Lipopolysaccharide induces retention of E-cadherin in the endoplasmic reticulum and promotes hybrid epithelial-to-mesenchymal transition of human embryonic stem cells-derived expandable lung epithelial cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40413286
PubMed Central
PMC12103375
DOI
10.1007/s00011-025-02041-4
PII: 10.1007/s00011-025-02041-4
Knihovny.cz E-zdroje
- Klíčová slova
- Epithelial-to-mesenchymal transition, Expandable lung epithelium, Lipopolysaccharide, Unfolded protein response,
- MeSH
- buněčné linie MeSH
- CD antigeny metabolismus MeSH
- endoplazmatické retikulum * metabolismus účinky léků MeSH
- epitelo-mezenchymální tranzice * účinky léků MeSH
- epitelové buňky * účinky léků metabolismus cytologie MeSH
- kadheriny * metabolismus MeSH
- lidé MeSH
- lidské embryonální kmenové buňky * cytologie MeSH
- lipopolysacharidy * farmakologie MeSH
- plíce * cytologie MeSH
- tyreoidální jaderný faktor 1 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CD antigeny MeSH
- CDH1 protein, human MeSH Prohlížeč
- kadheriny * MeSH
- lipopolysacharidy * MeSH
- NKX2-1 protein, human MeSH Prohlížeč
- tyreoidální jaderný faktor 1 MeSH
BACKGROUND: Lipopolysaccharide (LPS)-induced inflammation of lung tissues triggers irreversible alterations in the lung parenchyma, leading to fibrosis and pulmonary dysfunction. While the molecular and cellular responses of immune and connective tissue cells in the lungs are well characterized, the specific epithelial response remains unclear due to the lack of representative cell models. Recently, we introduced human embryonic stem cell-derived expandable lung epithelial (ELEP) cells as a novel model for studying lung injury and regeneration. METHODS: ELEPs were derived from the CCTL 14 human embryonic stem cell line through activin A-mediated endoderm specification, followed by further induction toward pulmonary epithelium using FGF2 and EGF. ELEPs exhibit a high proliferation rate and express key structural and molecular markers of alveolar progenitors, such as NKX2-1. The effects of Escherichia coli LPS serotype O55:B5 on the phenotype and molecular signaling of ELEPs were analyzed using viability and migration assays, mRNA and protein levels were determined by qRT-PCR, western blotting, and immunofluorescent microscopy. RESULTS: We demonstrated that purified LPS induces features of a hybrid epithelial-to-mesenchymal transition in pluripotent stem cell-derived ELEPs, triggers the unfolded protein response, and upregulates intracellular β-catenin level through retention of E-cadherin within the endoplasmic reticulum. CONCLUSIONS: Human embryonic stem cell-derived ELEPs provide a biologically relevant, non-cancerous lung cell model to investigate molecular responses to inflammatory stimuli and address epithelial plasticity. This approach offers novel insights into the fine molecular processes underlying lung injury and repair.
Zobrazit více v PubMed
Selman M, King TE, Pardo A. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med. 2001;134(2):136–51. 10.7326/0003-4819-134-2-200101160-00015. PubMed
Shadid A, Rich HE, DeVaughn H, Domozhirov A, Doursout MF, Weng-Mills T, et al. Persistent microbial infections and idiopathic pulmonary fibrosis—an insight into non-typeable Haemophilus influenza pathogenesis. Front Cell Infect Microbiol. 2024;14:1479801. 10.3389/fcimb.2024.1479801. PubMed PMC
Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71:635–700. 10.1146/annurev.biochem.71.110601.135414. PubMed PMC
Beutler B. TLR4 as the mammalian endotoxin sensor. Curr Top Microbiol. 2002;270:109–20. 10.1007/978-3-642-59430-4_7. PubMed
Wei J, Zhang Y, Li H, Wang F, Yao S. Toll-like receptor 4: a potential therapeutic target for multiple human diseases. Biomed Pharmacother = Biomed pharmacother. 2023;166:115338. 10.1016/j.biopha.2023.115338. PubMed
Godbole NM, Chowdhury AA, Chataut N, Awasthi S. Tight junctions, the epithelial barrier, and toll-like receptor-4 during lung injury. Inflammation. 2022;45(6):2142–62. 10.1007/s10753-022-01708-y. PubMed PMC
Janga H, Cassidy L, Wang F, Spengler D, Oestern-Fitschen S, Krause MF, et al. Site-specific and endothelial-mediated dysfunction of the alveolar-capillary barrier in response to lipopolysaccharides. J Cell Mol Med. 2018;22(2):982–98. 10.1111/jcmm.13421. PubMed PMC
