Genetic and bioactive functionalization of bioinks for 3D bioprinting

. 2025 Sep ; 48 (9) : 1421-1449. [epub] 20250520

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40392297

Grantová podpora
DBT-RA/2024/January/N/5132 Department of Biotechnology, Ministry of Science and Technology, India
TN02000025 NCEII, Czech republic

Odkazy

PubMed 40392297
DOI 10.1007/s00449-025-03180-y
PII: 10.1007/s00449-025-03180-y
Knihovny.cz E-zdroje

3D bioprinting is revolutionizing tissue engineering and regenerative medicine by enabling the precise fabrication of biologically functional constructs. At its core, the success of 3D bioprinting hinges on the development of bioinks, hydrogel-based materials that support cellular viability, proliferation, and differentiation. However, conventional bioinks face limitations in mechanical strength, biological activity, and customization. Recent advancements in genetic engineering have addressed these challenges by enhancing the properties of bioinks through genetic modifications. These innovations allow the integration of stimuli-responsive elements, bioactive molecules, and extracellular matrix (ECM) components, significantly improving the mechanical integrity, biocompatibility, and functional adaptability of bioinks. This review explores the state-of-the-art genetic approaches to bioink development, emphasizing microbial engineering, genetic functionalization, and the encapsulation of growth factors. It highlights the transformative potential of genetically modified bioinks in various applications, including bone and cartilage regeneration, cardiac and liver tissue engineering, neural tissue reconstruction, and vascularization. While these advances hold promise for personalized and adaptive therapeutic solutions, challenges in scalability, reproducibility, and integration with multi-material systems persist. By bridging genetics and bioprinting, this interdisciplinary field paves the way for sophisticated constructs and innovative therapies in tissue engineering and regenerative medicine.

Zobrazit více v PubMed

Bartolo P, Malshe A, Ferraris E, Koc B (2022) 3D bioprinting: materials, processes, and applications. CIRP Ann 71:577–597. https://doi.org/10.1016/j.cirp.2022.06.001 DOI

Agarwal T, Fortunato GM, Hann SY et al (2021) Recent advances in bioprinting technologies for engineering cardiac tissue. Mater Sci Eng C 124:112057. https://doi.org/10.1016/j.msec.2021.112057 DOI

Unagolla JM, Jayasuriya AC (2020) Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Appl Mater Today 18:100479. https://doi.org/10.1016/j.apmt.2019.100479 PubMed DOI

Chen XB, Fazel Anvari-Yazdi A, Duan X et al (2023) Biomaterials / bioinks and extrusion bioprinting. Bioact Mater 28:511–536. https://doi.org/10.1016/j.bioactmat.2023.06.006 PubMed DOI PMC

Xu F, Dawson C, Lamb M et al (2022) Hydrogels for tissue engineering: addressing key design needs toward clinical translation. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2022.849831 PubMed DOI PMC

Shin YJ, Shafranek RT, Tsui JH et al (2021) 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Acta Biomater 119:75–88. https://doi.org/10.1016/j.actbio.2020.11.006 PubMed DOI

Theus AS, Ning L, Hwang B et al (2020) Bioprintability: physiomechanical and biological requirements of materials for 3D bioprinting processes. Polymers (Basel) 12:2262. https://doi.org/10.3390/polym12102262 PubMed DOI

Salinas-Fernández S, Santos M, Alonso M et al (2020) Genetically engineered elastin-like recombinamers with sequence-based molecular stabilization as advanced bioinks for 3D bioprinting. Appl Mater Today 18:100500. https://doi.org/10.1016/j.apmt.2019.100500 DOI

Parak A, Pradeep P, du Toit LC et al (2019) Functionalizing bioinks for 3D bioprinting applications. Drug Discov Today 24:198–205. https://doi.org/10.1016/j.drudis.2018.09.012 PubMed DOI

Ji T, Shi H, Yang X et al (2024) Bioinspired genetic and chemical engineering of protein hydrogels for programable multi-responsive actuation. Adv Healthc Mater 13:2401562. https://doi.org/10.1002/adhm.202401562 DOI

Huang W, Tarakanova A, Dinjaski N et al (2016) Design of multistimuli responsive hydrogels using integrated modeling and genetically engineered silk–elastin-like proteins. Adv Funct Mater 26:4113–4123. https://doi.org/10.1002/adfm.201600236 PubMed DOI PMC

Davis NE, Ding S, Forster RE et al (2010) Modular enzymatically crosslinked protein polymer hydrogels for in situ gelation. Biomaterials 31:7288–7297. https://doi.org/10.1016/j.biomaterials.2010.06.003 PubMed DOI PMC

Aazmi A, Zhang D, Mazzaglia C et al (2024) Biofabrication methods for reconstructing extracellular matrix mimetics. Bioact Mater 31:475–496. https://doi.org/10.1016/j.bioactmat.2023.08.018 PubMed DOI

Oxford JT, Reeck JC, Hardy MJ (2019) Extracellular matrix in development and disease. Int J Mol Sci. https://doi.org/10.3390/ijms20010205 PubMed DOI PMC

Ashammakhi N, Ahadian S, Xu C et al (2019) Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio 1:100008. https://doi.org/10.1016/j.mtbio.2019.100008 PubMed DOI PMC

Lam EHY, Yu F, Zhu S, Wang Z (2023) 3D bioprinting for next-generation personalized medicine. Int J Mol Sci 24:6357. https://doi.org/10.3390/ijms24076357 PubMed DOI PMC

Benwood C, Chrenek J, Kirsch RL et al (2021) Natural biomaterials and their use as bioinks for printing tissues. Bioengineering 8:27. https://doi.org/10.3390/bioengineering8020027 PubMed DOI PMC

Fakhruddin K, Al-Tam BYH, Sayed AN et al (2022) 3D bioprinting: introduction and recent advancement. J Med Device Technol 1:25–29. https://doi.org/10.11113/jmeditec.v1n1.13 DOI

Elomaa L, Almalla A, Keshi E et al (2023) Rise of tissue- and species-specific 3D bioprinting based on decellularized extracellular matrix-derived bioinks and bioresins. Biomater Biosyst 12:100084. https://doi.org/10.1016/j.bbiosy.2023.100084 PubMed DOI PMC

Wan H, Xiang J, Mao G et al (2024) Recent advances in the application of 3D-printing bioinks based on decellularized extracellular matrix in tissue engineering. ACS Omega 9:24219–24235. https://doi.org/10.1021/acsomega.4c02847 PubMed DOI PMC

Li R, Zhao Y, Zheng Z et al (2023) Bioinks adapted for in situ bioprinting scenarios of defect sites: a review. RSC Adv 13:7153–7167. https://doi.org/10.1039/D2RA07037E PubMed DOI PMC

Kuss M, Duan B (2019) Extrusion-based Bioprinting. In: Cho D-W (ed) Biofabrication and 3D tissue modeling. The Royal Society of Chemistry, pp 22–48

Pedroza-González SC, Rodriguez-Salvador M, Pérez-Benítez BE et al (2021) Bioinks for 3d bioprinting: a scientometric analysis of two decades of progress. Int J Bioprint 7:68–91. https://doi.org/10.18063/IJB.V7I2.337 DOI

Gopinathan J, Noh I (2018) Recent trends in bioinks for 3D printing. Biomater Res 22:11. https://doi.org/10.1186/s40824-018-0122-1 PubMed DOI PMC

Papavasiliou G, Sokic S, Turturro M (2012) Synthetic PEG hydrogels as extracellular matrix mimics for tissue engineering applications. In: Sammour RH (ed) Biotechnology-molecular studies and novel applications for improved quality of human life. InTech, Rijeka, p Ch. 8

Lee W, Xu C, Fu H et al (2024) 3D bioprinting highly elastic PEG-PCL-DA hydrogel for soft tissue fabrication and biomechanical stimulation. Adv Funct Mater 34:2313942. https://doi.org/10.1002/adfm.202313942 PubMed DOI PMC

Rutz AL, Gargus ES, Hyland KE et al (2019) Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Acta Biomater 99:121–132. https://doi.org/10.1016/j.actbio.2019.09.007 PubMed DOI

Wang Z, Abdulla R, Parker B et al (2015) A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 7:45009. https://doi.org/10.1088/1758-5090/7/4/045009 DOI

Rastin H, Zhang B, Bi J et al (2020) 3D printing of cell-laden electroconductive bioinks for tissue engineering applications. J Mater Chem B 8:5862–5876. https://doi.org/10.1039/D0TB00627K PubMed DOI

Axpe E, Oyen M (2016) Applications of alginate-based bioinks in 3D bioprinting. Int J Mol Sci 17:1976. https://doi.org/10.3390/ijms17121976 PubMed DOI PMC

Wu Y, Lin ZY, Wenger AC et al (2018) 3D bioprinting of liver-mimetic construct with alginate/cellulose nanocrystal hybrid bioink. Bioprinting 9:1–6. https://doi.org/10.1016/j.bprint.2017.12.001 DOI

Chen Y, Xiong X, Liu X et al (2020) 3D Bioprinting of shear-thinning hybrid bioinks with excellent bioactivity derived from gellan/alginate and thixotropic magnesium phosphate-based gels. J Mater Chem B 8:5500–5514. https://doi.org/10.1039/D0TB00060D PubMed DOI

