Statistical modelling and optimization of thermophysiological and tactile comfort properties of sports socks

. 2025 May 20 ; 15 (1) : 17528. [epub] 20250520

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40394043

Grantová podpora
2024:31140/1312/3104 Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague, grant no.s 2024:31140/1312/3104: "Computational and analytical studies on sandwich composites reinforced with hybrid fibrous materials and bio-fillers"
2024:31140/1312/3104 Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague, grant no.s 2024:31140/1312/3104: "Computational and analytical studies on sandwich composites reinforced with hybrid fibrous materials and bio-fillers"
2024:31140/1312/3102 Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague, grant no. 2024:31140/1312/3102: "Research of factors affecting ecological processing and use of polymer composite materials based on natural fillers" .
2024:31140/1312/3102 Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague, grant no. 2024:31140/1312/3102: "Research of factors affecting ecological processing and use of polymer composite materials based on natural fillers" .
2025:31140/1312 Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague, grant no. 2025:31140/1312: "Research into the production of composite polymer materials with a focus on improving performance".
2025:31140/1312 Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague, grant no. 2025:31140/1312: "Research into the production of composite polymer materials with a focus on improving performance".

Odkazy

PubMed 40394043
PubMed Central PMC12092722
DOI 10.1038/s41598-025-01000-7
PII: 10.1038/s41598-025-01000-7
Knihovny.cz E-zdroje

The thermo-physiological and tactile properties of socks were analysed by using hybrid yarns which were made by Polyethylene (PE) fibre with different fibres in variable ratios, using full-factorial experimental design. Socks samples were designed using hybrid yarns made with three blend ratios of polyethylene filament with cotton (Co), polyester (PET), polypropylene (PP), modal (Mo) and viscose (Vis) spun yarns. Statistical analysis was carried out according to response surface regression analysis (RSM). Among various analytical tools, RSM is adopted for prediction of multiple responses and response optimizer (RO) was used to optimize the thermo-physiological and tactile comfort i.e. softness and smoothness properties of socks by using the desirability function approach. It was inferred that the combination of cotton with polyethylene was most influencing for thermal conductivity and softness properties. Experimental validation confirmed that predicted variables can be used to design knitted socks fabric with desired thermo-physiological and tactile comfort properties.

Zobrazit více v PubMed

Čiukas, R., Abramavičiute, J. & Kerpauskas, P. Investigation of the thermal properties of socks knitted from yarns with peculiar properties. Part II: Thermal resistance of socks knitted from natural and stretch yarns. Fibre Text. East. Eur.19, 64–68 (2011).

Fan, J. & Hunter, L. Engineering Apparel Fabrics and Garments 49–78 (Woodhead Publishing, 2009).

Arumugam, V., Militky, J. & Tunak, M. In-plane shear behavior of 3D spacer knitted fabrics. J. Ind. Text.46, 868–886 (2016).

Čiukas, R., Abramavičiūtė, J. & Kerpauskas, P. Investigation of the thermal properties of socks knitted from yarns with peculiar properties. Part I. Thermal conductivity coefficient of socks knitted from natural and synthetic textured yarns. Fibre Text. East. Eur.18, 89–93 (2010).

Shaker, K. et al. Effect of fabric structural design on the thermal properties of woven fabrics. Therm. Sci.23, 3059–3066 (2019).

Nazir, A. et al. Prediction and correlation of air permeability and light transmission properties of woven cotton fabrics. Autex Res. J.17, 61–66 (2017).

Afzal, A. et al. Influence of fabric parameters on thermal comfort performance of double layer knitted interlock fabrics. Autex Res. J.17, 61–66 (2017).

Afzal, A. et al. Characterization and statistical modeling of thermal resistance of cottom/polyester blended double layer interlock knitted fabrics. Therm. Sci.21(6A), 2393–2403 (2017).

Ahmad, S. et al. Effect of weave structure on thermo-physiological properties of cotton fabrics. Autex Res. J.15, 30–34 (2015).

Nazir, A., Hussain, T., Zia, Q. & Afzal Muhammad, A. Improving thermo-physiological comfort of polyester/cotton knits by caustic and cellulases treatments. Autex Res. J.14, 200–204 (2014).

