In vitro evaluation of 3D-printed conductive chitosan-polyaniline scaffolds with exosome release for enhanced angiogenesis and cardiomyocyte protection
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
40395791
PubMed Central
PMC12090194
DOI
10.1039/d5ra02940f
PII: d5ra02940f
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Myocardial infarction (MI) often results in significant damage to heart tissues, leading to cardiac dysfunction, fibrosis, and diminished cell-cell communication. Exosomes (EXOs) from stem cells show great potential in promoting tissue repair and angiogenesis, but their rapid clearance and degradation in vivo limit therapeutic efficacy. Here, we introduce a 3D-printed in vitro scaffold using a conductive biomaterial ink composed of chitosan (CS) and polyaniline (PANI). This scaffold combines the bioactivity of EXOs with the conductive properties of PANI to protect cardiac cells under ischemic stress. Using an in vitro hypoxia/reoxygenation (H/R) model with HL-1 cardiomyocytes, we simulated key aspects of myocardial ischemia-reperfusion injury. The addition of PANI improved the electrical conductivity of the scaffold, which was essential for enhancing cardiomyocyte viability and intercellular connectivity under hypoxic conditions. EXOs significantly promoted angiogenic activity in vitro, as evidenced by enhanced human umbilical vein endothelial cell (HUVEC) migration and robust tube formation, highlighting their role in stimulating new blood vessel growth. Molecular analyses revealed that EXOs positively influence processes such as angiogenesis and inflammation regulation in HL-1 cells. Additionally, EXOs improved HUVEC migration, emphasizing their pro-angiogenic role. These findings indicate that combining PANI and EXOs in a 3D-printed scaffold yields synergistic benefits, improving cardiomyocyte function and promoting endothelial angiogenesis in vitro, thereby providing insights for future cardiac repair strategies.
See more in PubMed
Thorp E. B. The Myocardial Unfolded Protein Response during Ischemic Cardiovascular Disease. Biochem. Res. Int. 2012;2012:1–7. doi: 10.1155/2012/583170. PubMed DOI PMC
Sharedalal P. Aronow W. S. A review of diagnosis, etiology, assessment, and management of patients with myocardial infarction in the absence of obstructive coronary artery disease. Hosp. Pract. 2021;49(1):12–21. doi: 10.1080/21548331.2020.1817459. PubMed DOI
Peng C. Yan J. Jiang Y. Wu L. Li M. Fan X. Exploring Cutting-Edge Approaches to Potentiate Mesenchymal Stem Cell and Exosome Therapy for Myocardial Infarction. J. Cardiovasc. Transl. Res. 2024;17(2):356–375. doi: 10.1007/s12265-023-10438-x. PubMed DOI
Zhu K. et al., Conductive nanocomposite hydrogel and mesenchymal stem cells for the treatment of myocardial infarction and non-invasive monitoring via PET/CT. J. Nanobiotechnol. 2022;20(1):211. doi: 10.1186/s12951-022-01432-7. PubMed DOI PMC
Zhang W. et al., Role of extracellular vesicles in insulin resistance: Signaling pathways, bioactive substances, miRNAs, and therapeutic potential. Cell Biochem. Funct. 2024;42(3):e4013. doi: 10.1002/cbf.4013. PubMed DOI
