Enhanced UV-C resistance through light-activated zinc-cysteine complex formation

. 2025 Jun ; 24 (6) : 991-1002. [epub] 20250525

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40413694
Odkazy

PubMed 40413694
DOI 10.1007/s43630-025-00740-9
PII: 10.1007/s43630-025-00740-9
Knihovny.cz E-zdroje

Ultraviolet (UV) radiation is a significant environmental stressor that affects the growth, physiology, and biochemical integrity of various organisms. This study investigates the potential protective effects of a zinc-cysteine (Zn-Cys) complex against UV-C radiation, with a focus on its impact on selected microalgae (Coccomyxa peltigerae and Parachlorella kessleri) and maize (Zea mays L.). We demonstrate that exposure of the Zn-Cys complex to UV-C (254 nm) results in the formation of fluorescent photoproducts, which exhibit UV-protective properties. The study reveals that Zn-Cys significantly mitigates UV-induced stress. In both microalgae species, the Zn-Cys complex enhanced growth even under UV exposure, with the 20% concentration showing the most robust protective effects. Further hyperspectral imaging confirmed the protective mechanism of Zn-Cys by monitoring changes in light reflectance in Parachlorella kessleri, indicating reduced photosynthetic efficiency and structural alterations induced by UV exposure, while Zn-Cys significantly mitigated these effects. In addition, in maize plants (Zea mays L.), Zn-Cys treatment preserved chlorophyll content and reduced polyphenol accumulation, indicating reduced oxidative stress. These findings highlight the potential of the Zn-Cys complex as a sustainable and cost-effective strategy for UV protection in both terrestrial and extraterrestrial agriculture, advancing our understanding of plant adaptation to extreme environments.

Zobrazit více v PubMed

Li, J. G., Zhang, D., Guo, Z. Y., Chen, Z. H., Jiang, X., Larson, J. M., et al. (2024). Light-driven C-H activation mediated by 2D transition metal dichalcogenides. Nature Communications. https://doi.org/10.1038/s41467-024-49783-z . PubMed PMID: WOS:001261751100017. PubMed DOI PMC

Li, Y. L., Gao, Y. X., Deng, Z. J., Cao, Y. T., Wang, T., Wang, Y., et al. (2023). Visible-light-driven reversible shuttle vicinal dihalogenation using lead halide perovskite quantum dot catalysts. Nature Communications. https://doi.org/10.1038/s41467-023-40359-x . PubMed PMID: WOS:001040308300001. PubMed DOI PMC

Czyz, M. L., Horngren, T. H., Kondopoulos, A. J., Franov, L. J., Forni, J. A., Pham, L., et al. (2024). Photocatalytic generation of alkyl carbanions from aryl alkenes. Nature Catalysis. https://doi.org/10.1038/s41929-024-01237-x . PubMedPMID:WOS:001339321900001. DOI

Hoyle, C. E., & Bowman, C. N. (2010). Thiol-ene click chemistry. Angew Chem-Int Edit, 49(9), 1540–1573. https://doi.org/10.1002/anie.200903924 . PubMedPMID:WOS:000275234800004. DOI

Nejdl, L., Petera, L., Sponer, J., Zemánková, K., Pavelicová, K., Knízek, A., et al. (2022). Quantum dots in peroxidase-like chemistry and formamide-based hot spring synthesis of nucleobases. Astrobiology, 22(5), 541–551. https://doi.org/10.1089/ast.2021.0099 . PubMedPMID:WOS:000776448100001. PubMed DOI

Nejdl, L., Zemankova, K., Havlikova, M., Buresova, M., Hynek, D., Xhaxhiu, K., et al. (2020). UV-induced nanoparticles-formation, properties and their potential role in origin of life. Nanomaterials. https://doi.org/10.3390/nano10081529 . PMID: WOS:000564810900001. PubMed DOI PMC

Fialova, T., Vaculovicova, M., Stefanik, M., Mravec, F., Buresova, M., Vodova, M., et al. (2024). Light-triggered reactions in a new “light” of nanoparticles engineering. Journal of Photochemistry and Photobiology a-Chemistry. https://doi.org/10.1016/j.jphotochem.2024.115667 . PubMed PMID: WOS:001232262400001. DOI

Vanhaelewyn, L., Van Der Straeten, D., De Coninck, B., & Vandenbussche, F. (2020). Ultraviolet radiation from a plant perspective: The Plant-microorganism context. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.597642 . PMID: WOS:000603030600001. PubMed DOI PMC

Llorens, L., Neugart, S., Vandenbussche, F., & Castagna, A. (2020). Editorial: ultraviolet radiation: friend or foe for plants? Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.00541 . PubMed PMID: WOS:000535555000001. PubMed DOI PMC

