Glycoprotein nonmetastatic melanoma protein b immunohistochemistry can be a useful ancillary tool to diagnose subependymal giant cell astrocytoma
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
EF16_013/0001674
Charles University Cooperatio Program, research area DIAG, and by the European Regional Development Fund
BBMRI_CZ LM2023033
Charles University Cooperatio Program, research area DIAG, and by the European Regional Development Fund
Project MO1012
Ministry of Defense of the Czech Republic
PubMed
40419674
DOI
10.1007/s00428-025-04110-9
PII: 10.1007/s00428-025-04110-9
Knihovny.cz E-zdroje
- Klíčová slova
- GPNMB, Immunohistochemistry, Subependymal giant cell astrocytoma, TSC1/2, Tuberous sclerosis,
- Publikační typ
- časopisecké články MeSH
Subependymal giant cell astrocytoma (SEGA) is a World Health Organization Central Nervous System grade 1 tumor, strongly associated with tuberous sclerosis complex (TSC). Recent research indicates that Glycoprotein Nonmetastatic Melanoma Protein B (GPNMB), regulated by microphthalmia (MiT) family transcription factors may also be modulated by loss-of-function mutations in TSC1/2. We evaluated GPNMB as a diagnostic marker of subependymal giant cell astrocytoma (SEGA). A total of 11 patients with SEGA were included in the study. The control group comprised 185 primary central nervous system tumors, including high-grade and low-grade gliomas and glioneuronal/neuronal tumors. Strong and diffuse (≥ 50% of tumor cells) GPNMB expression was present in all SEGAs. In contrast, TTF-1 expression was detected in nine SEGAs, resulting in a sensitivity of 81.8%. Among the control group, 77 cases (41.6%) were negative for GPNMB and 102 (55.1%) cases were scored as > 1% < 50% positive. Only six control tissues (3.2%) showed diffuse and strong GPNMB expression. Among the tumors with strong GPNMB expression, there were three glioblastomas (GBMs) with morphology potentially mimicking SEGA but lacking TSC1, TSC2, or MTOR mutations. Using a cutoff of diffuse (≥ 50%) and strong positivity, GPNMB demonstrated 100% sensitivity (95% confidence interval: 74.1%-100%) and 96.8% specificity (95% confidence interval: 93.1%-98.5%) for diagnosing SEGA.
Bioptical Laboratory Ltd Pilsen Czech Republic
Cytopathos Ltd Bratislava Slovakia
Department of Pathology Center PATOS Regional Hospital Liberec Liberec Czech Republic
Department of Pathology Military University Hospital Prague Czech Republic
Diagnostic Pathology Centre Unilabs Slovakia Ltd Bratislava Slovakia
Onco Team Diagnostic Bucharest Romania
School of Biological Sciences Georgia Institute of Technology Atlanta GA USA
Zobrazit více v PubMed
Lopes MBS, Cotter JA, Rodriguez FJ, et al (2021) Subependymal giant cell astocytoma. In: WHO Classification of Tumours Editorial Board. WHO classification of tumours. Central nervous system tumours, 5th edn. International Agency for Research of Cancer, Lyon, France, pp 100–103.