Chandra DK, Reis RL, Kundu SC et al (2024) Nanomaterials-based hybrid bioink platforms in advancing 3D bioprinting technologies for regenerative medicine. ACS Biomater Sci Eng 10:4145–4174. https://doi.org/10.1021/acsbiomaterials.4c00166 PubMed DOI

Yang J, Li Z, Li S et al (2023) Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds. Biomater Sci 11:1895–1909. https://doi.org/10.1039/D2BM01978G PubMed DOI

Tan YJ, Tan X, Yeong WY, Tor SB (2016) Hybrid microscaffold-based 3D bioprinting of multi-cellular constructs with high compressive strength: a new biofabrication strategy. Sci Rep 6:39140. https://doi.org/10.1038/srep39140 PubMed DOI PMC

Datta S, Barua R, Das J (2020) Importance of alginate bioink for 3D bioprinting in tissue engineering and regenerative medicine. In: Pereira L (ed) Alginates-recent uses of this natural polymer. IntechOpen, Rijeka, p Ch. 7

Karakaya E, Gleichauf L, Schöbel L et al (2024) Engineering peptide-modified alginate-based bioinks with cell-adhesive properties for biofabrication. RSC Adv 14:13769–13786. https://doi.org/10.1039/D3RA08394B PubMed DOI PMC

Medina JD, Alexander M, Hunckler MD et al (2020) Functionalization of alginate with extracellular matrix peptides enhances viability and function of encapsulated porcine islets. Adv Healthc Mater 9:2000102. https://doi.org/10.1002/adhm.202000102 DOI

Datta S (2023) Advantage of alginate bioinks in biofabrication for various tissue engineering applications. Int J Polym Sci 2023:6661452. https://doi.org/10.1155/2023/6661452 DOI

Klotz BJ, Gawlitta D, Rosenberg AJWP et al (2016) Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair. Trends Biotechnol 34:394–407. https://doi.org/10.1016/j.tibtech.2016.01.002 PubMed DOI PMC

Dobrisan M-R, Lungu A, Ionita M (2024) A review of the current state of the art in gelatin methacryloyl-based printing inks in bone tissue engineering. Virtual Phys Prototyp 19:e2378003. https://doi.org/10.1080/17452759.2024.2378003 DOI

Asim S, Tabish TA, Liaqat U et al (2023) Advances in gelatin bioinks to optimize bioprinted cell functions. Adv Healthc Mater 12:2203148. https://doi.org/10.1002/adhm.202203148 DOI

Waidi YO, Kariim I, Datta S (2024) Bioprinting of gelatin-based materials for orthopedic application. Front Bioeng Biotechnol 12:1–30. https://doi.org/10.3389/fbioe.2024.1357460 DOI

Osidak EO, Kozhukhov VI, Osidak MS, Domogatsky SP (2020) Collagen as bioink for bioprinting: a comprehensive review. Int J Bioprinting 6:1–10. https://doi.org/10.18063/IJB.V6I3.270 DOI

Li Z, Ruan C, Niu X (2023) Collagen-based bioinks for regenerative medicine: Fabrication, application and prospective. Med Nov Technol Devices 17:100211. https://doi.org/10.1016/j.medntd.2023.100211 DOI

Patil VA, Masters KS (2020) Engineered collagen matrices. Bioengineering 7:163. https://doi.org/10.3390/bioengineering7040163 PubMed DOI PMC

Sionkowska A (2021) Collagen blended with natural polymers: Recent advances and trends. Prog Polym Sci 122:101452. https://doi.org/10.1016/j.progpolymsci.2021.101452 DOI

Petta D, D’Amora U, Ambrosio L et al (2020) Hyaluronic acid as a bioink for extrusion-based 3D printing. Biofabrication 12:32001. https://doi.org/10.1088/1758-5090/ab8752 DOI

Lan X, Ma Z, Dimitrov A et al (2024) Double crosslinked hyaluronic acid and collagen as a potential bioink for cartilage tissue engineering. Int J Biol Macromol 273:132819. https://doi.org/10.1016/j.ijbiomac.2024.132819 PubMed DOI

Summonte S, Racaniello GF, Lopedota A et al (2021) Thiolated polymeric hydrogels for biomedical application: cross-linking mechanisms. J Control Release 330:470–482. https://doi.org/10.1016/j.jconrel.2020.12.037 PubMed DOI

Willson K, Atala A, Yoo JJ (2021) Bioprinting Au natural: the biologics of bioinks. Biomolecules 11:1593. https://doi.org/10.3390/biom11111593 PubMed DOI PMC

Khoeini R, Nosrati H, Akbarzadeh A et al (2021) Natural and synthetic bioinks for 3D BIOPRINTING. Adv NanoBiomed Res 1:2000097. https://doi.org/10.1002/anbr.202000097 DOI

de Melo BAG, Jodat YA, Cruz EM et al (2020) Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomater 117:60–76. https://doi.org/10.1016/j.actbio.2020.09.024 PubMed DOI

Budharaju H, Sundaramurthi D, Sethuraman S (2023) Efficient dual crosslinking of protein–in–polysaccharide bioink for biofabrication of cardiac tissue constructs. Biomater Adv 152:213486. https://doi.org/10.1016/j.bioadv.2023.213486 PubMed DOI

Cavallo A, Al Kayal T, Mero A et al (2023) Fibrinogen-based bioink for application in skin equivalent 3D bioprinting. J Funct Biomater 14:459. https://doi.org/10.3390/jfb14090459 PubMed DOI PMC

Gonzalez-Fernandez T, Tenorio AJ, Campbell KT et al (2020) Alginate-based bioinks for 3D bioprinting and fabrication of anatomically accurate bone grafts. Tissue Eng Part A 27:1168–1181. https://doi.org/10.1089/ten.tea.2020.0305 DOI

Wenger L, Radtke CP, Gerisch E et al (2022) Systematic evaluation of agarose- and agar-based bioinks for extrusion-based bioprinting of enzymatically active hydrogels. Front Bioeng Biotechnol 10:1–17. https://doi.org/10.3389/fbioe.2022.928878 DOI

Zou Q, Tian X, Luo S et al (2021) Agarose composite hydrogel and PVA sacrificial materials for bioprinting large-scale, personalized face-like with nutrient networks. Carbohydr Polym 269:118222. https://doi.org/10.1016/j.carbpol.2021.118222 PubMed DOI

Jose J, Peter A, Thajudeen KY et al (2024) Recent advances in the design and development of bioink formulations for various biomedical applications. Results Eng 22:102060. https://doi.org/10.1016/j.rineng.2024.102060 DOI

Moura MJ, Figueiredo MM, Gil MH (2007) Rheological study of genipin cross-linked chitosan hydrogels. Biomacromol 8:3823–3829. https://doi.org/10.1021/bm700762w DOI

Zafeiris K, Brasinika D, Karatza A et al (2021) Additive manufacturing of hydroxyapatite–chitosan–genipin composite scaffolds for bone tissue engineering applications. Mater Sci Eng C 119:111639. https://doi.org/10.1016/j.msec.2020.111639 DOI

Sahranavard M, Zamanian A, Ghorbani F, Shahrezaee MH (2020) A critical review on three dimensional-printed chitosan hydrogels for development of tissue engineering. Bioprinting 17:e00063. https://doi.org/10.1016/j.bprint.2019.e00063 DOI

Yang W, Tu A, Ma Y et al (2022) Chitosan and whey protein bio-inks for 3D and 4D printing applications with particular focus on food industry. Molecules 27:173. https://doi.org/10.3390/molecules27010173 DOI

Aydin L (2023) A review of current state of bioinks. MedLiber Regen Med 01:09–22. https://doi.org/10.55828/mrm-11-02 DOI

Panwar A, Tan L (2016) Current Status of bioinks for micro-extrusion-based 3D bioprinting. Molecules 21:685. https://doi.org/10.3390/molecules21060685 PubMed DOI PMC

Gioffredi E, Boffito M, Calzone S et al (2016) Pluronic F127 hydrogel characterization and biofabrication in cellularized constructs for tissue engineering applications. Proc CIRP 49:125–132. https://doi.org/10.1016/j.procir.2015.11.001 DOI

Homenick CM, de Silveira G, Sheardown H, Adronov A (2011) Pluronics as crosslinking agents for collagen: novel amphiphilic hydrogels. Polym Int 60:458–465. https://doi.org/10.1002/pi.2969 DOI

Xu Y, Hu Y, Liu C et al (2018) A novel strategy for creating tissue-engineered biomimetic blood vessels using 3D bioprinting technology. Materials (Basel) 11:1581. https://doi.org/10.3390/ma11091581 PubMed DOI

Hahn L, Beudert M, Gutmann M et al (2021) From thermogelling hydrogels toward functional bioinks: controlled modification and cytocompatible crosslinking. Macromol Biosci 21:2100122. https://doi.org/10.1002/mabi.202100122 DOI

Vanaei S, Parizi MS, Vanaei S et al (2021) An overview on materials and techniques in 3D bioprinting toward biomedical application. Eng Regen 2:1–18. https://doi.org/10.1016/j.engreg.2020.12.001 DOI