Keaney, D., Lucey, B., & Finn, K. (2024). A Review of environmental challenges facing martian colonisation and the potential for terrestrial microbes to transform a toxic extraterrestrial environment. Challenges., 15(1), 5. https://doi.org/10.3390/challe15010005 DOI

Pace, N. J., & Weerapana, E. (2014). Zinc-binding cysteines: diverse functions and structural motifs. Biomolecules, 4(2), 419–434. https://doi.org/10.3390/biom4020419 . PubMedPMID:WOS:000215154100004. PubMed DOI PMC

Dmytryk, A., & Chojnacka, K. (2018). Algae as fertilizers, biostimulants, and regulators of plant growth. In K. Chojnacka, P. P. Wieczorek, G. Schroeder, & I. Michalak (Eds.), Algae biomass: characteristics and applications: Towards algae-based products (pp. 115–122). Springer International Publishing. DOI

Ammar, E. E., Aioub, A. A. A., Elesawy, A. E., Karkour, A. M., Mouhamed, M. S., Amer, A. A., et al. (2022). Algae as bio-fertilizers: Between current situation and future prospective. Saudi Journal of Biological Sciences, 29(5), 3083–3096. https://doi.org/10.1016/j.sjbs.2022.03.020 PubMed DOI PMC

Roque, J., Brito, Â., Rocha, M., Pissarra, J., Nunes, T., Bessa, M., et al. (2023). Isolation and characterization of soil cyanobacteria and microalgae and evaluation of their potential as plant biostimulants. Plant and Soil, 493(1), 115–136. https://doi.org/10.1007/s11104-023-06217-x DOI

Baweja, P., Kumar, S., & Kumar, G. (2019). Organic Fertilizer from Algae: A Novel Approach Towards Sustainable Agriculture. In B. Giri, R. Prasad, Q.-S. Wu, & A. Varma (Eds.), Biofertilizers for sustainable agriculture and environment (pp. 353–370). Springer International Publishing. DOI

Udayan, A., Pandey, A. K., Sharma, P., Sreekumar, N., & Kumar, S. (2021). Emerging industrial applications of microalgae: Challenges and future perspectives. Systems Microbiology and Biomanufacturing., 1(4), 411–431. https://doi.org/10.1007/s43393-021-00038-8 DOI

Blaise, C., Férard, J.-F., & Vasseur, P. (2018). Microplate toxicity tests with microalgae: A review. Microscale testing in aquatic toxicology (pp. 269–88). OAPEN Library. DOI

Nyholm, N., & Källqvist, T. (1989). Methods for growth inhibition toxicity tests with freshwater algae. Environmental Toxicology and Chemistry, 8(8), 689–703. https://doi.org/10.1002/etc.5620080807 DOI

Gardia-Parège, C., Kim Tiam, S., Budzinski, H., Mazzella, N., Devier, M.-H., & Morin, S. (2022). Pesticide toxicity towards microalgae increases with environmental mixture complexity. Environmental Science and Pollution Research, 29(20), 29368–29381. https://doi.org/10.1007/s11356-021-17811-w PubMed DOI

Elpiniki, S., Alexandra, S., Georgios, C., & Nicholaos, D. (2019). Maize as energy crop. In H. Akbar (Ed.), Maize (p. 1). IntechOpen.

Trout, T. J., & DeJonge, K. C. (2017). Water productivity of maize in the US high plains. Irrigation Science, 35(3), 251–266. https://doi.org/10.1007/s00271-017-0540-1 DOI

Liu, X., Zhao, J., Feng, J., Lv, J., Liu, Q., Nan, F., et al. (2022). A Parachlorella kessleri (Trebouxiophyceae, Chlorophyta) strain tolerant to high concentration of calcium chloride. Journal of Eukaryotic Microbiology., 69(1), Article e12872. https://doi.org/10.1111/jeu.12872 PubMed DOI

Rathod, J. P., Prakash, G., Vira, C., & Lali, A. M. (2016). Trehalose phosphate synthase overexpression in Parachlorella kessleri improves growth and photosynthetic performance under high light conditions. Preparative Biochemistry & Biotechnology., 46(8), 803–809. https://doi.org/10.1080/10826068.2015.1135465 DOI

Nguyen, C., Sagan, V., Maimaitiyiming, M., Maimaitijiang, M., Bhadra, S., & Kwasniewski, M. T. (2021). Early detection of plant viral disease using hyperspectral imaging and deep learning. Sensors., 21(3), 742. PubMed DOI PMC

Lichtenthaler, H., & Wellburn, A. R. (1985). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, 11, 591–592. DOI

Koşar, M., Dorman, H. J. D., & Hiltunen, R. (2005). Effect of an acid treatment on the phytochemical and antioxidant charateristics of extracts from selected Lamiaceae species. Food Chemistry, 91, 525–533. https://doi.org/10.1016/j.foodchem.2004.06.029 DOI

