Lipopolysaccharide induces retention of E-cadherin in the endoplasmic reticulum and promotes hybrid epithelial-to-mesenchymal transition of human embryonic stem cells-derived expandable lung epithelial cells

. 2025 May 24 ; 74 (1) : 82. [epub] 20250524

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40413286
Odkazy

PubMed 40413286
PubMed Central PMC12103375
DOI 10.1007/s00011-025-02041-4
PII: 10.1007/s00011-025-02041-4
Knihovny.cz E-zdroje

BACKGROUND: Lipopolysaccharide (LPS)-induced inflammation of lung tissues triggers irreversible alterations in the lung parenchyma, leading to fibrosis and pulmonary dysfunction. While the molecular and cellular responses of immune and connective tissue cells in the lungs are well characterized, the specific epithelial response remains unclear due to the lack of representative cell models. Recently, we introduced human embryonic stem cell-derived expandable lung epithelial (ELEP) cells as a novel model for studying lung injury and regeneration. METHODS: ELEPs were derived from the CCTL 14 human embryonic stem cell line through activin A-mediated endoderm specification, followed by further induction toward pulmonary epithelium using FGF2 and EGF. ELEPs exhibit a high proliferation rate and express key structural and molecular markers of alveolar progenitors, such as NKX2-1. The effects of Escherichia coli LPS serotype O55:B5 on the phenotype and molecular signaling of ELEPs were analyzed using viability and migration assays, mRNA and protein levels were determined by qRT-PCR, western blotting, and immunofluorescent microscopy. RESULTS: We demonstrated that purified LPS induces features of a hybrid epithelial-to-mesenchymal transition in pluripotent stem cell-derived ELEPs, triggers the unfolded protein response, and upregulates intracellular β-catenin level through retention of E-cadherin within the endoplasmic reticulum. CONCLUSIONS: Human embryonic stem cell-derived ELEPs provide a biologically relevant, non-cancerous lung cell model to investigate molecular responses to inflammatory stimuli and address epithelial plasticity. This approach offers novel insights into the fine molecular processes underlying lung injury and repair.

Zobrazit více v PubMed

Selman M, King TE, Pardo A. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med. 2001;134(2):136–51. 10.7326/0003-4819-134-2-200101160-00015. PubMed DOI

Shadid A, Rich HE, DeVaughn H, Domozhirov A, Doursout MF, Weng-Mills T, et al. Persistent microbial infections and idiopathic pulmonary fibrosis—an insight into non-typeable Haemophilus influenza pathogenesis. Front Cell Infect Microbiol. 2024;14:1479801. 10.3389/fcimb.2024.1479801. PubMed DOI PMC

Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71:635–700. 10.1146/annurev.biochem.71.110601.135414. PubMed DOI PMC

Beutler B. TLR4 as the mammalian endotoxin sensor. Curr Top Microbiol. 2002;270:109–20. 10.1007/978-3-642-59430-4_7. PubMed DOI

Wei J, Zhang Y, Li H, Wang F, Yao S. Toll-like receptor 4: a potential therapeutic target for multiple human diseases. Biomed Pharmacother = Biomed pharmacother. 2023;166:115338. 10.1016/j.biopha.2023.115338. PubMed DOI

Godbole NM, Chowdhury AA, Chataut N, Awasthi S. Tight junctions, the epithelial barrier, and toll-like receptor-4 during lung injury. Inflammation. 2022;45(6):2142–62. 10.1007/s10753-022-01708-y. PubMed DOI PMC

Janga H, Cassidy L, Wang F, Spengler D, Oestern-Fitschen S, Krause MF, et al. Site-specific and endothelial-mediated dysfunction of the alveolar-capillary barrier in response to lipopolysaccharides. J Cell Mol Med. 2018;22(2):982–98. 10.1111/jcmm.13421. PubMed DOI PMC

Burgoyne RA, Fisher AJ, Borthwick LA. The role of epithelial damage in the pulmonary ımmune response. Cells. 2021. 10.3390/cells10102763. PubMed DOI PMC

Sucre JM, Bock F, Negretti NM, Benjamin JT, Gulleman PM, Dong X, et al. Alveolar repair following LPS-induced injury requires cell-ECM interactions. JCI İnsight. 2023. 10.1172/jci.insight.167211. PubMed DOI PMC

Vaughan AE, Chapman HA. Regenerative activity of the lung after epithelial injury. Biochem Biophys Acta. 2013;1832(7):922–30. 10.1016/j.bbadis.2012.11.020. PubMed DOI

Wu B, Tang L, Kapoor M. Fibroblasts and their responses to chronic injury in pulmonary fibrosis. Semin Arthritis Rheum. 2021;51(1):310–7. 10.1016/j.semarthrit.2020.12.003. PubMed DOI