Supriya Bhatt S, Thakur G, Nune M (2023) Preparation and characterization of PVA/Chitosan cross-linked 3D scaffolds for liver tissue engineering. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.02.251 DOI

Hassan CM, Peppas NA (2000) Cellular PVA hydrogels produced by freeze/thawing. J Appl Polym Sci 76: 2075–2079. https://doi.org/10.1002/(SICI)1097-4628(20000628)76 : 14<2075::AID-APP11>3.0.CO;2-V

Feng S, Guo J, Guan F et al (2023) Preparation of 3D printable polyvinyl alcohol based conductive hydrogels via incorporating k-carrageenan for flexible strain sensors. Colloids Surfaces A Physicochem Eng Asp 676:132141. https://doi.org/10.1016/j.colsurfa.2023.132141 DOI

S S, R G AP, Bajaj G, et al (2023) A review on the recent applications of synthetic biopolymers in 3D printing for biomedical applications. J Mater Sci Mater Med 34: 62. https://doi.org/10.1007/s10856-023-06765-9

Kolan KCR, Semon JA, Bindbeutel AT et al (2020) Bioprinting with bioactive glass loaded polylactic acid composite and human adipose stem cells. Bioprinting 18:e00075. https://doi.org/10.1016/j.bprint.2020.e00075 DOI

Hu D, Wu D, Huang L et al (2018) 3D bioprinting of cell-laden scaffolds for intervertebral disc regeneration. Mater Lett 223:219–222. https://doi.org/10.1016/j.matlet.2018.03.204 DOI

Chang S-Y, Lee JZW, Sargur Ranganath A et al (2024) Poly(ethylene-glycol)-dimethacrylate (PEGDMA) composite for stereolithographic bioprinting. Macromol Mater Eng 309:2400143. https://doi.org/10.1002/mame.202400143 DOI

Amirian J, Wychowaniec JK, Amel Zendehdel E et al (2023) Versatile potential of photo-cross-linkable silk fibroin: roadmap from chemical processing toward regenerative medicine and biofabrication applications. Biomacromol 24:2957–2981. https://doi.org/10.1021/acs.biomac.3c00098 DOI

Shen N, Li Z, Yang P et al (2024) Designing methacrylic anhydride-based hydrogels for 3D bioprinting. Int J Bioprint X:4650. https://doi.org/10.36922/ijb.4650 DOI

Jin S, Xia X, Huang J et al (2021) Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater 127:56–79. https://doi.org/10.1016/j.actbio.2021.03.067 PubMed DOI

Sun F, Sun X, Wang H et al (2022) Application of 3D-printed, PLGA-based scaffolds in bone tissue engineering. Int J Mol Sci. https://doi.org/10.3390/ijms23105831 PubMed DOI PMC

Van Hoorick J, Dobos A, Markovic M et al (2021) Thiol-norbornene gelatin hydrogels: influence of thiolated crosslinker on network properties and high definition 3D printing. Biofabrication 13:15017. https://doi.org/10.1088/1758-5090/abc95f DOI

Seyedmahmoud R, Çelebi-Saltik B, Barros N et al (2019) Three-dimensional bioprinting of functional skeletal muscle tissue using gelatin methacryloyl-alginate bioinks. Micromachines 10:679. https://doi.org/10.3390/mi10100679 PubMed DOI PMC

Basara G, Yue X, Zorlutuna P (2019) Dual crosslinked gelatin methacryloyl hydrogels for photolithography and 3D printing. Gels 5:34. https://doi.org/10.3390/gels5030034 PubMed DOI PMC

Wang Z, Liang W, Wang G et al (2024) Construction form and application of three-dimensional bioprinting ink containing hydroxyapatite. Tissue Eng Part B Rev 30:507–521. https://doi.org/10.1089/ten.teb.2023.0280 PubMed DOI

Kane RJ, Weiss-Bilka HE, Meagher MJ et al (2015) Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties. Acta Biomater 17:16–25. https://doi.org/10.1016/j.actbio.2015.01.031 PubMed DOI

Sun T-W, Zhu Y-J, Chen F et al (2017) Ultralong hydroxyapatite nanowires/collagen scaffolds with hierarchical porous structure, enhanced mechanical properties and excellent cellular attachment. Ceram Int 43:15747–15754. https://doi.org/10.1016/j.ceramint.2017.08.137 DOI

Guo C, Wu J, Zeng Y, Li H (2023) Construction of 3D bioprinting of HAP/collagen scaffold in gelation bath for bone tissue engineering. Regen Biomater 10:rbad067. https://doi.org/10.1093/rb/rbad067 PubMed DOI PMC

Farokhi M, Aleemardani M, Solouk A et al (2021) Crosslinking strategies for silk fibroin hydrogels: promising biomedical materials. Biomed Mater 16:22004. https://doi.org/10.1088/1748-605X/abb615 DOI

Xue Y, Kim H-J, Lee J et al (2022) Co-electrospun silk fibroin and gelatin methacryloyl sheet seeded with mesenchymal stem cells for tendon regeneration. Small 18:2107714. https://doi.org/10.1002/smll.202107714 DOI

Yin J, Yan M, Wang Y et al (2018) 3D bioprinting of low-concentration cell-laden gelatin methacrylate (GelMA) bioinks with a two-step cross-linking strategy. ACS Appl Mater Interfaces 10:6849–6857. https://doi.org/10.1021/acsami.7b16059 PubMed DOI

Singh YP, Bandyopadhyay A, Mandal BB (2019) 3D bioprinting using cross-linker-free silk-gelatin bioink for cartilage tissue engineering. ACS Appl Mater Interfaces 11:33684–33696. https://doi.org/10.1021/acsami.9b11644 PubMed DOI

Wu J, Lei J, Chen M et al (2023) Synthesis and characterization of photo-cross-linkable silk fibroin methacryloyl hydrogel for biomedical applications. ACS Omega 8:30888–30897. https://doi.org/10.1021/acsomega.3c01483 PubMed DOI PMC

Van Hoorick J, Tytgat L, Dobos A et al (2019) (Photo-)crosslinkable gelatin derivatives for biofabrication applications. Acta Biomater 97:46–73. https://doi.org/10.1016/j.actbio.2019.07.035 PubMed DOI

Fu Y, Xu K, Zheng X et al (2012) 3D cell entrapment in crosslinked thiolated gelatin-poly(ethylene glycol) diacrylate hydrogels. Biomaterials 33:48–58. https://doi.org/10.1016/j.biomaterials.2011.09.031 PubMed DOI

Gonzalez-Fernandez T, Tenorio AJ, Campbell KT, et al (2020) Evaluation of alginate-based bioinks for 3D bioprinting, mesenchymal stromal cell osteogenesis, and application for patient-specific bone grafts. bioRxiv 2020.08.09.242131. https://doi.org/10.1101/2020.08.09.242131

Yao B, Hu T, Cui X et al (2019) Enzymatically degradable alginate/gelatin bioink promotes cellular behavior and degradation in vitro and in vivo. Biofabrication 11:45020. https://doi.org/10.1088/1758-5090/ab38ef DOI

Markstedt K, Mantas A, Tournier I et al (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromol 16:1489–1496. https://doi.org/10.1021/acs.biomac.5b00188 DOI

Ojansivu M, Rashad A, Ahlinder A et al (2019) Wood-based nanocellulose and bioactive glass modified gelatin–alginate bioinks for 3D bioprinting of bone cells. Biofabrication 11:35010. https://doi.org/10.1088/1758-5090/ab0692 DOI

Han H, Kim M, Yong U et al (2024) Tissue-specific gelatin bioink as a rheology modifier for high printability and adjustable tissue properties. Biomater Sci 12:2599–2613. https://doi.org/10.1039/D3BM02111D PubMed DOI

Park W, Gao G, Cho D-W (2021) Tissue-specific decellularized extracellular matrix bioinks for musculoskeletal tissue regeneration and modeling using 3D bioprinting technology. Int J Mol Sci 22:7837. https://doi.org/10.3390/ijms22157837 PubMed DOI PMC

Zhang X, Liu Y, Luo C et al (2021) Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering. Mater Sci Eng C 118:111388. https://doi.org/10.1016/j.msec.2020.111388 DOI

Moon SH, Hwang HJ, Jeon HR et al (2023) Photocrosslinkable natural polymers in tissue engineering. Front Bioeng Biotechnol 11:1–18. https://doi.org/10.3389/fbioe.2023.1127757 DOI

Serna JA, Florez SL, Talero VA et al (2019) Formulation and characterization of a SIS-Based photocrosslinkable bioink. Polymers (Basel) 11:1–10. https://doi.org/10.3390/polym11030569 DOI

Stolarov P, de Vries J, Stapleton S et al (2024) Suitability of gelatin methacrylate and hydroxyapatite hydrogels for 3D-bioprinted bone tissue. Materials (Basel). https://doi.org/10.3390/ma17051218 PubMed DOI PMC

Su JJM, Lin CH, Chen H et al (2021) Biofabrication of cell-laden gelatin methacryloyl hydrogels with incorporation of silanized hydroxyapatite by visible light projection. Polymers (Basel). https://doi.org/10.3390/polym13142354 PubMed DOI PMC