Li L.-Y. Zhou L.-F. Shi J. Liu Z.-J. Gao J.-Q. Shexiang Tongxin Dropping Pretreated Mesenchymal Stem Cells-derived Exosomes Attenuate Cardiac Ischemia/Reperfusion Injury by Modulating miR-182-5p and miR-199a-3p-mediated Inflammatory Responses. Pharmacogn. Mag. 2024;20(1):291–302. doi: 10.1177/09731296231207232. DOI
Azhdari M. H. Goodarzi N. Doroudian M. MacLoughlin R. Molecular Insight into the Therapeutic Effects of Stem Cell-Derived Exosomes in Respiratory Diseases and the Potential for Pulmonary Delivery. Int. J. Mol. Sci. 2022;23(11):6273. doi: 10.3390/ijms23116273. PubMed DOI PMC
Huang H. et al., Human umbilical cord-mesenchymal stem cells-derived exosomes carrying microRNA-15a-5p possess therapeutic effects on Wilms tumor via regulating septin 2. Bioengineered. 2022;13(3):6136–6148. doi: 10.1080/21655979.2022.2037379. PubMed DOI PMC
Gemayel J. et al., Mesenchymal stem cells-derived secretome and extracellular vesicles: perspective and challenges in cancer therapy and clinical applications. Clin. Transl. Oncol. 2023;25(7):2056–2068. doi: 10.1007/s12094-023-03115-7. PubMed DOI
Tian H. et al., Priming and Combined Strategies for the Application of Mesenchymal Stem Cells in Ischemic Stroke: A Promising Approach. Mol. Neurobiol. 2024;61(9):7127–7150. doi: 10.1007/s12035-024-04012-y. PubMed DOI
Rai R. Roether J. A. Boccaccini A. R. Polyaniline based polymers in tissue engineering applications: a review. Prog. Biomed. Eng. 2022;4(4):042004. doi: 10.1088/2516-1091/ac93d3. DOI
Stejskal J. Hajná M. Kašpárková V. Humpolíček P. Zhigunov A. Trchová M. Purification of a conducting polymer, polyaniline, for biomedical applications. Synth. Met. 2014;195:286–293. doi: 10.1016/j.synthmet.2014.06.020. DOI
Ezati M. Safavipour H. Houshmand B. Faghihi S. Development of a PCL/gelatin/chitosan/β-TCP electrospun composite for guided bone regeneration. Prog. Biomater. 2018;7(3):225–237. doi: 10.1007/s40204-018-0098-x. PubMed DOI PMC
Mekhail M. Tabrizian M. Injectable Chitosan-Based Scaffolds in Regenerative Medicine and their Clinical Translatability. Adv. Healthcare Mater. 2014;3(10):1529–1545. doi: 10.1002/adhm.201300586. PubMed DOI
Pramanik S. et al., Chitosan alchemy: transforming tissue engineering and wound healing. RSC Adv. 2024;14(27):19219–19256. doi: 10.1039/D4RA01594K. PubMed DOI PMC
Liang J. et al., Hydrogels for the Treatment of Myocardial Infarction: Design and Therapeutic Strategies. Macromol. Biosci. 2024;24(2) doi: 10.1002/mabi.202300302. PubMed DOI
Wang Q. Wang X. Feng Y. Chitosan Hydrogel as Tissue Engineering Scaffolds for Vascular Regeneration Applications. Gels. 2023;9(5):373. doi: 10.3390/gels9050373. PubMed DOI PMC
He X. et al., Effect of Intramyocardial Grafting Collagen Scaffold With Mesenchymal Stromal Cells in Patients With Chronic Ischemic Heart Disease. JAMA Netw. Open. 2020;3(9):e2016236. doi: 10.1001/jamanetworkopen.2020.16236. PubMed DOI PMC
Yuan Z. et al., Injectable Citrate-Based Hydrogel as an Angiogenic Biomaterial Improves Cardiac Repair after Myocardial Infarction. ACS Appl. Mater. Interfaces. 2019;11(42):38429–38439. doi: 10.1021/acsami.9b12043. PubMed DOI
Cheng N. et al., Injectable pH Responsive Conductive Hydrogel for Intelligent Delivery of Metformin and Exosomes to Enhance Cardiac Repair after Myocardial Ischemia-Reperfusion Injury. Adv. Sci. 2025:e2410590. doi: 10.1002/advs.202410590. PubMed DOI