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1006/abio.1976.9999 . PubMed PMID: 942051. PubMed DOI

Foley, S., & Enescu, M. (2007). A Raman spectroscopy and theoretical study of zinc-cysteine complexation. Vibrational Spectroscopy., 44(2), 256–265. https://doi.org/10.1016/j.vibspec.2006.12.004 . PubMedPMID:WOS:000248604400008. DOI

Brandt, E. G., Hellgren, M., Brinck, T., Bergman, T., & Edholm, O. (2009). Molecular dynamics study of zinc binding to cysteines in a peptide mimic of the alcohol dehydrogenase structural zinc site. Physical Chemistry Chemical Physics, 11(6), 975–983. https://doi.org/10.1039/b815482a.PubMedPMID:WOS:000262850600011 PubMed DOI

Nejdl, L., Zitka, J., Mravec, F., Milosavljevic, V., Zitka, O., Kopel, P., et al. (2017). Real-time monitoring of the UV-induced formation of quantum dots on a milliliter, microliter, and nanoliter scale. Microchimica Acta, 184(5), 1489–1497. https://doi.org/10.1007/s00604-017-2149-8 . PubMedPMID:WOS:000399900600025. DOI

Croce, A. C. (2021). Light and Autofluorescence Multitasking Features in Living Organisms. Photochem, 1(2), 67–124. https://doi.org/10.3390/photochem1020007 . PubMedPMID:WOS:001268588500001. DOI

Nicolaï, M. P. J., Bok, M. J., Abalos, J., D’Alba, L., Shawkey, M. D., & Goldenberg, J. (2024). The function and consequences of fluorescence in tetrapods. Proceedings of the National Academy of Sciences., 121(24), Article e2318189121. https://doi.org/10.1073/pnas.2318189121 DOI

Suma, H. R., Prakash, S., & Eswarappa, S. M. (2020). Naturally occurring fluorescence protects the eutardigrade Paramacrobiotus sp. From ultraviolet radiation: UV tolerance by fluorescence. Biology Letters. https://doi.org/10.1098/rsbl.2020.0391 PubMed DOI PMC

Aravantinou, A. F., Tsarpali, V., Dailianis, S., & Manariotis, I. D. (2015). Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae. Ecotoxicology and Environmental Safety, 114, 109–116. https://doi.org/10.1016/j.ecoenv.2015.01.016 PubMed DOI

Samei, M., Sarrafzadeh, M.-H., & Faramarzi, M. A. (2019). The impact of morphology and size of zinc oxide nanoparticles on its toxicity to the freshwater microalga, Raphidocelis subcapitata. Environmental Science and Pollution Research., 26(3), 2409–2420. https://doi.org/10.1007/s11356-018-3787-z PubMed DOI

Vingiani, G. M., Gasulla, F., Barón-Sola, Á., Sobrino-Plata, J., Henández, L. E., & Casano, L. M. (2021). Physiological and molecular alterations of phycobionts of genus trebouxia and coccomyxa exposed to cadmium. Microbial Ecology, 82(2), 334–343. https://doi.org/10.1007/s00248-021-01685-z PubMed DOI

Huang, Z., Zeng, Z., Chen, A., Zeng, G., Xiao, R., Xu, P., et al. (2018). Differential behaviors of silver nanoparticles and silver ions towards cysteine: Bioremediation and toxicity to Phanerochaete chrysosporium. Chemosphere, 203, 199–208. https://doi.org/10.1016/j.chemosphere.2018.03.144 PubMed DOI

Mera, R., Torres, E., & Abalde, J. (2014). Sulphate, more than a nutrient, protects the microalga Chlamydomonas moewusii from cadmium toxicity. Aquatic Toxicology., 148, 92–103. https://doi.org/10.1016/j.aquatox.2013.12.034 PubMed DOI

Li, X., Yang, C., Zeng, G., Wu, S., Lin, Y., Zhou, Q., et al. (2020). Nutrient removal from swine wastewater with growing microalgae at various zinc concentrations. Algal Research, 46, Article 101804. https://doi.org/10.1016/j.algal.2020.101804 DOI

Winterbourn, C. C., & Hampton, M. B. (2008). Thiol chemistry and specificity in redox signaling. Free Radical Biology and Medicine, 45(5), 549–61. https://doi.org/10.1016/j.freeradbiomed.2008.05.004 . Epub 20080516 PubMed PMID: 18544350. PubMed DOI

Schöneich, C. (2008). Mechanisms of protein damage induced by cysteine thiyl radical formation. Chemical Research in Toxicology, 21(6), 1175–9. https://doi.org/10.1021/tx800005u . Epub 20080325 PubMed PMID: 18361510. PubMed DOI