Zheng J, Zhao F, Zhang W et al (2018) Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration. Mater Sci Eng C 89:119–127. https://doi.org/10.1016/j.msec.2018.03.029 DOI

Liang J, Wang Z, Poot AA et al (2023) Enzymatic post-crosslinking of printed hydrogels of methacrylated gelatin and tyramine-conjugated 8-arm poly(ethylene glycol) to prepare interpenetrating 3D network structures. Int J Bioprint. https://doi.org/10.18063/ijb.750 PubMed DOI PMC

Li J, Moeinzadeh S, Kim C et al (2023) Development and systematic characterization of GelMA/alginate/PEGDMA/xanthan gum hydrogel bioink system for extrusion bioprinting. Biomaterials 293:121969. https://doi.org/10.1016/j.biomaterials.2022.121969 PubMed DOI

Naghieh S, Chen X (2021) Printability–A key issue in extrusion-based bioprinting. J Pharm Anal 11:564–579. https://doi.org/10.1016/j.jpha.2021.02.001 PubMed DOI PMC

Kim J (2023) Characterization of Biocompatibility of Functional Bioinks for 3D Bioprinting. Bioengineering 10:457. https://doi.org/10.3390/bioengineering10040457 PubMed DOI PMC

Cao H, Duan L, Zhang Y et al (2021) Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther 6:426. https://doi.org/10.1038/s41392-021-00830-x PubMed DOI PMC

Mugnaini G, Gelli R, Mori L, Bonini M (2023) How to cross-link gelatin: the effect of glutaraldehyde and glyceraldehyde on the hydrogel properties. ACS Appl Polym Mater 5:9192–9202. https://doi.org/10.1021/acsapm.3c01676 DOI

Huh J, Moon Y-W, Park J et al (2021) Combinations of photoinitiator and UV absorber for cell-based digital light processing (DLP) bioprinting. Biofabrication 13:34103. https://doi.org/10.1088/1758-5090/abfd7a DOI

Lee GW, Chandrasekharan A, Roy S et al (2024) 3D bioprinting of stromal cells-laden artificial cornea based on visible light-crosslinkable bioinks forming multilength networks. Biofabrication 16:35002. https://doi.org/10.1088/1758-5090/ad35eb DOI

Wahba MI (2024) A comprehensive review on genipin: an efficient natural cross-linker for biopolymers. Polym Bull 81:14251–14305. https://doi.org/10.1007/s00289-024-05406-7 DOI

Bedell ML, Melchiorri AJ, Aleman J et al (2020) A high-throughput approach to compare the biocompatibility of candidate bioink formulations. Bioprinting 17:e00068. https://doi.org/10.1016/j.bprint.2019.e00068 DOI

Kumar H, Sakthivel K, Mohamed MGA et al (2021) Designing gelatin methacryloyl (GelMA)-based bioinks for visible light stereolithographic 3D biofabrication. Macromol Biosci 21:2000317. https://doi.org/10.1002/mabi.202000317 DOI

Nagaraj A, Etxeberria AE, Naffa R et al (2022) 3D-printed hybrid collagen/GelMA hydrogels for tissue engineering applications. Biology (Basel) 11:1561. https://doi.org/10.3390/biology11111561 PubMed DOI

Field EH, Ratcliffe J, Johnson CJ et al (2025) Self-healing, 3D printed bioinks from self-assembled peptide and alginate hybrid hydrogels. Biomater Adv 169:214145. https://doi.org/10.1016/j.bioadv.2024.214145 PubMed DOI

Mazzocchi A, Devarasetty M, Huntwork R et al (2019) Optimization of collagen type I-hyaluronan hybrid bioink for 3D bioprinted liver microenvironments. Biofabrication 11:15003. https://doi.org/10.1088/1758-5090/aae543 DOI

Boularaoui S, Shanti A, Lanotte M et al (2021) Nanocomposite conductive bioinks based on low-concentration GelMA and MXene nanosheets/gold nanoparticles providing enhanced printability of functional skeletal muscle tissues. ACS Biomater Sci Eng 7:5810–5822. https://doi.org/10.1021/acsbiomaterials.1c01193 PubMed DOI PMC

Li W, Wang M, Wang S et al (2023) An adhesive bioink toward biofabrication under wet conditions. Small 19:2205078. https://doi.org/10.1002/smll.202205078 DOI

Netti F, Aviv M, Dan Y et al (2022) Stabilizing gelatin-based bioinks under physiological conditions by incorporation of ethylene-glycol-conjugated Fmoc-FF peptides. Nanoscale 14:8525–8533. https://doi.org/10.1039/D1NR08206J PubMed DOI

Kosowska K, Korycka P, Jankowska-Snopkiewicz K et al (2024) Graphene oxide (GO)-based bioink with enhanced 3d printability and mechanical properties for tissue engineering applications. Nanomaterials. https://doi.org/10.3390/nano14090760 PubMed DOI PMC

Masri S, Fauzi MB (2021) Current insight of printability quality improvement strategies in natural-based bioinks for skin regeneration and wound healing. Polymers (Basel) 13:1011. https://doi.org/10.3390/polym13071011 PubMed DOI

Chakraborty J, Majumder N, Sharma A et al (2022) 3D bioprinted silk-reinforced Alginate-Gellan Gum constructs for cartilage regeneration. Bioprinting 28:e00232. https://doi.org/10.1016/j.bprint.2022.e00232 DOI

Irukuvarjula V, Fouladgar F, Powell R et al (2025) Bioprinting 3D lattice-structured lumens using polyethylene glycol diacrylate (PEGDA) combined with self-assembling peptide nanofibers as hybrid bioinks for anchorage dependent cells. OpenNano 21:100223. https://doi.org/10.1016/j.onano.2024.100223 PubMed DOI

Boonlai W, Hirun N, Suknuntha K, Tantishaiyakul V (2023) Development and characterization of pluronic F127 and methylcellulose based hydrogels for 3D bioprinting. Polym Bull 80:4555–4572. https://doi.org/10.1007/s00289-022-04271-6 DOI

Anindita SN, Conti R, Zauchner D et al (2023) Tough PEG-only hydrogels with complex 3D structure enabled by digital light processing of “all-PEG” resins. Aggregate 4:e368. https://doi.org/10.1002/agt2.368 DOI

Nelson C, Tuladhar S, Launen L, Habib A (2021) 3D Bio-printability of hybrid pre-crosslinked hydrogels. Int J Mol Sci 22:13481. https://doi.org/10.3390/ijms222413481 PubMed DOI PMC

Lai G, Meagher L (2024) Versatile xanthan gum-based support bath material compatible with multiple crosslinking mechanisms: rheological properties, printability, and cytocompatibility study. Biofabrication 16:35005. https://doi.org/10.1088/1758-5090/ad39a8 DOI

Das S, Valoor R, Ratnayake P, Basu B (2024) Low-concentration gelatin methacryloyl hydrogel with tunable 3D Extrusion printability and cytocompatibility: exploring quantitative process science and biophysical properties. ACS Appl Bio Mater 7:2809–2835. https://doi.org/10.1021/acsabm.3c01194 PubMed DOI

Davern JW, Hipwood L, Bray LJ et al (2024) Addition of Laponite to gelatin methacryloyl bioinks improves the rheological properties and printability to create mechanically tailorable cell culture matrices. APL Bioeng 8:16101. https://doi.org/10.1063/5.0166206 DOI

Venkata Krishna D, Ravi Sankar M (2023) Persuasive factors on the bioink printability and cell viability in the extrusion-based 3D bioprinting for tissue regeneration applications. Eng Regen 4:396–410. https://doi.org/10.1016/j.engreg.2023.07.002 DOI

Amorim PA, d’Ávila MA, Anand R et al (2021) Insights on shear rheology of inks for extrusion-based 3D bioprinting. Bioprinting 22:e00129. https://doi.org/10.1016/j.bprint.2021.e00129 DOI

Liu W, Heinrich MA, Zhou Y et al (2017) Extrusion bioprinting of shear-thinning gelatin methacryloyl bioinks. Adv Healthc Mater 6:1601451. https://doi.org/10.1002/adhm.201601451 DOI

Bramhe P, Rarokar N, Kumbhalkar R et al (2024) Natural and synthetic polymeric hydrogel: a bioink for 3D bioprinting of tissue models. J Drug Deliv Sci Technol 101:106204. https://doi.org/10.1016/j.jddst.2024.106204 DOI

Campea MA, Majcher MJ, Lofts A, Hoare T (2021) A review of design and fabrication methods for nanoparticle network hydrogels for biomedical, environmental, and industrial applications. Adv Funct Mater 31:2102355. https://doi.org/10.1002/adfm.202102355 DOI

Lu P, Ruan D, Huang M et al (2024) Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 9:166. https://doi.org/10.1038/s41392-024-01852-x PubMed DOI PMC

Nagaraja K, Dhokare P, Bhattacharyya A, Noh I (2024) Recent advances in 3D bioprinting of polysaccharide-based bioinks for fabrication of bioengineered tissues. Mol Syst Des Eng 9:977–999. https://doi.org/10.1039/D4ME00001C DOI