Burgoyne RA, Fisher AJ, Borthwick LA. The role of epithelial damage in the pulmonary ımmune response. Cells. 2021. 10.3390/cells10102763. PubMed PMC
Sucre JM, Bock F, Negretti NM, Benjamin JT, Gulleman PM, Dong X, et al. Alveolar repair following LPS-induced injury requires cell-ECM interactions. JCI İnsight. 2023. 10.1172/jci.insight.167211. PubMed PMC
Vaughan AE, Chapman HA. Regenerative activity of the lung after epithelial injury. Biochem Biophys Acta. 2013;1832(7):922–30. 10.1016/j.bbadis.2012.11.020. PubMed
Wu B, Tang L, Kapoor M. Fibroblasts and their responses to chronic injury in pulmonary fibrosis. Semin Arthritis Rheum. 2021;51(1):310–7. 10.1016/j.semarthrit.2020.12.003. PubMed
Williams ED, Gao D, Redfern A, Thompson EW. Controversies around epithelial–mesenchymal plasticity in cancer metastasis. Nat Rev Cancer. 2019;19(12):716–32. 10.1038/s41568-019-0213-x. PubMed PMC
Tripathi S, Levine H, Jolly MK. The physics of cellular decision making during epithelial-mesenchymal transition. Annu Rev Biophys. 2020;6(49):1–18. 10.1146/annurev-biophys-121219-081557. PubMed
Cui J, Zhang C, Lee JE, Bartholdy BA, Yang D, Liu Y, et al. MLL3 loss drives metastasis by promoting a hybrid epithelial–mesenchymal transition state. Nat Cell Biol. 2023;25(1):145–58. 10.1038/s41556-022-01045-0. PubMed PMC
Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T, Boumahdi S, et al. Identification of the tumour transition states occurring during EMT. Nature. 2018;556(7702):463–8. 10.1038/s41586-018-0040-3. PubMed
Parodi M, Centonze G, Murianni F, Orecchia P, Andriani F, Roato I, et al. Hybrid epithelial-mesenchymal status of lung cancer dictates metastatic success through differential interaction with NK cells. J İmmunother Cancer. 2024. 10.1136/jitc-2023-007895. PubMed PMC
Kratochvilova K, Moran L, Padourova S, Stejskal S, Tesarova L, Simara P, et al. The role of the endoplasmic reticulum stress in stemness, pluripotency and development. Eur J Cell Biol. 2016;95(3–5):115–23. 10.1016/j.ejcb.2016.02.002. PubMed
Liao Y, Peng X, Yang Y, Zhou G, Chen L, Yang Y, et al. Integrating cellular experiments, single-cell sequencing, and machine learning to identify endoplasmic reticulum stress biomarkers in idiopathic pulmonary fibrosis. Ann Med. 2024;56(1):2409352. 10.1080/07853890.2024.2409352. PubMed PMC
Burman A, Tanjore H, Blackwell TS. Endoplasmic reticulum stress in pulmonary fibrosis. Matrix Biol. 2018;68–69:355–65. 10.1016/j.matbio.2018.03.015. PubMed PMC
Lu W, Eapen MS, Hardikar A, Chia C, Robertson I, Singhera GK, et al. Epithelial-mesenchymal transition changes in nonsmall cell lung cancer patients with early COPD. ERJ Open Res. 2023;9(6):00581–2023. 10.1183/23120541.00581-2023. PubMed PMC
Kotasova H, Capandova M, Pelkova V, Dumkova J, Koledova Z, Remsik J, et al. Expandable lung epithelium differentiated from human embryonic stem cells. Tissue Eng Regen Med. 2022;19(5):1033–50. 10.1007/s13770-022-00458-0. PubMed PMC
Capandova M, Sedlakova V, Vorac Z, Kotasova H, Dumkova J, Moran L, et al. Using polycaprolactone nanofibers for the proof-of-concept construction of the alveolar-capillary interface. J Biomed Mater Res Part A. 2025;113(1):e37824. 10.1002/jbm.a.37824. PubMed
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5. 10.1038/nmeth.2089. PubMed PMC
Pachitariu M, Stringer C. Cellpose 2.0: how to train your own model. Nat Methods. 2022;19:1634–41. 10.1038/s41592-022-01663-4. PubMed PMC
Laskin DL, Malaviya R, Laskin JD. Role of macrophages in acute lung injury and chronic fibrosis induced by pulmonary toxicants. Toxicol Sci. 2019;168(2):287–301. 10.1093/toxsci/kfy309. PubMed PMC
Noulin N, Quesniaux VFJ, Schnyder-Candrian S, Schnyder B, Maillet I, Robert T, et al. Both hemopoietic and resident cells are required for MyD88-dependent pulmonary inflammatory response to inhaled endotoxin. J Immunol. 2005;175(10):6861–9. 10.4049/jimmunol.175.10.6861. PubMed
Andonegui G, Bonder CS, Green F, Mullaly SC, Zbytnuik L, Raharjo E, et al. Endothelium-derived Toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs (vol. 111, pg. 1011, 2003). J Clin Invest. 2003;112(8):1264–1264. 10.1172/Jci200316510c. PubMed PMC