Williams ED, Gao D, Redfern A, Thompson EW. Controversies around epithelial–mesenchymal plasticity in cancer metastasis. Nat Rev Cancer. 2019;19(12):716–32. 10.1038/s41568-019-0213-x. PubMed DOI PMC

Tripathi S, Levine H, Jolly MK. The physics of cellular decision making during epithelial-mesenchymal transition. Annu Rev Biophys. 2020;6(49):1–18. 10.1146/annurev-biophys-121219-081557. PubMed DOI

Cui J, Zhang C, Lee JE, Bartholdy BA, Yang D, Liu Y, et al. MLL3 loss drives metastasis by promoting a hybrid epithelial–mesenchymal transition state. Nat Cell Biol. 2023;25(1):145–58. 10.1038/s41556-022-01045-0. PubMed DOI PMC

Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T, Boumahdi S, et al. Identification of the tumour transition states occurring during EMT. Nature. 2018;556(7702):463–8. 10.1038/s41586-018-0040-3. PubMed DOI

Parodi M, Centonze G, Murianni F, Orecchia P, Andriani F, Roato I, et al. Hybrid epithelial-mesenchymal status of lung cancer dictates metastatic success through differential interaction with NK cells. J İmmunother Cancer. 2024. 10.1136/jitc-2023-007895. PubMed DOI PMC

Kratochvilova K, Moran L, Padourova S, Stejskal S, Tesarova L, Simara P, et al. The role of the endoplasmic reticulum stress in stemness, pluripotency and development. Eur J Cell Biol. 2016;95(3–5):115–23. 10.1016/j.ejcb.2016.02.002. PubMed DOI

Liao Y, Peng X, Yang Y, Zhou G, Chen L, Yang Y, et al. Integrating cellular experiments, single-cell sequencing, and machine learning to identify endoplasmic reticulum stress biomarkers in idiopathic pulmonary fibrosis. Ann Med. 2024;56(1):2409352. 10.1080/07853890.2024.2409352. PubMed DOI PMC

Burman A, Tanjore H, Blackwell TS. Endoplasmic reticulum stress in pulmonary fibrosis. Matrix Biol. 2018;68–69:355–65. 10.1016/j.matbio.2018.03.015. PubMed DOI PMC

Lu W, Eapen MS, Hardikar A, Chia C, Robertson I, Singhera GK, et al. Epithelial-mesenchymal transition changes in nonsmall cell lung cancer patients with early COPD. ERJ Open Res. 2023;9(6):00581–2023. 10.1183/23120541.00581-2023. PubMed DOI PMC

Kotasova H, Capandova M, Pelkova V, Dumkova J, Koledova Z, Remsik J, et al. Expandable lung epithelium differentiated from human embryonic stem cells. Tissue Eng Regen Med. 2022;19(5):1033–50. 10.1007/s13770-022-00458-0. PubMed DOI PMC

Capandova M, Sedlakova V, Vorac Z, Kotasova H, Dumkova J, Moran L, et al. Using polycaprolactone nanofibers for the proof-of-concept construction of the alveolar-capillary interface. J Biomed Mater Res Part A. 2025;113(1):e37824. 10.1002/jbm.a.37824. PubMed DOI

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5. 10.1038/nmeth.2089. PubMed DOI PMC

Pachitariu M, Stringer C. Cellpose 2.0: how to train your own model. Nat Methods. 2022;19:1634–41. 10.1038/s41592-022-01663-4. PubMed DOI PMC

Laskin DL, Malaviya R, Laskin JD. Role of macrophages in acute lung injury and chronic fibrosis induced by pulmonary toxicants. Toxicol Sci. 2019;168(2):287–301. 10.1093/toxsci/kfy309. PubMed DOI PMC

Noulin N, Quesniaux VFJ, Schnyder-Candrian S, Schnyder B, Maillet I, Robert T, et al. Both hemopoietic and resident cells are required for MyD88-dependent pulmonary inflammatory response to inhaled endotoxin. J Immunol. 2005;175(10):6861–9. 10.4049/jimmunol.175.10.6861. PubMed DOI

Andonegui G, Bonder CS, Green F, Mullaly SC, Zbytnuik L, Raharjo E, et al. Endothelium-derived Toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs (vol. 111, pg. 1011, 2003). J Clin Invest. 2003;112(8):1264–1264. 10.1172/Jci200316510c. PubMed DOI PMC

Guillot L, Medjane S, Le-Barillec K, Balloy V, Danel C, Chignard M, et al. Response of human pulmonary epithelial cells to lipopolysaccharide involves toll-like receptor 4 (TLR4)-dependent signaling pathways—evidence for an intracellular compartmentalization of TLR4. J Biol Chem. 2004;279(4):2712–8. 10.1074/jbc.M305790200. PubMed DOI