Afzal, A. et al. Investigation and modeling of air permeability of cotton/polyester blended double layer interlock knitted fabrics. Fibers Polym.15, 1539–1547 (2014).

Afzal, A., Hussain, T., Mohsin, M., Rasheed, A. & Ahmad, S. Statistical models for predicting the thermal resistance of polyester/cotton blended interlock knitted fabrics. Int. J. Therm. Sci.85, 40–46 (2014).

Afzal, A., Hussain, T., Malik, M. H. & Javed, Z. Statistical model for predicting the air permeability of polyester/cotton-blended interlock knitted fabrics. J. Text. II05, 214–222 (2014).

Özdil, N., Marmaralı, A. & Kretzschmar, S. D. Effect of yarn properties on thermal comfort of knitted fabrics. Int. J. Therm. Sci.46, 1318–1322 (2007).

Majumdar, A., Mukhopadhyay, S. & Yadav, R. Thermal properties of knitted fabrics made from cotton and regenerated bamboo cellulosic fibres. Int. J. Therm. Sci.49, 2042–2048 (2010).

Behera, B. K. & Mishra, R. Artificial neural network-based prediction of aesthetic and functional properties of worsted suiting fabrics. Int. J. Cloth. Sci. Technol.19, 259–276 (2007).

Cimilli, S., Nergis, B. U., Candan, C. & Özdemir, M. A comparative study of some comfort-related properties of socks of different fiber types. Text. Res. J.80, 948–957 (2010).

Tasron, D., Nasir, S., Troynikov, O., Lewis, R. & Carré, M. Thermo-physiological comfort and frictional characteristics of running socks in different moisture conditions. In Conference paper, IAT Malaysia, pp 778–783 (2016)

Bertaux, E. et al. Textile, physiological, and sensorial parameters in sock comfort. Text. Res. J.80, 1803–1810 (2010).

Park, J., Yoo, H.-S., Hong, K. H. & Kim, E. Knitted fabric properties influencing coolness to the touch and the relationship between subjective and objective coolness measurements. Text. Res. J.88, 1931–1942 (2018).

Pan, N. & Gibson, P. Thermal and Moisture Transport in Fibrous Materials 124–145 (Woodhead Publishing, 2006).

Das, A. & Alagirusamy, R. Thermal transmission. In Science in Clothing Comfort (eds Das, A. & Alagirusamy, R.) 79–105 (Woodhead Publishing, 2010).

Hes, L., De Araujo, M. & Djulay, V. V. Effect of mutual bonding of textile layers on thermal insulation and thermal contact properties of fabric assemblies. Text. Res. J.66, 245–250 (1996).

de Rezende, C. A., Schuchardt, U. F. & Gonçalves, Md. C. Use of nylon 6/polyethylene blends in the preparation of textile yarns. J. Appl. Polym. Sci.102, 2142–2148 (2006).

Hearle, J. W. S. & Morton, W. E. Physical Properties of Textile Fibres 4th edn, 78–127 (Woodhead Publishing, 2008).

Yamanaka, A. & Takao, T. Thermal conductivity of high-strength polyethylene fiber and applications for cryogenic use. ISRN Mater. Sci.2011, 718761 (2011).

Henry, A. & Chen, G. High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Phy. Review Lett.101, 235502 (2008). PubMed

Shen, S., Henry, A., Tong, J., Zheng, R. & Chen, G. Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol.5, 251–255 (2010). PubMed

Hardy, J. D. & Dubois, E. F. Regulation of heat loss from the human body. Proc. Natl. Acad. Sci. U.S.A.23, 624–631 (1937). PubMed PMC

Winslow, C.-E., Gagge, A. & Herrington, L. The influence of air movement upon heat losses from the clothed human body. Am. Physiol. Soc. J.127, 505–518 (1939).

Hsu, P.-C. et al. A dual-mode textile for human body radiative heating and cooling. Sci. Adv.3, e1700895 (2017). PubMed PMC

Ball, P. Could polythene clothes be cool?. Nat. Mater.14, 865–865 (2015). PubMed

Alberghini, M. et al. Sustainable polyethylene fabrics with engineered moisture transport for passive cooling. Nat. Sustain.4, 715–724 (2021).