Wang H. et al., Black-Phosphorus-Reinforced Injectable Conductive Biodegradable Hydrogel for the Delivery of ADSC-Derived Exosomes to Repair Myocardial Infarction. ACS Appl. Mater. Interfaces. 2024;16(43):58286–58298. doi: 10.1021/acsami.4c12285. PubMed DOI
Xu Z. et al., Stem cells derived exosome laden oxygen generating hydrogel composites with good electrical conductivity for the tissue-repairing process of post-myocardial infarction. J. Nanobiotechnol. 2025;23(1):213. doi: 10.1186/s12951-025-03289-y. PubMed DOI PMC
Yan C. et al., A Novel Conductive Polypyrrole-Chitosan Hydrogel Containing Human Endometrial Mesenchymal Stem Cell-Derived Exosomes Facilitated Sustained Release for Cardiac Repair. Adv. Healthcare Mater. 2024;13(10) doi: 10.1002/adhm.202304207. PubMed DOI PMC
Geuss L. R. Allen A. C. B. Ramamoorthy D. Suggs L. J. Maintenance of HL-1 cardiomyocyte functional activity in PEGylated fibrin gels. Biotechnol. Bioeng. 2015;112(7):1446–1456. doi: 10.1002/bit.25553. PubMed DOI
Baiazitova L. et al., The Effect of Rhodamine-Derived Superparamagnetic Maghemite Nanoparticles on the Motility of Human Mesenchymal Stem Cells and Mouse Embryonic Fibroblast Cells. Molecules. 2019;24(7):1192. doi: 10.3390/molecules24071192. PubMed DOI PMC
Stejskal J. Gilbert R. G. Polyaniline. Preparation of a conducting polymer(IUPAC Technical Report) Pure Appl. Chem. 2002;74(5):857–867. doi: 10.1351/pac200274050857. DOI
Rueden C. T. et al., ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinf. 2017;18(1):529. doi: 10.1186/s12859-017-1934-z. PubMed DOI PMC
Samokhvalov V. Jamieson K. L. Fedotov I. Endo T. Seubert J. M. SIRT Is Required for EDP-Mediated Protective Responses toward Hypoxia–Reoxygenation Injury in Cardiac Cells. Front. Pharmacol. 2016;7 doi: 10.3389/fphar.2016.00124. PubMed DOI PMC
Bahrami S. Hassanzadeh-Afruzi F. Maleki A. Synthesis and characterization of a novel and green rod-like magnetic ZnS/CuFe 2 O 4/agar organometallic hybrid catalyst for the synthesis of biologically-active 2-amino-tetrahydro-4 H -chromene-3-carbonitrile derivatives. Appl. Organomet. Chem. 2020;34(11) doi: 10.1002/aoc.5949. DOI
Tang Q. Wu J. Sun H. Lin J. Fan S. Hu D. Polyaniline/polyacrylamide conducting composite hydrogel with a porous structure. Carbohydr. Polym. 2008;74(2):215–219. doi: 10.1016/j.carbpol.2008.02.008. DOI
Ben Hadj Said M. et al., Synthesis and characterization of cellulose hydrogel/graphene oxide/polyaniline composite for high-performing supercapacitors. Int. J. Energy Res. 2022;46(10):13844–13854. doi: 10.1002/er.8102. DOI
Karpuraranjith M. Thambidurai S. Twist fibrous structure of CS–SnO 2 –PANI ternary hybrid composite for electrochemical capacitance performance. RSC Adv. 2016;6(46):40567–40576. doi: 10.1039/C5RA26932F. DOI
Spencer A. R. Primbetova A. Koppes A. N. Koppes R. A. Fenniri H. Annabi N. Electroconductive Gelatin Methacryloyl-PEDOT:PSS Composite Hydrogels: Design, Synthesis, and Properties. ACS Biomater. Sci. Eng. 2018:8b00135. doi: 10.1021/acsbiomaterials.8b00135. PubMed DOI PMC
Qazi T. H. et al., Development and characterization of novel electrically conductive PANI–PGS composites for cardiac tissue engineering applications. Acta Biomater. 2014;10(6):2434–2445. doi: 10.1016/j.actbio.2014.02.023. PubMed DOI
