Self-entrapment of Azotobacter vinelandii cultures by gelation of their exopolysaccharides: A way towards next-generation bioinoculants
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40399005
DOI
10.1016/j.carbpol.2025.123607
PII: S0144-8617(25)00388-1
Knihovny.cz E-zdroje
- Klíčová slova
- Alginate, Azotobacter vinelandii, Bioinoculants, Hydrogels, Polyhydroxyalkanoates,
- MeSH
- algináty * chemie MeSH
- Azotobacter vinelandii * metabolismus chemie MeSH
- bakteriální polysacharidy * chemie MeSH
- fosfáty metabolismus MeSH
- hydrogely * chemie MeSH
- kyseliny indoloctové metabolismus MeSH
- vápník chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- algináty * MeSH
- bakteriální polysacharidy * MeSH
- fosfáty MeSH
- hydrogely * MeSH
- indoleacetic acid MeSH Prohlížeč
- kyseliny indoloctové MeSH
- vápník MeSH
Encapsulation of Plant Growth-Promoting Rhizobacteria (PGPR) in hydrogel carriers is a cutting-edge approach in developing agricultural bioinoculants, aiming to improve soil fertility and crop yield. Hydrogels provide protection against environmental stress, though traditional methods using external gel-forming agents limit economic viability. This study presents a novel approach, demonstrating the entrapment of Azotobacter vinelandii, a promising PGPR, within a gel matrix formed by Ca2+-induced crosslinking of its own exopolysaccharide, alginate. Among the five strains evaluated, A. vinelandii DSM 87, DSM 720, and DSM 13529 showed the highest alginate production, peaking at 4.9 ± 0.6 g/L, 3.5 ± 0.5 g/L, 3.8 ± 0.8 g/L, and enabling stable gel formation by the fourth day of cultivation. These strains also exhibited molecular weights and chemical structures of alginate suitable for effective gelation upon Ca2+addition. Additionally, these strains demonstrated significant plant growth-promoting activities, including indole acetic acid production (up to 10.5 μg/mL), siderophore release, and phosphate solubilization, further validating their potential for sustainable bioinoculant production. Finally, the viability of the A.vinelandii cells released from the gels was experimentally verified. Our findings support a feasible, cost-effective method for bioinoculant production that leverages A. vinelandii's intrinsic capabilities, offering a sustainable alternative to conventional agricultural practices.
Citace poskytuje Crossref.org