Yeo M, Kim G (2015) Fabrication of cell-laden electrospun hybrid scaffolds of alginate-based bioink and PCL microstructures for tissue regeneration. Chem Eng J 275:27–35. https://doi.org/10.1016/j.cej.2015.04.038 DOI

Koch F, Thaden O, Conrad S et al (2022) Mechanical properties of polycaprolactone (PCL) scaffolds for hybrid 3D-bioprinting with alginate-gelatin hydrogel. J Mech Behav Biomed Mater 130:105219. https://doi.org/10.1016/j.jmbbm.2022.105219 PubMed DOI

He Y, Wang F, Wang X et al (2021) A photocurable hybrid chitosan/acrylamide bioink for DLP based 3D bioprinting. Mater Des 202:109588. https://doi.org/10.1016/j.matdes.2021.109588 DOI

Ouyang L, Armstrong JPK, Lin Y et al (2024) Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Sci Adv 6:eabc5529. https://doi.org/10.1126/sciadv.abc5529 DOI

Park S, Shou W, Makatura L et al (2022) 3D printing of polymer composites: materials, processes, and applications. Matter 5:43–76. https://doi.org/10.1016/j.matt.2021.10.018 DOI

GhavamiNejad A, Ashammakhi N, Wu XY, Khademhosseini A (2020) Crosslinking strategies for 3D bioprinting of polymeric Hydrogels. Small 16:2002931. https://doi.org/10.1002/smll.202002931 DOI

Krishnakumar GS, Sampath S, Muthusamy S, John MA (2019) Importance of crosslinking strategies in designing smart biomaterials for bone tissue engineering: a systematic review. Mater Sci Eng C 96:941–954. https://doi.org/10.1016/j.msec.2018.11.081 DOI

Hull SM, Lindsay CD, Brunel LG et al (2021) 3D bioprinting using UNIversal Orthogonal Network (UNION) bioinks. Adv Funct Mater 31:2007983. https://doi.org/10.1002/adfm.202007983 PubMed DOI

Chimene D, Peak CW, Gentry JL et al (2018) Nanoengineered Ionic-Covalent Entanglement (NICE) bioinks for 3D bioprinting. ACS Appl Mater Interfaces 10:9957–9968. https://doi.org/10.1021/acsami.7b19808 PubMed DOI

Jia W, Gungor-Ozkerim PS, Zhang YS et al (2016) Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68. https://doi.org/10.1016/j.biomaterials.2016.07.038 PubMed DOI PMC

Morgan FLC, Moroni L, Baker MB (2020) Dynamic bioinks to advance bioprinting. Adv Healthc Mater 9:1901798. https://doi.org/10.1002/adhm.201901798 DOI

Salerno A, Cesarelli G, Pedram P, Netti PA (2019) Modular strategies to build cell-free and cell-laden scaffolds towards bioengineered tissues and organs. J Clin Med 8:1816. https://doi.org/10.3390/jcm8111816 PubMed DOI PMC

Schwab A, Levato R, D’Este M et al (2020) Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev 120:11028–11055. https://doi.org/10.1021/acs.chemrev.0c00084 PubMed DOI

Paxton N, Smolan W, Böck T et al (2017) Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication 9:44107. https://doi.org/10.1088/1758-5090/aa8dd8 DOI

Chiulan I, Heggset EB, Voicu ŞI, Chinga-Carrasco G (2021) Photopolymerization of bio-based polymers in a biomedical engineering perspective. Biomacromol 22:1795–1814. https://doi.org/10.1021/acs.biomac.0c01745 DOI

Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785. https://doi.org/10.1038/nbt.2958 PubMed DOI

Skibicki S, Szewczyk P, Majewska J et al (2024) The effect of interlayer adhesion on stress distribution in 3D printed beam elements. J Build Eng 87:109093. https://doi.org/10.1016/j.jobe.2024.109093 DOI

Maturavongsadit P, Narayanan LK, Chansoria P et al (2021) Cell-laden nanocellulose/chitosan-based bioinks for 3D bioprinting and enhanced osteogenic cell differentiation. ACS Appl Bio Mater 4:2342–2353. https://doi.org/10.1021/acsabm.0c01108 PubMed DOI

Heid S, Boccaccini AR (2020) Advancing bioinks for 3D bioprinting using reactive fillers: a review. Acta Biomater 113:1–22. https://doi.org/10.1016/j.actbio.2020.06.040 PubMed DOI

Hölzl K, Lin S, Tytgat L et al (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8:32002. https://doi.org/10.1088/1758-5090/8/3/032002 DOI

Ouyang L, Yao R, Zhao Y, Sun W (2016) Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication 8:35020. https://doi.org/10.1088/1758-5090/8/3/035020 DOI

Datta S, Das A, Chowdhury AR, Datta P (2019) Bioink formulations to ameliorate bioprinting-induced loss of cellular viability. Biointerphases 14:51006. https://doi.org/10.1116/1.5111392 DOI

Jiang S, Zheng Y, Xia H et al (2024) Oxygen-releasing hydrogels for tissue regeneration. Adv NanoBiomed Res 4:2300133. https://doi.org/10.1002/anbr.202300133 DOI

Samandari M, Quint J, Rodríguez-delaRosa A et al (2022) Bioinks and bioprinting strategies for skeletal muscle tissue engineering. Adv Mater 34:2105883. https://doi.org/10.1002/adma.202105883 DOI

Dubbin K, Hori Y, Lewis KK, Heilshorn SC (2016) Dual-stage crosslinking of a gel-phase bioink improves cell viability and homogeneity for 3D bioprinting. Adv Healthc Mater 5:2488–2492. https://doi.org/10.1002/adhm.201600636 PubMed DOI

Wei M, He X, Liu N, Deng H (2024) Role of reactive oxygen species in ultraviolet-induced photodamage of the skin. Cell Div 19:1. https://doi.org/10.1186/s13008-024-00107-z PubMed DOI PMC

Patrocinio D, Galván-Chacón V, Gómez-Blanco JC et al (2023) Biopolymers for tissue engineering: crosslinking, printing techniques, and applications. Gels 9:890. https://doi.org/10.3390/gels9110890 PubMed DOI PMC

Chen N, Zhu K, Zhang YS et al (2019) Hydrogel bioink with multilayered interfaces improves dispersibility of encapsulated cells in extrusion bioprinting. ACS Appl Mater Interfaces 11:30585–30595. https://doi.org/10.1021/acsami.9b09782 PubMed DOI

Cidonio G, Alcala-Orozco CR, Lim KS et al (2019) Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Biofabrication 11:35027. https://doi.org/10.1088/1758-5090/ab19fd DOI

Das S, Basu B (2019) An overview of hydrogel-based Bioinks for 3D bioprinting of soft tissues. J Indian Inst Sci 99:405–428. https://doi.org/10.1007/s41745-019-00129-5 DOI

Mathur V, Agarwal P, Kasturi M et al (2025) Innovative bioinks for 3D bioprinting: exploring technological potential and regulatory challenges. J Tissue Eng 16:20417314241308024. https://doi.org/10.1177/20417314241308022 DOI

Chiang C-E, Fang Y-Q, Ho C-T et al (2021) Bioactive decellularized extracellular matrix derived from 3D stem cell spheroids under macromolecular crowding serves as a scaffold for tissue engineering. Adv Healthc Mater 10:2100024. https://doi.org/10.1002/adhm.202100024 DOI

Mobaraki M, Ghaffari M, Yazdanpanah A et al (2020) Bioinks and bioprinting: a focused review. Bioprinting 18:e00080. https://doi.org/10.1016/j.bprint.2020.e00080 DOI

Sanicola HW, Stewart CE, Mueller M et al (2020) Guidelines for establishing a 3-D printing biofabrication laboratory. Biotechnol Adv 45:107652. https://doi.org/10.1016/j.biotechadv.2020.107652 PubMed DOI

Frost B, Sutliff BP, Thayer P et al (2019) Gradient poly(Ethylene glycol) diacrylate and cellulose nanocrystals tissue engineering composite scaffolds via extrusion bioprinting. Front Bioeng Biotechnol 7:1–14. https://doi.org/10.3389/fbioe.2019.00280 DOI

Kolesky DB, Truby RL, Gladman AS et al (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26:3124–3130. https://doi.org/10.1002/adma.201305506 PubMed DOI

Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35:217–239. https://doi.org/10.1016/j.biotechadv.2016.12.006 PubMed DOI

Bhattacharjee P, Ahearne M (2021) Significance of crosslinking approaches in the development of next generation hydrogels for corneal tissue engineering. Pharmaceutics 13:319. https://doi.org/10.3390/pharmaceutics13030319 PubMed DOI PMC

He F, Ou Y, Liu J et al (2022) 3D printed biocatalytic living materials with dual-network reinforced bioinks. Small 18:2104820. https://doi.org/10.1002/smll.202104820 DOI

Camacho P, Busari H, Seims KB et al (2019) Materials as bioinks and bioink design. In: Guvendiren M (ed) 3D bioprinting in medicine. Springer International Publishing, Cham, pp 67–100