Guillot L, Medjane S, Le-Barillec K, Balloy V, Danel C, Chignard M, et al. Response of human pulmonary epithelial cells to lipopolysaccharide involves toll-like receptor 4 (TLR4)-dependent signaling pathways—evidence for an intracellular compartmentalization of TLR4. J Biol Chem. 2004;279(4):2712–8. 10.1074/jbc.M305790200. PubMed
Perros F, Lambrecht BN, Hammad H. TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways. Respir Res. 2011;24:12. 10.1186/1465-9921-12-125. PubMed PMC
Ding Z, Wu X, Wang Y, Ji S, Zhang W, Kang J, et al. Melatonin prevents LPS-induced epithelial-mesenchymal transition in human alveolar epithelial cells via the GSK-3beta/Nrf2 pathway. Biomed Pharmacother = Biomed pharmacother. 2020;132:110827. 10.1016/j.biopha.2020.110827. PubMed
Ito T, Kakuuchi M, Maruyama I. Endotheliopathy in septic conditions: mechanistic insight into intravascular coagulation. Crit Care. 2021. 10.1186/S13054-021-03524-6. PubMed PMC
Liu CH, Chen Z, Chen K, Liao FT, Chung CE, Liu X, et al. Lipopolysaccharide-mediated chronic inflammation promotes tobacco carcinogen-induced lung cancer and determines the efficacy of immunotherapy. Can Res. 2021;81(1):144–57. 10.1158/0008-5472.CAN-20-1994. PubMed PMC
He W, Liu Q, Wang L, Chen W, Li N, Cao X. TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol. 2007;44(11):2850–9. 10.1016/j.molimm.2007.01.022. PubMed
El Rayes T, Catena R, Lee S, Stawowczyk M, Joshi N, Fischbach C, et al. Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1. Proc Natl Acad Sci USA. 2015;112(52):16000–5. 10.1073/pnas.1507294112. PubMed PMC
Zhang M, Sun Y, Zhang Y, Wang Z, Wang ZY, Ming XY, et al. Lipopolysaccharide and lipoteichoic acid regulate the PI3K/AKT pathway through osteopontin/integrin beta3 to promote malignant progression of non-small cell lung cancer. J Thor Dis. 2023;15(1):168–85. 10.21037/jtd-22-1825. PubMed PMC
Wu S, Ye H, Xue T, Wang J. Mechanism of lipopolysaccharide-mediated induction of epithelial-mesenchymal transition of alveolar type II epithelial cells in absence of other inflammatory cells. Eur J Inflamm. 2021;19:20587392211014428. 10.1177/20587392211014427.
Wang S, Xu F, Liu H, Shen Y, Zhang J, Hu L, et al. Suppressing endoplasmic reticulum stress alleviates LPS-induced acute lung injury via inhibiting inflammation and ferroptosis. Inflammation. 2024;47(4):1067–82. 10.1007/s10753-023-01962-8. PubMed
Guo S, Al-Sadi R, Said HM, Ma TY. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am J Pathol. 2013;182(2):375–87. 10.1016/j.ajpath.2012.10.014. PubMed PMC
Kim M, Lee SW, Kim J, Shin Y, Chang F, Kim JM, et al. LPS-induced epithelial barrier disruption via hyperactivation of CACC and ENaC. Am J Physiol Cell Physiol. 2021;320(3):C448–61. 10.1152/ajpcell.00295.2020. PubMed
Li Y, Xu M, Zhai H, Yang C, Yang J, Ke Z, et al. Lipopolysaccharide (LPS) extracted from Bacteroides vulgatus effectively prevents LPS extracted from Escherichia coli from inducing epithelial-mesenchymal transition. Mol Med Rep. 2023. 10.3892/mmr.2023.13082. PubMed PMC
Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519–29. 10.1038/nrm2199. PubMed
Moran L, Pivetta T, Masuri S, Vasickova K, Walter F, Prehn J, et al. Mixed copper(ii)-phenanthroline complexes induce cell death of ovarian cancer cells by evoking the unfolded protein response. Metallomics. 2019;11(9):1481–9. 10.1039/c9mt00055k. PubMed
Vasickova K, Moran L, Gurin D, Vanhara P. Alleviation of endoplasmic reticulum stress by tauroursodeoxycholic acid delays senescence of mouse ovarian surface epithelium. Cell Tissue Res. 2018;374(3):643–52. 10.1007/s00441-018-2888-9. PubMed
Sinha D, Saha P, Samanta A, Bishayee A. Emerging concepts of hybrid epithelial-to-mesenchymal transition in cancer progression. Biomolecules. 2020. 10.3390/biom10111561. PubMed PMC
Lobb RJ, Visan KS, Wu LY, Norris EL, Hastie ML, Everitt S, et al. An epithelial-to-mesenchymal transition induced extracellular vesicle prognostic signature in non-small cell lung cancer. Commun Biol. 2023;6(1):68. 10.1038/s42003-022-04350-4. PubMed PMC
Zhang Z, Westover D, Tang Z, Liu Y, Sun J, Sun Y, et al. Wnt/beta-catenin signaling in the development and therapeutic resistance of non-small cell lung cancer. J Transl Med. 2024;22(1):565. 10.1186/s12967-024-05380-8. PubMed PMC