Nanrilkefusp alfa (SOT101), an IL-15 receptor βγ superagonist, as a single agent or with anti-PD-1 in patients with advanced cancers
Language English Country United States Media print-electronic
Document type Journal Article, Clinical Trial, Phase I
Grant support
UL1 TR001863
NCATS NIH HHS - United States
PubMed
39933529
PubMed Central
PMC11866505
DOI
10.1016/j.xcrm.2025.101967
PII: S2666-3791(25)00040-0
Knihovny.cz E-resources
- Keywords
- SOT101, anti-tumor efficacy, nanril, nanrilkefusp alfa, pembrolizumab combination, solid tumors,
- MeSH
- Programmed Cell Death 1 Receptor * antagonists & inhibitors immunology MeSH
- Killer Cells, Natural immunology drug effects MeSH
- CD8-Positive T-Lymphocytes immunology drug effects MeSH
- Adult MeSH
- Antibodies, Monoclonal, Humanized therapeutic use pharmacology MeSH
- Immune Checkpoint Inhibitors pharmacology therapeutic use MeSH
- Middle Aged MeSH
- Humans MeSH
- Macaca fascicularis MeSH
- Neoplasms * drug therapy pathology immunology MeSH
- Aged MeSH
- Animals MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial, Phase I MeSH
- Names of Substances
- Programmed Cell Death 1 Receptor * MeSH
- Antibodies, Monoclonal, Humanized MeSH
- Immune Checkpoint Inhibitors MeSH
Nanrilkefusp alfa (nanril; SOT101) is an interleukin (IL)-15 receptor βγ superagonist that stimulates natural killer (NK) and CD8+ T cells, thereby promoting an innate and adaptive anti-tumor inflammatory microenvironment in mouse tumor models either in monotherapy or combined with an anti-programmed cell death protein 1 (PD-1) antibody. In cynomolgus monkeys, a clinical schedule was identified, which translated into the design of a phase 1/1b clinical trial, AURELIO-03 (NCT04234113). In 51 patients with advanced/metastatic solid tumors, nanril increased the proportions of CD8+ T cells and NK cells in peripheral blood and tumors. It had a favorable safety profile when administered subcutaneously on days 1, 2, 8, and 9 of each 21-day cycle as monotherapy (0.25-15 μg/kg) or combined (1.5-12 μg/kg) with the anti-PD-1 pembrolizumab (200 mg). The most frequent treatment-emergent adverse events were pyrexia, injection site reactions, and chills. Furthermore, early clinical efficacy was observed, including in immune checkpoint blockade-resistant/refractory patients.
Cytune Pharma 44300 Nantes France
Department of Lnvestigational Cancer Therapeutics MD Anderson Cancer Center Houston TX 77030 USA
Department of Medical Oncology Centre Leon Berard 69008 Lyon France
Institut Universitaire du Cancer de Toulouse 31100 Toulouse France
Masaryk Memorial Cancer Institute 602 00 Brno Czech Republic
SOTIO Biotech a s 170 00 Prague Czech Republic
SOTIO Biotech AG 4056 Basel Switzerland
See more in PubMed
Cheever M.A. Twelve immunotherapy drugs that could cure cancers. Immunol. Rev. 2008;222:357–368. doi: 10.1111/j.1600-065X.2008.00604.x. PubMed DOI
Dutcher J.P., Schwartzentruber D.J., Kaufman H.L., Agarwala S.S., Tarhini A.A., Lowder J.N., Atkins M.B. High dose interleukin-2 (Aldesleukin) - expert consensus on best management practices-2014. J. Immunother. Cancer. 2014;2:26. doi: 10.1186/s40425-014-0026-0. PubMed DOI PMC
Rosenberg S.A. IL-2: the first effective immunotherapy for human cancer. J. Immunol. 2014;192:5451–5458. doi: 10.4049/jimmunol.1490019. PubMed DOI PMC
Conlon K.C., Lugli E., Welles H.C., Rosenberg S.A., Fojo A.T., Morris J.C., Fleisher T.A., Dubois S.P., Perera L.P., Stewart D.M., et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J. Clin. Oncol. 2015;33:74–82. doi: 10.1200/JCO.2014.57.3329. PubMed DOI PMC
Miller J.S., Morishima C., McNeel D.G., Patel M.R., Kohrt H.E.K., Thompson J.A., Sondel P.M., Wakelee H.A., Disis M.L., Kaiser J.C., et al. A first-in-human phase I study of subcutaneous outpatient recombinant human IL15 (rhIL15) in adults with advanced solid tumors. Clin. Cancer Res. 2018;24:1525–1535. doi: 10.1158/1078-0432.CCR-17-2451. PubMed DOI PMC
