2007;32:407–414. doi: 10.1016/j.tibs.2007.08.003. PubMed DOI
Valeev E. F. Coropceanu V. da Silva Filho D. A. Salman S. Brédas J.-L. J. Am. Chem. Soc. 2006;128:9882–9886. doi: 10.1021/ja061827h. PubMed DOI
Brédas J. L. Calbert J. P. da Silva Filho D. A. Cornil J. Proc. Natl. Acad. Sci. U. S. A. 2002;99:5804–5809. PubMed PMC
Canton M. Grommet A. B. Pesce L. Gemen J. Li S. Diskin-Posner Y. Credi A. Pavan G. M. Andréasson J. Klajn R. J. Am. Chem. Soc. 2020;142:14557–14565. doi: 10.1021/jacs.0c06146. PubMed DOI PMC
Shirai Y. Sasaki T. Guerrero J. M. Yu B.-C. Hodge P. Tour J. M. ACS Nano. 2008;2:97–106. doi: 10.1021/nn700294m. PubMed DOI
Feng Y. Liu H. Luo W. Liu E. Zhao N. Yoshino K. Feng W. Sci. Rep. 2013;3:3260. doi: 10.1038/srep03260. PubMed DOI PMC