Perros F, Lambrecht BN, Hammad H. TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways. Respir Res. 2011;24:12. 10.1186/1465-9921-12-125. PubMed DOI PMC

Ding Z, Wu X, Wang Y, Ji S, Zhang W, Kang J, et al. Melatonin prevents LPS-induced epithelial-mesenchymal transition in human alveolar epithelial cells via the GSK-3beta/Nrf2 pathway. Biomed Pharmacother = Biomed pharmacother. 2020;132:110827. 10.1016/j.biopha.2020.110827. PubMed DOI

Ito T, Kakuuchi M, Maruyama I. Endotheliopathy in septic conditions: mechanistic insight into intravascular coagulation. Crit Care. 2021. 10.1186/S13054-021-03524-6. PubMed DOI PMC

Liu CH, Chen Z, Chen K, Liao FT, Chung CE, Liu X, et al. Lipopolysaccharide-mediated chronic inflammation promotes tobacco carcinogen-induced lung cancer and determines the efficacy of immunotherapy. Can Res. 2021;81(1):144–57. 10.1158/0008-5472.CAN-20-1994. PubMed DOI PMC

He W, Liu Q, Wang L, Chen W, Li N, Cao X. TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol. 2007;44(11):2850–9. 10.1016/j.molimm.2007.01.022. PubMed DOI

El Rayes T, Catena R, Lee S, Stawowczyk M, Joshi N, Fischbach C, et al. Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1. Proc Natl Acad Sci USA. 2015;112(52):16000–5. 10.1073/pnas.1507294112. PubMed DOI PMC

Zhang M, Sun Y, Zhang Y, Wang Z, Wang ZY, Ming XY, et al. Lipopolysaccharide and lipoteichoic acid regulate the PI3K/AKT pathway through osteopontin/integrin beta3 to promote malignant progression of non-small cell lung cancer. J Thor Dis. 2023;15(1):168–85. 10.21037/jtd-22-1825. PubMed DOI PMC

Wu S, Ye H, Xue T, Wang J. Mechanism of lipopolysaccharide-mediated induction of epithelial-mesenchymal transition of alveolar type II epithelial cells in absence of other inflammatory cells. Eur J Inflamm. 2021;19:20587392211014428. 10.1177/20587392211014427. DOI

Wang S, Xu F, Liu H, Shen Y, Zhang J, Hu L, et al. Suppressing endoplasmic reticulum stress alleviates LPS-induced acute lung injury via inhibiting inflammation and ferroptosis. Inflammation. 2024;47(4):1067–82. 10.1007/s10753-023-01962-8. PubMed DOI

Guo S, Al-Sadi R, Said HM, Ma TY. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am J Pathol. 2013;182(2):375–87. 10.1016/j.ajpath.2012.10.014. PubMed DOI PMC

Kim M, Lee SW, Kim J, Shin Y, Chang F, Kim JM, et al. LPS-induced epithelial barrier disruption via hyperactivation of CACC and ENaC. Am J Physiol Cell Physiol. 2021;320(3):C448–61. 10.1152/ajpcell.00295.2020. PubMed DOI

Li Y, Xu M, Zhai H, Yang C, Yang J, Ke Z, et al. Lipopolysaccharide (LPS) extracted from PubMed DOI PMC

Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519–29. 10.1038/nrm2199. PubMed DOI

Moran L, Pivetta T, Masuri S, Vasickova K, Walter F, Prehn J, et al. Mixed copper(ii)-phenanthroline complexes induce cell death of ovarian cancer cells by evoking the unfolded protein response. Metallomics. 2019;11(9):1481–9. 10.1039/c9mt00055k. PubMed DOI

Vasickova K, Moran L, Gurin D, Vanhara P. Alleviation of endoplasmic reticulum stress by tauroursodeoxycholic acid delays senescence of mouse ovarian surface epithelium. Cell Tissue Res. 2018;374(3):643–52. 10.1007/s00441-018-2888-9. PubMed DOI

Sinha D, Saha P, Samanta A, Bishayee A. Emerging concepts of hybrid epithelial-to-mesenchymal transition in cancer progression. Biomolecules. 2020. 10.3390/biom10111561. PubMed DOI PMC

Lobb RJ, Visan KS, Wu LY, Norris EL, Hastie ML, Everitt S, et al. An epithelial-to-mesenchymal transition induced extracellular vesicle prognostic signature in non-small cell lung cancer. Commun Biol. 2023;6(1):68. 10.1038/s42003-022-04350-4. PubMed DOI PMC

Zhang Z, Westover D, Tang Z, Liu Y, Sun J, Sun Y, et al. Wnt/beta-catenin signaling in the development and therapeutic resistance of non-small cell lung cancer. J Transl Med. 2024;22(1):565. 10.1186/s12967-024-05380-8. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...