Bhaduri, S. N. Blending. In Technical Seminar on Blending, (Textile Association, New Delhi, India, 1965), pp. 35–41.

Achour, S., Khelifi, E., Ayed, L., Helal, A. N. & Bakhrouf, A. Response surface methodology for textile wastewater decolourization and biodegradation by a novel mixed bacterial consortium developed via mixture design. Desalin. Water Trea.52, 1539–1549 (2014).

Kandar, M. I. M. & Akil, H. M. Application of design of experiment (DoE) for parameters optimization in compression moulding for flax reinforced biocomposites. Proc. Chem.19, 433–440 (2016).

Behera, B. K. & Pattanayak, A. K. Prediction of fabric drape behaviour using finite element method. J. Text. Eng.54, 103–110 (2008).

Rengasamy, R. S., Das, B. R. & Patil, Y. B. Thermo-physiological comfort characteristics of polyester air-jet-textured and cotton-yarn fabrics. J. Text. I100, 507–511 (2009).

Onofrei, E., Rocha, A. M. & Catarino, A. The influence of knitted fabrics’ structure on the thermal and moisture management properties. J. Eng. Fiber Fab.6, 10–22 (2011).

Xiong, X., Yang, T. & Mishra, R. Transport properties of aerogel-based nanofibrous nonwoven fabrics. Fibers Polym.17, 1709–1714 (2016).

Gun, A. D. & Bodur, A. Thermo-physiological comfort properties of double-face knitted fabrics made from different types of polyester yarns and cotton yarn. J. Text. II08, 1518–1527 (2017).

Gun, A. Dimensional, physical and thermal properties of plain knitted fabrics made from 50/50 blend of modal viscose fiber in microfiber form with cotton fiber. Fibers Polym.12, 1083–1090 (2011).

Yang, T., Xiong, X., Venkataraman, M. & Novák, J. Investigation on sound absorption properties of aerogel/polymer nonwovens. J. Text. II10, 196–201 (2019).

Kaynak, H. K. & Babaarslan, O. Effects of filament linear density on the comfort related properties of polyester knitted fabrics. Fibres Text. East. Eur.24, 89–94 (2016).

Bhattacharya, S. & Ajmeri, J. Factors affecting air permeability of viscose & excel single jersey fabric. Int. J. Sci. Eng. Res.5, 48–54 (2013).

Hassan, T., Jamshaid, H., Khan, M. Q., Petru, M. & Tichy, M. Factors affecting acoustic properties of natural-fiber-based materials and composites: A review. Textiles1, 55–85 (2021).

Čiukas, R. & Abramavičiūtė, J. Investigation of the air permeability of socks knitted from yarns with peculiar properties. Fibres Text. East. Eur.18, 84–88 (2010).

Maity, S. Characteristics and effects of fibre crimp in nonwoven structure. J. Text. Assoc. India.76, 360–366 (2014).

Hu, J., Li, Y., Yeung, K.-W., Wong, A. S. W. & Xu, W. Moisture management tester: A method to characterize fabric liquid moisture management properties. Text. Res. J.75, 57–62 (2005).

Buhai, C., Blaga, M. & Luminita, V. Comfort properties of functional weft knitted spacer fabrics. J. Text. App.23, 220–227 (2013).

Choudhary, A. K. & Ramratan,. The influence of yarn and knit structure on moisture management properties of sportswear fabric. J. Inst. Eng. (India) Series E.101, 77–90 (2020).

Venkataraman, M., Jasikova, D. & Kotresh, T. M. Thermodynamics of aerogel-treated nonwoven fabrics at subzero temperatures. J. Ind. Text.45, 387–404 (2015).

Manshahia, M. & Das, A. Moisture management of high active sportswear. Fibers Polym.15, 1221–1229 (2014).

Yim, K.-Y. & Kan, C.-W. A comparison study of fabric objective measurement (FOM) using KES-FB and PhabrOmeter system on warp knitted fabrics handle-smoothness, stiffness and softness. Int. J. Chem. Mol. Nucl. Mater. Metallur. Eng.8, 791–794 (2014).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...