Ozbolat IT, Chen H, Yu Y (2014) Development of ‘Multi-arm Bioprinter’ for hybrid biofabrication of tissue engineering constructs. Robot Comput Integr Manuf 30:295–304. https://doi.org/10.1016/j.rcim.2013.10.005 DOI

Duraj-Thatte AM, Manjula-Basavanna A, Rutledge J et al (2021) Programmable microbial ink for 3D printing of living materials produced from genetically engineered protein nanofibers. Nat Commun 12:6600. https://doi.org/10.1038/s41467-021-26791-x PubMed DOI PMC

Nagaraj A, Rekha PD (2023) Development of a bioink using exopolysaccharide from Rhizobium sp. PRIM17. Int J Biol Macromol 234:123608. https://doi.org/10.1016/j.ijbiomac.2023.123608 PubMed DOI

Budharaju H, Zennifer A, Sethuraman S et al (2022) Designer DNA biomolecules as a defined biomaterial for 3D bioprinting applications. Mater Horizons 9:1141–1166. https://doi.org/10.1039/D1MH01632F DOI

Park K (2019) Bioink-guided spatio-temporal gene delivery for tissue engineering. J Control Release 301:190. https://doi.org/10.1016/j.jconrel.2019.04.007 PubMed DOI

Pu X, Wu Y, Liu J, Wu B (2024) 3D bioprinting of microbial-based living materials for advanced energy and environmental applications. Chem Bio Eng 1:568–592. https://doi.org/10.1021/cbe.4c00024 PubMed DOI PMC

Balasubramanian S, Aubin-Tam M-E, Meyer AS (2019) 3D printing for the fabrication of biofilm-based functional living materials. ACS Synth Biol 8:1564–1567. https://doi.org/10.1021/acssynbio.9b00192 PubMed DOI

Malcı K, Li IS, Kisseroudis N, Ellis T (2024) Modulating microbial materials-engineering bacterial cellulose with synthetic biology. ACS Synth Biol 13:3857–3875. https://doi.org/10.1021/acssynbio.4c00615 PubMed DOI PMC

Chhina A, Sachdeva V, Thakur S (2023) Different techniques of genetic engineering used for the development of novel biomaterials BT-engineered biomaterials: synthesis and applications. In: Malviya R, Sundram S (eds) Springer Nature Singapore, Singapore, pp 43–72

Ma W, Zhan Y, Zhang Y et al (2021) The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduct Target Ther 6:351. https://doi.org/10.1038/s41392-021-00727-9 PubMed DOI PMC

Farag VE, Devey EA, Leong KW (2025) The interface of gene editing with regenerative medicine. Engineering 46:73–100. https://doi.org/10.1016/j.eng.2024.10.019 DOI

Esmaeili Y, Bidram E, Bigham A et al (2023) Exploring the evolution of tissue engineering strategies over the past decade: From cell-based strategies to gene-activated matrix. Alex Eng J 81:137–169. https://doi.org/10.1016/j.aej.2023.08.080 DOI

Zhu Y, Yu X, Liu H et al (2024) Strategies of functionalized GelMA-based bioinks for bone regeneration: Recent advances and future perspectives. Bioact Mater 38:346–373. https://doi.org/10.1016/j.bioactmat.2024.04.032 PubMed DOI PMC

Zhang H, Wang Y, Zheng Z et al (2023) Strategies for improving the 3D printability of decellularized extracellular matrix bioink. Theranostics 13:2562–2587. https://doi.org/10.7150/thno.81785 PubMed DOI PMC

Cunniffe GM, Gonzalez-Fernandez T, Daly A et al (2017) Three-dimensional bioprinting of polycaprolactone reinforced gene activated bioinks for bone tissue engineering. Tissue Eng Part A 23:891–900. https://doi.org/10.1089/ten.tea.2016.0498 PubMed DOI

Abpeikar Z, Alizadeh AA, Rezakhani L et al (2023) Advantages of material biofunctionalization using nucleic acid aptamers in tissue engineering and regenerative medicine. Mol Biotechnol 65:1935–1953. https://doi.org/10.1007/s12033-023-00737-8 PubMed DOI

Elangovan S, D’Mello SR, Hong L et al (2014) The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor. Biomaterials 35:737–747. https://doi.org/10.1016/j.biomaterials.2013.10.021 PubMed DOI

Kim W, Kim G (2020) 3D bioprinting of functional cell-laden bioinks and its application for cell-alignment and maturation. Appl Mater Today 19:100588. https://doi.org/10.1016/j.apmt.2020.100588 DOI

Cernencu AI, Dinu AI, Stancu IC et al (2022) Nanoengineered biomimetic hydrogels: A major advancement to fabricate 3D-printed constructs for regenerative medicine. Biotechnol Bioeng 119:762–783. https://doi.org/10.1002/bit.28020 PubMed DOI

Lei S, Gao Y, Li J et al (2022) Dual-RNA controlled delivery system inhibited tumor growth by apoptosis induction and TME activation. J Control Release 344:97–112. https://doi.org/10.1016/j.jconrel.2022.02.022 PubMed DOI

Peterson B, Zhang J, Iglesias R et al (2005) Healing of Critically Sized Femoral Defects, Using Genetically Modified Mesenchymal Stem Cells from Human Adipose Tissue. Tissue Eng 11:120–129. https://doi.org/10.1089/ten.2005.11.120 PubMed DOI

Wu J, Xue W, Yun Z et al (2024) Biomedical applications of stimuli-responsive “smart” interpenetrating polymer network hydrogels. Mater Today Bio 25:100998. https://doi.org/10.1016/j.mtbio.2024.100998 PubMed DOI PMC

Fu B, Shen J, Chen Y et al (2021) Narrative review of gene modification: applications in three-dimensional (3D) bioprinting. Ann Transl Med 9:1502–1502. https://doi.org/10.21037/atm-21-2854 PubMed DOI PMC

Hunt NC, Shelton RM, Henderson DJ, Grover LM (2012) Calcium-alginate hydrogel-encapsulated fibroblasts provide sustained release of vascular endothelial growth factor. Tissue Eng Part A 19:905–914. https://doi.org/10.1089/ten.tea.2012.0197 PubMed DOI PMC

Hasani-Sadrabadi MM, Yuan W, de Ferreira LAQ et al (2024) Precise engineering of growth factor presentation using extracellular microenvironment-mimicking microfluidic microparticles. ACS Biomater Sci Eng 10:1686–1696. https://doi.org/10.1021/acsbiomaterials.3c01922 PubMed DOI

Patel RS, Temu TM, Jeanbart L et al (2009) A localizable, biological-based system for the delivery of bioactive igf-1 utilizing microencapsulated genetically modified human fibroblasts. ASAIO J 55:259–265. https://doi.org/10.1097/MAT.0b013e31819b0365 PubMed DOI

Chen X, Yang M, Zhou Z et al (2024) An anti-oxidative bioink for cartilage tissue engineering applications. J Funct Biomater 15:37. https://doi.org/10.3390/jfb15020037 PubMed DOI PMC

Kofron MD, Laurencin CT (2006) Bone tissue engineering by gene delivery. Adv Drug Deliv Rev 58:555–576. https://doi.org/10.1016/j.addr.2006.03.008 PubMed DOI

Gonzalez-Fernandez T, Rathan S, Hobbs C et al (2019) Pore-forming bioinks to enable spatio-temporally defined gene delivery in bioprinted tissues. J Control Release 301:13–27. https://doi.org/10.1016/j.jconrel.2019.03.006 PubMed DOI

Henrionnet C, Pourchet L, Neybecker P et al (2020) Combining innovative bioink and low cell density for the production of 3D-bioprinted cartilage substitutes: a pilot study. Stem Cells Int 2020:2487072. https://doi.org/10.1155/2020/2487072 PubMed DOI PMC

Lee H, Han W, Kim H et al (2017) Development of liver decellularized extracellular matrix bioink for three-dimensional cell printing-based liver tissue engineering. Biomacromol 18:1229–1237. https://doi.org/10.1021/acs.biomac.6b01908 DOI

Lee JW, Choi Y-J, Yong W-J et al (2016) Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication 8:15007. https://doi.org/10.1088/1758-5090/8/1/015007 DOI

Yu X, Jiang S, Li D et al (2024) Osteoimmunomodulatory bioinks for 3D bioprinting achieve complete regeneration of critical-sized bone defects. Compos Part B Eng 273:111256. https://doi.org/10.1016/j.compositesb.2024.111256 DOI

Bebiano LB, Presa R, Silva IV et al (2023) Design and bioprinting of decellularized extracellular matrix-based bioinks for skin tissue engineering. J 3D Print Med 7:3DP15. https://doi.org/10.2217/3dp-2023-0011 DOI

Andreadis ST (2007) Gene-modified tissue-engineered skin: the next generation of skin substitutes. In: Lee K, Kaplan D (eds) Tissue engineering II. Springer Berlin Heidelberg, Berlin, pp 241–274

Vasconcelos DP, Costa M, Amaral IF et al (2015) Development of an immunomodulatory biomaterial: Using resolvin D1 to modulate inflammation. Biomaterials 53:566–573. https://doi.org/10.1016/j.biomaterials.2015.02.120 PubMed DOI