Goh S, Butler W, Thiele EA (2004) Subependymal giant cell tumors in tuberous sclerosis complex. Neurology 63:1457–1461. https://doi.org/10.1212/01.wnl.0000142039.14522.1a PubMed DOI
Chan JA, Zhang H, Roberts PS et al (2004) Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J Neuropathol Exp Neurol 63:1236–1242. https://doi.org/10.1093/jnen/63.12.1236 PubMed DOI
Henske EP, Wessner LL, Golden J et al (1997) Loss of tuberin in both subependymal giant cell astrocytomas and angiomyolipomas supports a two-hit model for the pathogenesis of tuberous sclerosis tumors. Am J Pathol 151:1639–1647 PubMed PMC
Mizuguchi M, Kato M, Yamanouchi H et al (1996) Loss of tuberin from cerebral tissues with tuberous sclerosis and astrocytoma. Ann Neurol 40:941–944. https://doi.org/10.1002/ana.410400621 PubMed DOI
Bongaarts A, Giannikou K, Reinten RJ et al (2017) Subependymal giant cell astrocytomas in tuberous sclerosis complex have consistent TSC1/TSC2 biallelic inactivation, and no BRAF mutations. Oncotarget 8:95516–95529. https://doi.org/10.18632/oncotarget.20764 PubMed DOI PMC
de Ribaupierre S, Dorfmuller G, Bulteau C et al (2007) Subependymal giant-cell astrocytomas in pediatric tuberous sclerosis disease: when should we operate? Neurosurgery 60:83–89. https://doi.org/10.1016/j.pediatrneurol.2013.08.017 PubMed DOI
Franz DN, Belousova E, Sparagana S et al (2014) Everolimus for subependymal giant cell astrocytoma in patients with tuberous sclerosis complex: 2-year open-label extension of the randomised EXIST-1 study. Lancet Oncol 15:1513–1520. https://doi.org/10.1016/S1470-2045(14)70489-9 PubMed DOI
Bollo RJ, Berliner JL, Fischer I et al (2009) Extraventricular subependymal giant cell tumor in a child with tuberous sclerosis complex. J Neurosurg Pediatr 4:85–90. https://doi.org/10.3171/2009.3.PEDS08225 PubMed DOI
Almubarak AO, Abdullah J, Al Hindi H et al (2020) Infantile atypical subependymal giant cell astrocytoma. Neurosciences (Riyadh) 25:61–64. https://doi.org/10.17712/nsj.2020.1.20190044 PubMed DOI
Tompe AP, Sargar KM, Kazmi SAJ et al (2020) A solitary extraventricular subependymal giant cell astrocytoma in the absence of tuberous sclerosis. Radiol Case Rep 16:180–184. https://doi.org/10.1016/j.radcr.2020.11.004 PubMed DOI PMC
Roth J, Roach ES, Bartels U et al (2013) Subependymal giant cell astrocytoma: diagnosis, screening, and treatment. Recommendations from the International Tuberous Sclerosis Complex Consensus Conference 2012. Pediatr Neurol 49:439–444 PubMed DOI
Telfeian AE, Judkins A, Younkin D et al (2004) Subependymal giant cell astrocytoma with cranial and spinal metastases in a patient with tuberous sclerosis. Case report J Neurosurg 100:498–500. https://doi.org/10.3171/ped.2004.100.5.0498 PubMed DOI
Aguilera D, Flamini R, Mazewski C et al (2014) Response of subependymal giant cell astrocytoma with spinal cord metastasis to everolimus. J Pediatr Hematol Oncol 36:e448–451. https://doi.org/10.1097/MPH.0000000000000005 PubMed DOI PMC
Azam M, Rath S, Khurana R et al (2017) Rare case of subependymal giant cell astrocytoma without clinical features of tuberous sclerosis: case report and literature review. Precis Radiat Oncol 1:108–112. https://doi.org/10.3857/roj.2020.00458 DOI
Piña-Ballantyne SA, Espinosa-Aguilar EJ, Calderón-Garcidueñas AL (2024) The clinicopathological features of the solitary subependymal giant cell astrocytoma: a systematic review. Neurol India 72:708–717. https://doi.org/10.4103/neurol-india.Neurol-India-D-23-00343 PubMed DOI