Eftekhari B. S. Eskandari M. Janmey P. A. Samadikuchaksaraei A. Gholipourmalekabadi M. Conductive chitosan/polyaniline hydrogel with cell-imprinted topography as a potential substrate for neural priming of adipose derived stem cells. RSC Adv. 2021;11(26):15795–15807. doi: 10.1039/D1RA00413A. PubMed DOI PMC
Li T. et al., The Therapeutic Potential and Clinical Significance of Exosomes as Carriers of Drug Delivery System. Pharmaceutics. 2022;15(1):21. doi: 10.3390/pharmaceutics15010021. PubMed DOI PMC
Rahmani P. Shojaei A. Dickey M. D. A highly conductive and ultra-stretchable polyaniline/cellulose nanocrystal/polyacrylamide hydrogel with hydrophobic associations for wearable strain sensors. J. Mater. Chem. A. 2024;12(16):9552–9562. doi: 10.1039/D3TA07424B. DOI
Yu X. et al., Highly Stretchable, Ultra-Soft, and Fast Self-Healable Conductive Hydrogels Based on Polyaniline Nanoparticles for Sensitive Flexible Sensors. Adv. Funct. Mater. 2022;32(33) doi: 10.1002/adfm.202204366. DOI
Zhang L. He G. Yu Y. Zhang Y. Li X. Wang S. Design of Biocompatible Chitosan/Polyaniline/Laponite Hydrogel with Photothermal Conversion Capability. Biomolecules. 2022;12(8):1089. doi: 10.3390/biom12081089. PubMed DOI PMC
Randviir E. P. Banks C. E. Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal. Methods. 2013;5(5):1098. doi: 10.1039/c3ay26476a. PubMed DOI
Zhao X. Li P. Guo B. Ma P. X. Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomater. 2015;26:236–248. doi: 10.1016/j.actbio.2015.08.006. PubMed DOI
Alizadeh R. et al., Conductive hydrogels based on agarose/alginate/chitosan for neural disorder therapy. Carbohydr. Polym. 2019;224:115161. doi: 10.1016/j.carbpol.2019.115161. PubMed DOI
Riaud M. Martinez M. C. Montero-Menei C. N. Scaffolds and Extracellular Vesicles as a Promising Approach for Cardiac Regeneration after Myocardial Infarction. Pharmaceutics. 2020;12(12):1195. doi: 10.3390/pharmaceutics12121195. PubMed DOI PMC
Simons M. et al., State-of-the-Art Methods for Evaluation of Angiogenesis and Tissue Vascularization. Circ. Res. 2015;116(11) doi: 10.1161/RES.0000000000000054. PubMed DOI PMC
Tanner J. E. Forté A. Panchal C. Nucleosomes Bind Fibroblast Growth Factor-2 for Increased Angiogenesis In vitro and In vivo. Mol. Cancer Res. 2004;2(5):281–288. doi: 10.1158/1541-7786.281.2.5. PubMed DOI
Gao W. et al., Exosomes from 3D culture of marrow stem cells enhances endothelial cell proliferation, migration, and angiogenesis via activation of the HMGB1/AKT pathway. Stem Cell Res. 2021;50:102122. doi: 10.1016/j.scr.2020.102122. PubMed DOI
Hu X. et al., Islet-1 Mesenchymal Stem Cells-Derived Exosome-Incorporated Angiogenin-1 Hydrogel for Enhanced Acute Myocardial Infarction Therapy. ACS Appl. Mater. Interfaces. 2022;14(32):36289–36303. doi: 10.1021/acsami.2c04686. PubMed DOI
Wang M. Yu F. Ding H. Wang Y. Li P. Wang K. Emerging Function and Clinical Values of Exosomal MicroRNAs in Cancer. Mol. Ther. Nucleic Acids. 2019;16:791–804. doi: 10.1016/j.omtn.2019.04.027. PubMed DOI PMC
Goldie B. J. et al., Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons. Nucleic Acids Res. 2014;42(14):9195–9208. doi: 10.1093/nar/gku594. PubMed DOI PMC
Roshanbinfar K. et al., Electrically Conductive Collagen-PEDOT:PSS Hydrogel Prevents Post-Infarct Cardiac Arrhythmia and Supports hiPSC-Cardiomyocyte Function. Adv. Mater. 2024;36(28) doi: 10.1002/adma.202403642. PubMed DOI