Wang M, Li W, Luo Z et al (2022) A multifunctional micropore-forming bioink with enhanced anti-bacterial and anti-inflammatory properties. Biofabrication 14:24105. https://doi.org/10.1088/1758-5090/ac5936 DOI

Hachim D, LoPresti ST, Yates CC, Brown BN (2017) Shifts in macrophage phenotype at the biomaterial interface via IL-4 eluting coatings are associated with improved implant integration. Biomaterials 112:95–107. https://doi.org/10.1016/j.biomaterials.2016.10.019 PubMed DOI

Basara G, Ozcebe SG, Ellis BW, Zorlutuna P (2021) Tunable human myocardium derived decellularized extracellular matrix for 3D bioprinting and cardiac tissue engineering. Gels 7:70. https://doi.org/10.3390/gels7020070 PubMed DOI PMC

Kim J, Choi YJ, Gal CW et al (2022) Development of an alginate–gelatin bioink enhancing osteogenic differentiation by gelatin release. Int J Bioprint 9:142–157. https://doi.org/10.18063/IJB.V9I2.660 DOI

Xu H-Q, Liu J-C, Zhang Z-Y, Xu C-X (2022) A review on cell damage, viability, and functionality during 3D bioprinting. Mil Med Res 9:70. https://doi.org/10.1186/s40779-022-00429-5 PubMed DOI PMC

Gungor-Ozkerim PS, Inci I, Zhang YS et al (2018) Bioinks for 3D bioprinting: an overview. Biomater Sci 6:915–946. https://doi.org/10.1039/c7bm00765e PubMed DOI PMC

Dai M, Belaïdi J-P, Fleury G et al (2021) Elastin-like polypeptide-based bioink: a promising alternative for 3D bioprinting. Biomacromol 22:4956–4966. https://doi.org/10.1021/acs.biomac.1c00861 DOI

Shende P, Trivedi R (2021) 3D printed bioconstructs: regenerative modulation for genetic expression. Stem Cell Rev Reports 17:1239–1250. https://doi.org/10.1007/s12015-021-10120-2 DOI

Ibáñez-fonseca A, Fernández-colino A, Blanco-fernandez B, Shuboni-mulligan DD (2024) Editorial: extracellular matrix-like microenvironments for in vitro models and regenerative medicine. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2024.1505587 PubMed DOI PMC

Sharma R, Smits IPM, La VLD et al (2020) 3D bioprinting pluripotent stem cell derived neural tissues using a novel fibrin bioink containing drug releasing microspheres. Front Bioeng Biotechnol 8:1–12. https://doi.org/10.3389/fbioe.2020.00057 DOI

Brunger JM, Zutshi A, Willard VP et al (2015) 504. Targeted genome engineering of induced pluripotent stem cells to produce auto-regulated inflammation resistance for musculoskeletal regenerative medicine. Mol Ther 23:S201–S202. https://doi.org/10.1016/S1525-0016(16)34113-2 DOI

Goker M, Derici US, Gokyer S et al (2024) Spatial growth factor delivery for 3D bioprinting of vascularized bone with adipose-derived stem/stromal cells as a single cell source. ACS Biomater Sci Eng 10:1607–1619. https://doi.org/10.1021/acsbiomaterials.3c01222 PubMed DOI PMC

Li M, Wu Y, Wang M et al (2024) Journal of Bioprinting DNA-functionalized hyaluronic acid bioink in cartilage engineering: a perspective. Int J Bioprint. https://doi.org/10.36922/ijb.1814 DOI

Zhou Y, Liao S, Chu Y et al (2021) An injectable bioink with rapid prototyping in the air and in-situ mild polymerization for 3D bioprinting. Biofabrication 13:45026. https://doi.org/10.1088/1758-5090/ac23e4 DOI

Putiri EL, Robertson KD (2011) Epigenetic mechanisms and genome stability. Clin Epigenet 2:299–314. https://doi.org/10.1007/s13148-010-0017-z DOI

Ngo TTM, Yoo J, Dai Q et al (2016) Effects of cytosine modifications on DNA flexibility and nucleosome mechanical stability. Nat Commun 7:10813. https://doi.org/10.1038/ncomms10813 PubMed DOI PMC

Kiyotake EA, Douglas AW, Thomas EE et al (2019) Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting. Acta Biomater 95:176–187. https://doi.org/10.1016/j.actbio.2019.01.041 PubMed DOI

Tavakoli S, Krishnan N, Mokhtari H et al (2024) Fine-tuning dynamic cross–linking for enhanced 3d bioprinting of hyaluronic acid hydrogels. Adv Funct Mater 34:2307040. https://doi.org/10.1002/adfm.202307040 DOI

Petta D, Armiento AR, Grijpma D et al (2018) 3D bioprinting of a hyaluronan bioink through enzymatic-and visible light-crosslinking. Biofabrication 10:44104. https://doi.org/10.1088/1758-5090/aadf58 DOI

Lechner A, Trossmann VT, Scheibel T (2022) Impact of cell loading of recombinant spider silk based bioinks on gelation and printability. Macromol Biosci 22:2100390. https://doi.org/10.1002/mabi.202100390 DOI

Diamantides N, Dugopolski C, Blahut E et al (2019) High density cell seeding affects the rheology and printability of collagen bioinks. Biofabrication 11:45016. https://doi.org/10.1088/1758-5090/ab3524 DOI

Luo W, Song Z, Wang Z et al (2020) Printability optimization of gelatin-alginate bioinks by cellulose nanofiber modification for potential meniscus bioprinting. J Nanomater 2020:3863428. https://doi.org/10.1155/2020/3863428 DOI

Sonnleitner D, Schrüfer S, Berglund L et al (2021) Correlating rheology and printing performance of fiber-reinforced bioinks to assess predictive modelling for biofabrication. J Mater Res 36:3821–3832. https://doi.org/10.1557/s43578-021-00276-5 DOI

Beheshtizadeh N, Gharibshahian M, Bayati M et al (2023) Vascular endothelial growth factor (VEGF) delivery approaches in regenerative medicine. Biomed Pharmacother 166:115301. https://doi.org/10.1016/j.biopha.2023.115301 PubMed DOI

Yao X, Xue T, Chen B et al (2025) Advances in biomaterial-based tissue engineering for peripheral nerve injury repair. Bioact Mater 46:150–172. https://doi.org/10.1016/j.bioactmat.2024.12.005 PubMed DOI

Jiang H, Li X, Chen T et al (2023) Bioprinted vascular tissue: Assessing functions from cellular, tissue to organ levels. Mater Today Bio 23:100846. https://doi.org/10.1016/j.mtbio.2023.100846 PubMed DOI PMC

Golebiowska AA, Tan M, Ma AWK, Nukavarapu SP (2025) Decellularized cartilage tissue bioink formulation for osteochondral graft development. Biomed Mater 20:25002. https://doi.org/10.1088/1748-605X/ada59d DOI

Lee JS, Park HS, Jung H et al (2020) 3D-printable photocurable bioink for cartilage regeneration of tonsil-derived mesenchymal stem cells. Addit Manuf 33:101136. https://doi.org/10.1016/j.addma.2020.101136 DOI

Freitas GP, Lopes HB, Souza ATP et al (2021) Mesenchymal stem cells overexpressing BMP-9 by CRISPR-Cas9 present high in vitro osteogenic potential and enhance in vivo bone formation. Gene Ther 28:748–759. https://doi.org/10.1038/s41434-021-00248-8 PubMed DOI PMC

Park S-Y, Lee J-K, Lee S-H et al (2024) Multifunctional vitamin D-incorporated PLGA scaffold with BMP/VEGF-overexpressed tonsil-derived MSC via CRISPR/Cas9 for bone tissue regeneration. Mater Today Bio 28:101254. https://doi.org/10.1016/j.mtbio.2024.101254 PubMed DOI PMC

Linh NTB, Abueva CDG, Jang D-W, Lee B-T (2020) Collagen and bone morphogenetic protein-2 functionalized hydroxyapatite scaffolds induce osteogenic differentiation in human adipose-derived stem cells. J Biomed Mater Res Part B Appl Biomater 108:1363–1371. https://doi.org/10.1002/jbm.b.34485 DOI

Wang Q, Zhang L, Zhang G-W et al (2021) Inherent hepatocytic heterogeneity determines expression and retention of edited F9 alleles post-AAV/CRISPR infusion. Proc Natl Acad Sci 118:e2110887118. https://doi.org/10.1073/pnas.2110887118 PubMed DOI PMC

Guan X, Xu W, Zhang H et al (2020) Transplantation of human induced pluripotent stem cell-derived cardiomyocytes improves myocardial function and reverses ventricular remodeling in infarcted rat hearts. Stem Cell Res Ther 11:73. https://doi.org/10.1186/s13287-020-01602-0 PubMed DOI PMC

Faloppi L, Casadei Gardini A, Masi G et al (2025) Angiogenesis polymorphisms profile in the prediction of clinical outcome of advanced HCC patients receiving sorafenib: combined analysis of VEGF and HIF-1α—final results of the ALICE-2 study. J Clin Oncol 34:280. https://doi.org/10.1200/jco.2016.34.4_suppl.280 DOI