Pääkkönen, S., Pölönen, I., Raita-Hakola, A.-M., Carneiro, M., Cardoso, H., Mauricio, D., et al. (2024). Non-invasive monitoring of microalgae cultivations using hyperspectral imager. Journal of Applied Phycology., 36(4), 1653–1665. https://doi.org/10.1007/s10811-024-03256-4 DOI

Deng, T., DePaoli, D., Bégin, L., Jia, N., Torres de Oliveira, L., Côté, D. C., et al. (2021). Versatile microfluidic platform for automated live-cell hyperspectral imaging applied to cold climate cyanobacterial biofilms. Analytical Chemistry, 93(25), 8764–73. https://doi.org/10.1021/acs.analchem.0c05446 DOI

Pokrzywinski KL, Morgan C, Bourne SG, Reif MK, Matheson KB, Hammond SL. (2021). A novel laboratory method for the detection and identification of cyanobacteria using hyperspectral imaging: hyperspectral imaging for cyanobacteria detection

Salmi, P., Eskelinen, M. A., Leppänen, M. T., & Pölönen, I. (2021). Rapid quantification of microalgae growth with hyperspectral camera and vegetation indices. Plants., 10(2), 341. PubMed DOI PMC

Williams, D., Karley, A., Britten, A., McCallum, S., & Graham, J. (2023). Raspberry plant stress detection using hyperspectral imaging. Plant Direct, 7(3), Article e490. https://doi.org/10.1002/pld3.490 PubMed DOI PMC

Rajput, V. D., Minkina, T., Fedorenko, A., Chernikova, N., Hassan, T., Mandzhieva, S., et al. (2021). Effects of zinc oxide nanoparticles on physiological and anatomical indices in spring barley tissues. Nanomaterials, 11(7), 1722. PubMed DOI PMC

Cherif, J., Derbel, N., Nakkach, M., Hv, B., Jemal, F., & Lakhdar, Z. B. (2010). Analysis of in vivo chlorophyll fluorescence spectra to monitor physiological state of tomato plants growing under zinc stress. Journal of Photochemistry and Photobiology B: Biology, 101(3), 332–9. https://doi.org/10.1016/j.jphotobiol.2010.08.005 PubMed DOI

Chen, Y., Huang, L., Liang, X., Dai, P., Zhang, Y., Li, B., et al. (2020). Enhancement of polyphenolic metabolism as an adaptive response of lettuce (Lactuca sativa) roots to aluminum stress. Environmental Pollution., 261, Article 114230. https://doi.org/10.1016/j.envpol.2020.114230 PubMed DOI

Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(13), 2452. PubMed DOI PMC

Höll, J., Lindner, S., Walter, H., Joshi, D., Poschet, G., Pfleger, S., et al. (2019). Impact of pulsed UV-B stress exposure on plant performance: How recovery periods stimulate secondary metabolism while reducing adaptive growth attenuation. Plant, Cell & Environment., 42(3), 801–814. https://doi.org/10.1111/pce.13409 DOI

Rodríguez-Calzada, T., Qian, M., Strid, Å., Neugart, S., Schreiner, M., Torres-Pacheco, I., et al. (2019). Effect of UV-B radiation on morphology, phenolic compound production, gene expression, and subsequent drought stress responses in chili pepper (Capsicum annuum L.). Plant Physiology and Biochemistry., 134, 94–102. https://doi.org/10.1016/j.plaphy.2018.06.025 PubMed DOI

Przymusiński, R., Rucińska, R., & Gwóźdź, E. A. (2004). Increased accumulation of pathogenesis-related proteins in response of lupine roots to various abiotic stresses. Environmental and Experimental Botany, 52(1), 53–61. https://doi.org/10.1016/j.envexpbot.2004.01.006 DOI

Du, H., Liang, Y., Pei, K., & Ma, K. (2011). UV radiation-responsive proteins in rice leaves: a proteomic analysis. Plant and Cell Physiology, 52(2), 306–316. https://doi.org/10.1093/pcp/pcq186 PubMed DOI

Li, H., Li, Y., Deng, H., Sun, X., Wang, A., Tang, X., et al. (2018). Tomato UV-B receptor SlUVR8 mediates plant acclimation to UV-B radiation and enhances fruit chloroplast development via regulating SlGLK2. Scientific Reports, 8(1), 6097. https://doi.org/10.1038/s41598-018-24309-y PubMed DOI PMC

Gao, L., Wang, X., Li, Y., & Han, R. (2019). Chloroplast proteomic analysis of Triticum aestivum L seedlings responses to low levels of UV-B stress reveals novel molecular mechanism associated with UV-B tolerance. Environmental Science and Pollution Research, 26(7), 7143–55. https://doi.org/10.1007/s11356-019-04168-4 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...