Chakraborty P. et al., A Self-Healing, All-Organic, Conducting, Composite Peptide Hydrogel as Pressure Sensor and Electrogenic Cell Soft Substrate. ACS Nano. 2019;13(1):163–175. doi: 10.1021/acsnano.8b05067. PubMed DOI PMC
Nam H. An T. Lim G. Cell behaviour on a polyaniline nanoprotrusion structure surface. Nanoscale Res. Lett. 2014;9(1):566. doi: 10.1186/1556-276X-9-566. PubMed DOI PMC
Nasser R. A. Arya S. S. Alshehhi K. H. Teo J. C. M. Pitsalidis C. Conducting polymer scaffolds: a new frontier in bioelectronics and bioengineering. Trends Biotechnol. 2024;42(6):760–779. doi: 10.1016/j.tibtech.2023.11.017. PubMed DOI
Prasopthum A. Deng Z. Khan I. M. Yin Z. Guo B. Yang J. Three dimensional printed degradable and conductive polymer scaffolds promote chondrogenic differentiation of chondroprogenitor cells. Biomater. Sci. 2020;8(15):4287–4298. doi: 10.1039/D0BM00621A. PubMed DOI
Solazzo M. O'Brien F. J. Nicolosi V. Monaghan M. G. The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering. APL Bioeng. 2019;3(4) doi: 10.1063/1.5116579. PubMed DOI PMC
Hesketh G. G. Van Eyk J. E. Tomaselli G. F. Mechanisms of Gap Junction Traffic in Health and Disease. J. Cardiovasc. Pharmacol. 2009;54(4):263–272. doi: 10.1097/FJC.0b013e3181ba0811. PubMed DOI PMC
Ul Haq A. et al., Electrically conductive scaffolds mimicking the hierarchical structure of cardiac myofibers. Sci. Rep. 2023;13(1):2863. doi: 10.1038/s41598-023-29780-w. PubMed DOI PMC
Yang Z.-J. et al., Exosomes Derived from Glioma Cells under Hypoxia Promote Angiogenesis through Up-regulated Exosomal Connexin 43. Int. J. Med. Sci. 2022;19(7):1205–1215. doi: 10.7150/ijms.71912. PubMed DOI PMC
Shimaoka M. Kawamoto E. Gaowa A. Okamoto T. Park E. Connexins and Integrins in Exosomes. Cancers. 2019;11(1):106. doi: 10.3390/cancers11010106. PubMed DOI PMC
Nagase Y. et al., Anti-apoptotic Molecule Bcl-2 Regulates the Differentiation, Activation, and Survival of Both Osteoblasts and Osteoclasts. J. Biol. Chem. 2009;284(52):36659–36669. doi: 10.1074/jbc.M109.016915. PubMed DOI PMC
Yang J. et al., Prevention of Apoptosis by Bcl-2: Release of Cytochrome c from Mitochondria Blocked. Science. 1997;275(5303):1129–1132. doi: 10.1126/science.275.5303.1129. PubMed DOI
Kuwana T. et al., Mitochondrial residence of the apoptosis inducer BAX is more important than BAX oligomerization in promoting membrane permeabilization. J. Biol. Chem. 2020;295(6):1623–1636. doi: 10.1074/jbc.RA119.011635. PubMed DOI PMC
Gao W. et al., Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF -α mediated NF -κB pathway. J. Cell. Mol. Med. 2016;20(12):2318–2327. doi: 10.1111/jcmm.12923. PubMed DOI PMC
Zhu K. et al., Conductive nanocomposite hydrogel and mesenchymal stem cells for the treatment of myocardial infarction and non-invasive monitoring via PET/CT. J. Nanobiotechnol. 2022;20(1):211. doi: 10.1186/s12951-022-01432-7. PubMed DOI PMC
Kowalczyk A. Kleniewska P. Kolodziejczyk M. Skibska B. Goraca A. The Role of Endothelin-1 and Endothelin Receptor Antagonists in Inflammatory Response and Sepsis. Arch. Immunol. Ther. Exp. 2015;63(1):41–52. doi: 10.1007/s00005-014-0310-1. PubMed DOI PMC