Margolin K., Morishima C., Velcheti V., Miller J.S., Lee S.M., Silk A.W., Holtan S.G., Lacroix A.M., Fling S.P., Kaiser J.C., et al. Phase I trial of ALT-803, a novel recombinant IL15 complex, in patients with advanced solid tumors. Clin. Cancer Res. 2018;24:5552–5561. doi: 10.1158/1078-0432.CCR-18-0945. PubMed DOI PMC
Fiore P.F., Di Matteo S., Tumino N., Mariotti F.R., Pietra G., Ottonello S., Negrini S., Bottazzi B., Moretta L., Mortier E., Azzarone B. Interleukin-15 and cancer: some solved and many unsolved questions. J. Immunother. Cancer. 2020;8 doi: 10.1136/jitc-2020-001428. PubMed DOI PMC
Waldmann T.A., Dubois S., Miljkovic M.D., Conlon K.C. IL-15 in the combination immunotherapy of cancer. Front. Immunol. 2020;11:868. doi: 10.3389/fimmu.2020.00868. PubMed DOI PMC
Zhang X., Sun S., Hwang I., Tough D.F., Sprent J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity. 1998;8:591–599. doi: 10.1016/s1074-7613(00)80564-6. PubMed DOI
Marks-Konczalik J., Dubois S., Losi J.M., Sabzevari H., Yamada N., Feigenbaum L., Waldmann T.A., Tagaya Y. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc. Natl. Acad. Sci. USA. 2000;97:11445–11450. doi: 10.1073/pnas.200363097. PubMed DOI PMC
Waldmann T.A. The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol. Res. 2015;3:219–227. doi: 10.1158/2326-6066.CIR-15-0009. PubMed DOI PMC
Mortier E., Quéméner A., Vusio P., Lorenzen I., Boublik Y., Grötzinger J., Plet A., Jacques Y. Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x IL-15R alpha fusion proteins. J. Biol. Chem. 2006;281:1612–1619. doi: 10.1074/jbc.M508624200. PubMed DOI
Bouchaud G., Garrigue-Antar L., Solé V., Quéméner A., Boublik Y., Mortier E., Perdreau H., Jacques Y., Plet A. The exon-3-encoded domain of IL-15ralpha contributes to IL-15 high-affinity binding and is crucial for the IL-15 antagonistic effect of soluble IL-15Ralpha. J. Mol. Biol. 2008;382:1–12. doi: 10.1016/j.jmb.2008.07.019. PubMed DOI
Huntington N.D., Legrand N., Alves N.L., Jaron B., Weijer K., Plet A., Corcuff E., Mortier E., Jacques Y., Spits H., Di Santo J.P. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J. Exp. Med. 2009;206:25–34. doi: 10.1084/jem.20082013. PubMed DOI PMC
Huntington N.D., Alves N.L., Legrand N., Lim A., Strick-Marchand H., Mention J.J., Plet A., Weijer K., Jacques Y., Becker P.D., et al. IL-15 transpresentation promotes both human T-cell reconstitution and T-cell-dependent antibody responses in vivo. Proc. Natl. Acad. Sci. USA. 2011;108:6217–6222. doi: 10.1073/pnas.1019167108. PubMed DOI PMC
Desbois M., Le Vu P., Coutzac C., Marcheteau E., Béal C., Terme M., Gey A., Morisseau S., Teppaz G., Boselli L., et al. IL-15 trans-signaling with the superagonist RLI promotes effector/memory CD8+ T cell responses and enhances antitumor activity of PD-1 antagonists. J. Immunol. 2016;197:168–178. doi: 10.4049/jimmunol.1600019. PubMed DOI
Desbois M., Béal C., Charrier M., Besse B., Meurice G., Cagnard N., Jacques Y., Béchard D., Cassard L., Chaput N. IL-15 superagonist RLI has potent immunostimulatory properties on NK cells: implications for antimetastatic treatment. J. Immunother. Cancer. 2020;8 doi: 10.1136/jitc-2020-000632. PubMed DOI PMC
Antosova Z., Podzimkova N., Tomala J., Augustynkova K., Sajnerova K., Nedvedova E., Sirova M., de Martynoff G., Bechard D., Moebius U., et al. SOT101 induces NK cell cytotoxicity and potentiates antibody-dependent cell cytotoxicity and anti-tumor activity. Front. Immunol. 2022;13 doi: 10.3389/fimmu.2022.989895. PubMed DOI PMC
Bessard A., Solé V., Bouchaud G., Quéméner A., Jacques Y. High antitumor activity of RLI, an interleukin-15 (IL-15)-IL-15 receptor alpha fusion protein, in metastatic melanoma and colorectal cancer. Mol. Cancer Therapeut. 2009;8:2736–2745. doi: 10.1158/1535-7163.MCT-09-0275. PubMed DOI