Tomov ML, Theus A, Sarasani R et al (2019) 3D bioprinting of cardiovascular tissue constructs: cardiac bioinks BT-cardiovascular regenerative medicine: tissue engineering and clinical applications. In: Wu SM (ed) Serpooshan V. Springer International Publishing, Cham, pp 63–77

Kim DY, Liu Y, Kim G et al (2024) Innovative strategies in 3D bioprinting for spinal cord injury repair. Int J Mol Sci 25:9592. https://doi.org/10.3390/ijms25179592 PubMed DOI PMC

Du W, Hu J, Huang X et al (2023) Feasibility of repairing skin defects by VEGF gene-modified iPS-HFSCs seeded on a 3D printed scaffold containing astragalus polysaccharide. J Cell Mol Med 27:2136–2149. https://doi.org/10.1111/jcmm.17800 PubMed DOI PMC

Nakahara Y, Gage FH, Tuszynski MH (1996) Grafts of fibroblasts genetically modified to secrete NGF, BDNF, NT-3, or basic fgf elicit differential responses in the adult spinal cord. Cell Transplant 5:191–204. https://doi.org/10.1016/0963-6897(95)02028-4 PubMed DOI

Zhong C, He S, Huang Y et al (2024) Scaffold-based non-viral CRISPR delivery platform for efficient and prolonged gene activation to accelerate tissue regeneration. Acta Biomater 173:283–297. https://doi.org/10.1016/j.actbio.2023.10.029 PubMed DOI

Pereira RF, Sousa A, Barrias CC et al (2018) A single-component hydrogel bioink for bioprinting of bioengineered 3D constructs for dermal tissue engineering. Mater Horizons 5:1100–1111. https://doi.org/10.1039/C8MH00525G DOI

Hwang J, Kiick KL, Sullivan MO (2023) VEGF-encoding, gene-activated collagen-based matrices promote blood vessel formation and improved wound repair. ACS Appl Mater Interfaces 15:16434–16447. https://doi.org/10.1021/acsami.2c23022 PubMed DOI PMC

Ikuno T, Masumoto H, Yamamizu K et al (2017) Efficient and robust differentiation of endothelial cells from human induced pluripotent stem cells via lineage control with VEGF and cyclic AMP. PLoS ONE 12:e0173271 PubMed PMC

Salg GA, Blaeser A, Gerhardus JS et al (2022) Vascularization in bioartificial parenchymal tissue: bioink and bioprinting strategies. Int J Mol Sci 23:589. https://doi.org/10.3390/ijms23158589 DOI

Cohen R, Baruch E-S, Cabilly I et al (2023) Modified ECM-based bioink for 3D printing of multi-scale vascular networks. Gels 9:792. https://doi.org/10.3390/gels9100792 PubMed DOI PMC

Zhou Z, Huang Y, Liu H, Zhao G (2022) 3D bioprinting of modified mannan bioink for tissue engineering. STAR Protoc 3:101585. https://doi.org/10.1016/j.xpro.2022.101585 PubMed DOI PMC

Chen S-Y, Cho Y-C, Yang T-S et al (2021) A tailored biomimetic hydrogel as potential bioink to print a cell scaffold for tissue engineering applications: printability and cell viability evaluation. Appl Sci 11:829. https://doi.org/10.3390/app11020829 DOI

Wang Z, Yang Y, Gao Y et al (2022) Establishing a novel 3D printing bioinks system with recombinant human collagen. Int J Biol Macromol 211:400–409. https://doi.org/10.1016/j.ijbiomac.2022.05.088 PubMed DOI

Chen S, Tomov ML, Ning L et al (2023) Extrusion-based 3D bioprinting of adhesive tissue engineering scaffolds using hybrid functionalized hydrogel bioinks. Adv Biol 7:2300124. https://doi.org/10.1002/adbi.202300124 DOI

Khoshnood N, Shahrezaee MH, Shahrezaee M, Zamanian A (2022) Three-dimensional bioprinting of tragacanth/hydroxyapaptite modified alginate bioinks for bone tissue engineering with tunable printability and bioactivity. J Appl Polym Sci 139:e52833. https://doi.org/10.1002/app.52833 DOI

Rana D, Rangel VR, Padmanaban P et al (2025) Bioprinting of aptamer-based programmable bioinks to modulate multiscale microvascular morphogenesis in 4D. Adv Healthc Mater 14:2402302. https://doi.org/10.1002/adhm.202402302 PubMed DOI

Lowrey MK, Day H, Schilling KJ et al (2024) Remote-controlled gene delivery in coaxial 3D-bioprinted constructs using ultrasound-responsive bioinks. Cell Mol Bioeng 17:401–421. https://doi.org/10.1007/s12195-024-00818-x PubMed DOI PMC

Chen Z, Du C, Liu S et al (2024) Progress in biomaterials inspired by the extracellular matrix. Giant 19:100323. https://doi.org/10.1016/j.giant.2024.100323 DOI

Khanna A, Zamani M, Huang NF (2021) Extracellular matrix-based biomaterials for cardiovascular tissue engineering. J Cardiovasc Dev Dis 8:137. https://doi.org/10.3390/jcdd8110137 PubMed DOI PMC

Stola GP, Paoletti C, Nicoletti L et al (2024) Internally-crosslinked alginate dialdehyde/alginate/gelatin-based hydrogels as bioprinting inks for prospective cardiac tissue engineering applications. Int J Bioprint 10:4014. https://doi.org/10.36922/ijb.4014 DOI

Aleman J, Sivakumar H, DePalma T, et al (2021) Engineering a thixotropic and biochemically tunable hyaluronan and collagen bioink for biofabrication of multiple tissue construct types. bioRxiv 2021.09.01.458584. https://doi.org/10.1101/2021.09.01.458584

He W, Ye L, Li S et al (2012) Construction of vascularized cardiac tissue from genetically modified mouse embryonic stem cells. J Hear Lung Transplant 31:204–212. https://doi.org/10.1016/j.healun.2011.11.010 DOI

Zhu K, Shin SR, van Kempen T et al (2017) Gold nanocomposite bioink for printing 3D cardiac constructs. Adv Funct Mater 27:1605352. https://doi.org/10.1002/adfm.201605352 PubMed DOI PMC

Wang Z, Lee SJ, Cheng H-J et al (2018) 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomater 70:48–56. https://doi.org/10.1016/j.actbio.2018.02.007 PubMed DOI PMC

Li M, Sun L, Liu Z et al (2023) 3D bioprinting of heterogeneous tissue-engineered skin containing human dermal fibroblasts and keratinocytes. Biomater Sci 11:2461–2477. https://doi.org/10.1039/D2BM02092K PubMed DOI

Yang Y, Xu R, Wang C et al (2022) Recombinant Human Collagen-Based Bioinks for the 3D Bioprinting of Full-thickness Human Skin Equivalent. Int J Bioprint 8:145–160. https://doi.org/10.18063/ijb.v8i4.611 DOI

Liu X, Hao M, Chen Z et al (2021) 3D bioprinted neural tissue constructs for spinal cord injury repair. Biomaterials 272:120771. https://doi.org/10.1016/j.biomaterials.2021.120771 PubMed DOI

Han H-W, Hsu S (2017) Using 3D bioprinting to produce mini-brain. Neural Regen Res 12:1595–1596. https://doi.org/10.4103/1673-5374.217325 PubMed DOI PMC

Sharma R, Kirsch R, Valente KP et al (2021) Physical and mechanical characterization of fibrin-based bioprinted constructs containing drug-releasing microspheres for neural tissue engineering applications. Processes 9:1205. https://doi.org/10.3390/pr9071205 DOI

Kado Abdalkader R, Yamauchi K, Konishi S, Fujita T (2024) Development and characterization of bioinks for 3D bioprinting of in vitro skeletal muscle constructs. bioRxiv 2024.11.01.621422. https://doi.org/10.1101/2024.11.01.621422

Zhang J, Qi H, Wang H et al (2006) Engineering of vascular grafts with genetically modified bone marrow mesenchymal stem cells on poly (Propylene Carbonate) graft. Artif Organs 30:898–905. https://doi.org/10.1111/j.1525-1594.2006.00322.x PubMed DOI

De Moor L, Smet J, Plovyt M et al (2021) Engineering microvasculature by 3D bioprinting of prevascularized spheroids in photo-crosslinkable gelatin. Biofabrication 13:45021. https://doi.org/10.1088/1758-5090/ac24de DOI

Barrs RW, Jia J, Ward M et al (2021) Engineering a chemically defined hydrogel bioink for direct bioprinting of microvasculature. Biomacromol 22:275–288. https://doi.org/10.1021/acs.biomac.0c00947 DOI

Chen P-H, Chen I-H, Kao W-H et al (2024) Characterization and application of photocrosslinkable collagen maleate as bioink in extrusion-based 3D bioprinting. Biomater Sci 12:5063–5075. https://doi.org/10.1039/D4BM00826J PubMed DOI

Arslan H, Davuluri A, Nguyen HH et al (2024) 3D bioprinting using universal fugitive network bioinks. ACS Appl Bio Mater 7:7040–7050. https://doi.org/10.1021/acsabm.4c01220 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...