Sailaja B. S. Aita R. Maledatu S. Ribnicky D. Verzi M. P. Raskin I. Moringa isothiocyanate-1 regulates Nrf2 and NF-κB pathway in response to LPS-driven sepsis and inflammation. PLoS One. 2021;16(4):e0248691. doi: 10.1371/journal.pone.0248691. PubMed DOI PMC
Almasi N. Hosseinzadeh S. Hatamie S. Taheri Sangsari G. Stable conductive and biocompatible scaffold development using graphene oxide (GO) doped polyaniline (PANi) Int. J. Polym. Mater. Polym. Biomater. 2020;69(14):896–906. doi: 10.1080/00914037.2019.1628028. DOI
Humpolicek P. Kasparkova V. Saha P. Stejskal J. Biocompatibility of polyaniline. Synth. Met. 2012;162(7–8):722–727. doi: 10.1016/j.synthmet.2012.02.024. DOI
Ge Y. Wu J. Zhang L. Huang N. Luo Y. A New Strategy for the Regulation of Neuroinflammation: Exosomes Derived from Mesenchymal Stem Cells. Cell. Mol. Neurobiol. 2024;44(1):24. doi: 10.1007/s10571-024-01460-x. PubMed DOI PMC
Wani S. Man Law I. K. Pothoulakis C. Role and mechanisms of exosomal miRNAs in IBD pathophysiology. Am. J. Physiol. Gastrointest. Liver Physiol. 2020;319(6):G646–G654. doi: 10.1152/ajpgi.00295.2020. PubMed DOI PMC
Zhu Z. Liao L. Gao M. Liu Q. Garlic-derived exosome-like nanovesicles alleviate dextran sulphate sodium-induced mouse colitis via the TLR4/MyD88/NF-κB pathway and gut microbiota modulation. Food Funct. 2023;14(16):7520–7534. doi: 10.1039/D3FO01094E. PubMed DOI
Shams F. et al., Overexpression of VEGF in dermal fibroblast cells accelerates the angiogenesis and wound healing function: in vitro and in vivo studies. Sci. Rep. 2022;12(1):18529. doi: 10.1038/s41598-022-23304-8. PubMed DOI PMC
Bouzari B. et al., Angioregulatory role of miRNAs and exosomal miRNAs in glioblastoma pathogenesis. Biomed. Pharmacother. 2022;148:112760. doi: 10.1016/j.biopha.2022.112760. PubMed DOI
Moeinabadi-Bidgoli K. et al., Exosomes for angiogenesis induction in ischemic disorders. J. Cell. Mol. Med. 2023;27(6):763–787. doi: 10.1111/jcmm.17689. PubMed DOI PMC
Gao W. et al., Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF -α mediated NF -κB pathway. J. Cell. Mol. Med. 2016;20(12):2318–2327. doi: 10.1111/jcmm.12923. PubMed DOI PMC
Chen S. et al., Retinoblastoma cell-derived exosomes promote angiogenesis of human vesicle endothelial cells through microRNA-92a-3p. Cell Death Dis. 2021;12(7):695. doi: 10.1038/s41419-021-03986-0. PubMed DOI PMC
Daniel J.-M. et al., Inhibition of miR-92a improves re-endothelialization and prevents neointima formation following vascular injury. Cardiovasc. Res. 2014;103(4):564–572. doi: 10.1093/cvr/cvu162. PubMed DOI PMC
Iaconetti C. et al., Inhibition of miR-92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury. Basic Res. Cardiol. 2012;107(5):296. doi: 10.1007/s00395-012-0296-y. PubMed DOI
He L. Chen X. Cardiomyocyte Induction and Regeneration for Myocardial Infarction Treatment: Cell Sources and Administration Strategies. Adv. Healthcare Mater. 2020;9(22) doi: 10.1002/adhm.202001175. PubMed DOI
Gaetani R. et al., Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials. 2015;61:339–348. doi: 10.1016/j.biomaterials.2015.05.005. PubMed DOI
Melhem M. R. et al., 3D Printed Stem-Cell-Laden, Microchanneled Hydrogel Patch for the Enhanced Release of Cell-Secreting Factors and Treatment of Myocardial Infarctions. ACS Biomater. Sci. Eng. 2017;3(9):1980–1987. doi: 10.1021/acsbiomaterials.6b00176. PubMed DOI