Nixon N.A., Blais N., Ernst S., Kollmannsberger C., Bebb G., Butler M., Smylie M., Verma S. Current landscape of immunotherapy in the treatment of solid tumours, with future opportunities and challenges. Curr. Oncol. 2018;25:e373–e384. doi: 10.3747/co.25.3840. PubMed DOI PMC
Sharma P., Siddiqui B.A., Anandhan S., Yadav S.S., Subudhi S.K., Gao J., Goswami S., Allison J.P. The next decade of immune checkpoint therapy. Cancer Discov. 2021;11:838–857. doi: 10.1158/2159-8290.CD-20-1680. PubMed DOI
Gong J., Chehrazi-Raffle A., Reddi S., Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J. Immunother. Cancer. 2018;6:8. doi: 10.1186/s40425-018-0316-z. PubMed DOI PMC
Marabelle A., Le D.T., Ascierto P.A., Di Giacomo A.M., De Jesus-Acosta A., Delord J.P., Geva R., Gottfried M., Penel N., Hansen A.R., et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 2020;38:1–10. doi: 10.1200/JCO.19.02105. PubMed DOI PMC
Dammeijer F., Lau S.P., van Eijck C.H.J., van der Burg S.H., Aerts J.G.J.V. Rationally combining immunotherapies to improve efficacy of immune checkpoint blockade in solid tumors. Cytokine Growth Factor Rev. 2017;36:5–15. doi: 10.1016/j.cytogfr.2017.06.011. PubMed DOI
Sun J.Y., Zhang D., Wu S., Xu M., Zhou X., Lu X.J., Ji J. Resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms, predictive factors, and future perspectives. Biomark. Res. 2020;8:35. doi: 10.1186/s40364-020-00212-5. PubMed DOI PMC
Scholler N., Perbost R., Locke F.L., Jain M.D., Turcan S., Danan C., Chang E.C., Neelapu S.S., Miklos D.B., Jacobson C.A., et al. Tumor immune contexture is a determinant of anti-CD19 CAR T cell efficacy in large B cell lymphoma. Nat. Med. 2022;28:1872–1882. doi: 10.1038/s41591-022-01916-x. PubMed DOI PMC
Guo Y., Luan L., Patil N.K., Sherwood E.R. Immunobiology of the IL-15/IL-15Ralpha complex as an antitumor and antiviral agent. Cytokine Growth Factor Rev. 2017;38:10–21. doi: 10.1016/j.cytogfr.2017.08.002. PubMed DOI PMC
Bonavita E., Bromley C.P., Jonsson G., Pelly V.S., Sahoo S., Walwyn-Brown K., Mensurado S., Moeini A., Flanagan E., Bell C.R., et al. Antagonistic inflammatory phenotypes dictate tumor fate and response to immune checkpoint blockade. Immunity. 2020;53:1215–1229.e8. doi: 10.1016/j.immuni.2020.10.020. PubMed DOI PMC
Felices M., Lenvik A.J., McElmurry R., Chu S., Hinderlie P., Bendzick L., Geller M.A., Tolar J., Blazar B.R., Miller J.S. Continuous treatment with IL-15 exhausts human NK cells via a metabolic defect. JCI insight. 2018;3 doi: 10.1172/jci.insight.96219. PubMed DOI PMC
Elpek K.G., Rubinstein M.P., Bellemare-Pelletier A., Goldrath A.W., Turley S.J. Mature natural killer cells with phenotypic and functional alterations accumulate upon sustained stimulation with IL-15/IL-15Ralpha complexes. Proc. Natl. Acad. Sci. USA. 2010;107:21647–21652. doi: 10.1073/pnas.1012128107. PubMed DOI PMC
Pradeu T., Vivier E. The discontinuity theory of immunity. Sci. Immunol. 2016;1 doi: 10.1126/sciimmunol.aag0479. PubMed DOI PMC
Lugli E., Goldman C.K., Perera L.P., Smedley J., Pung R., Yovandich J.L., Creekmore S.P., Waldmann T.A., Roederer M. Transient and persistent effects of IL-15 on lymphocyte homeostasis in nonhuman primates. Blood. 2010;116:3238–3248. doi: 10.1182/blood-2010-03-275438. PubMed DOI PMC
Conlon K., Watson D.C., Waldmann T.A., Valentin A., Bergamaschi C., Felber B.K., Peer C.J., Figg W.D., Potter E.L., Roederer M., et al. Phase I study of single agent NIZ985, a recombinant heterodimeric IL-15 agonist, in adult patients with metastatic or unresectable solid tumors. J. Immunother. Cancer. 2021;9 doi: 10.1136/jitc-2021-003388. PubMed DOI PMC
National Comprehensive Cancer Network. NCCN Guideline: Squamous cell skin cancer, version 1.2024. https://www.nccn.org/.
Rischin D., Khushalani N.I., Schmults C.D., Guminski A., Chang A.L.S., Lewis K.D., Lim A.M., Hernandez-Aya L., Hughes B.G.M., Schadendorf D., et al. Integrated analysis of a phase 2 study of cemiplimab in advanced cutaneous squamous cell carcinoma: extended follow-up of outcomes and quality of life analysis. J. Immunother. Cancer. 2021;9 doi: 10.1136/jitc-2021-002757. PubMed DOI PMC
Hughes B.G.M., Munoz-Couselo E., Mortier L., Bratland Å., Gutzmer R., Roshdy O., González Mendoza R., Schachter J., Arance A., Grange F., et al. Pembrolizumab for locally advanced and recurrent/metastatic cutaneous squamous cell carcinoma (KEYNOTE-629 study): an open-label, nonrandomized, multicenter, phase II trial. Ann. Oncol. 2021;32:1276–1285. doi: 10.1016/j.annonc.2021.07.008. PubMed DOI
Clingan P., Ladwa R., Brungs D., Harris D.L., McGrath M., Arnold S., Coward J., Fourie S., Kurochkin A., Malan D.R., et al. Efficacy and safety of cosibelimab, an anti-PD-L1 antibody, in metastatic cutaneous squamous cell carcinoma. J. Immunother. Cancer. 2023;11 doi: 10.1136/jitc-2023-007637. PubMed DOI PMC
Marin-Acevedo J.A., Withycombe B.M., Kim Y., Brohl A.S., Eroglu Z., Markowitz J., Tarhini A.A., Tsai K.Y., Khushalani N.I. Cetuximab for immunotherapy-refractory/ineligible cutaneous squamous cell carcinoma. Cancers. 2023;15 doi: 10.3390/cancers15123180. PubMed DOI PMC
Bossi P., Alberti A., Bergamini C., Resteghini C., Locati L.D., Alfieri S., Cavalieri S., Colombo E., Gurizzan C., Lorini L., et al. Immunotherapy followed by cetuximab in locally advanced/metastatic (LA/M) cutaneous squamous cell carcinomas (cSCC): The I-TACKLE trial. J. Clin. Oncol. 2022;40:9520. doi: 10.1200/JCO.2022.40.16_suppl.9520. DOI
Quezada S.A., Peggs K.S., Curran M.A., Allison J.P. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J. Clin. Invest. 2006;116:1935–1945. doi: 10.1172/JCI27745. PubMed DOI PMC
Fridman W.H., Pagès F., Sautès-Fridman C., Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer. 2012;12:298–306. doi: 10.1038/nrc3245. PubMed DOI
Ye Y., Zhang Y., Yang N., Gao Q., Ding X., Kuang X., Bao R., Zhang Z., Sun C., Zhou B., et al. Profiling of immune features to predict immunotherapy efficacy. Innovation. 2022;3 doi: 10.1016/j.xinn.2021.100194. PubMed DOI PMC
Ott P.A., Hu-Lieskovan S., Chmielowski B., Govindan R., Naing A., Bhardwaj N., Margolin K., Awad M.M., Hellmann M.D., Lin J.J., et al. A phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell. 2020;183:347–362.e24. doi: 10.1016/j.cell.2020.08.053. PubMed DOI
Tumeh P.C., Harview C.L., Yearley J.H., Shintaku I.P., Taylor E.J.M., Robert L., Chmielowski B., Spasic M., Henry G., Ciobanu V., et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–571. doi: 10.1038/nature13954. PubMed DOI PMC
Foster B.A., Gingrich J.R., Kwon E.D., Madias C., Greenberg N.M. Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res. 1997;57:3325–3330. PubMed
Lin K.Y., Guarnieri F.G., Staveley-O'Carroll K.F., Levitsky H.I., August J.T., Pardoll D.M., Wu T.C. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res. 1996;56:21–26. PubMed
Le Tourneau C., Lee J.J., Siu L.L. Dose escalation methods in phase I cancer clinical trials. J. Natl. Cancer Inst. 2009;101:708–720. doi: 10.1093/jnci/djp079. PubMed DOI PMC