Cobourn KD, Chesney KM, Mueller K et al (2024) Isolated subependymal giant cell astrocytoma (SEGA) in the absence of clinical tuberous sclerosis: two case reports and literature review. Childs Nerv Syst 40:73–78. https://doi.org/10.1007/s00381-023-06105-w PubMed DOI
Palsgrove DN, Brosnan-Cashman JA, Giannini C et al (2018) Subependymal giant cell astrocytoma-like astrocytoma: a neoplasm with a distinct phenotype and frequent neurofibromatosis type-1-association. Mod Pathol 31:1787–1800. https://doi.org/10.1038/s41379-018-0103-x PubMed DOI PMC
Grajkowska W, Kotulska K, Jurkiewicz E et al (2011) Subependymal giant cell astrocytomas with atypical histological features mimicking malignant gliomas. Folia Neuropathol 49(1):39–46 PubMed
Švajdler M Jr, Deák L, Rychlý B et al (2013) Subependymal giant cell astrocytoma with atypical clinical and pathological features: a diagnostic pitfall. Cesk Patol 49:76–79 PubMed
Suzuki M, Kondo A, Ogino I et al (2021) A case of solitary subependymal giant cell astrocytoma with histopathological anaplasia and TSC2 gene alteration. Childs Nerv Syst 37:1357–1362. https://doi.org/10.1007/s00381-020-04839-5 PubMed DOI
Hirose T, Scheithauer BW, Lopes MB et al (1995) Tuber and subependymal giant cell astrocytoma associated with tuberous sclerosis: an immunohistochemical, ultrastructural, and immunoelectron and microscopic study. Acta Neuropathol 90:387–399. https://doi.org/10.1007/BF00315012 PubMed DOI
Lopes MB, Altermatt HJ, Scheithauer BW et al (1996) Immunohistochemical characterization of subependymal giant cell astrocytomas. Acta Neuropathol 91:368–375. https://doi.org/10.1007/s004010050438 PubMed DOI
Buccoliero AM, Franchi A, Castiglione F et al (2009) Subependymal giant cell astrocytoma (SEGA): Is it an astrocytoma? Morphological, immunohistochemical and ultrastructural study. Neuropathology 29:25–30. https://doi.org/10.1111/j.1440-1789.2008.00934.x PubMed DOI
You H, Kim YI, Im SY et al (2005) Immunohistochemical study of central neurocytoma, subependymoma, and subependymal giant cell astrocytoma. J Neurooncol 74:1–8. https://doi.org/10.1007/s11060-004-2354-2 PubMed DOI
Hewer E, Vajtai I (2015) Consistent nuclear expression of thyroid transcription factor 1 in subependymal giant cell astrocytomas suggests lineage-restricted histogenesis. Clin Neuropathol 34:128–131. https://doi.org/10.5414/NP300818 PubMed DOI
Kleinschmidt-DeMasters BK, Lopes MB (2013) Update on hypophysitis and TTF-1 expressing sellar region masses. Brain Pathol 23:495–514. https://doi.org/10.1111/bpa.12068 PubMed DOI PMC
Bielle F, Villa C, Giry M et al (2015) Chordoid gliomas of the third ventricle share TTF-1 expression with organum vasculosum of the lamina terminalis. Am J Surg Pathol 39:948–956. https://doi.org/10.1097/PAS.0000000000000421 PubMed DOI
Hang JF, Hsu CY, Lin SC et al (2017) Thyroid transcription factor-1 distinguishes subependymal giant cell astrocytoma from its mimics and supports its cell origin from the progenitor cells in the medial ganglionic eminence. Mod Pathol 30:318–328. https://doi.org/10.1038/modpathol.2016.205 PubMed DOI
Weterman MA, Ajubi N, van Dinter IM et al (1995) nmb, a novel gene, is expressed in low-metastatic human melanoma cell lines and xenografts. Int J Cancer 60:73–81. https://doi.org/10.1002/ijc.2910600111 PubMed DOI
Lazaratos AM, Annis MG, Siegel PM (2022) GPNMB: a potent inducer of immunosuppression in cancer. Oncogene 41:4573–4590. https://doi.org/10.1038/s41388-022-02443-2 PubMed DOI
Maric G, Annis MG, Dong Z et al (2015) GPNMB cooperates with neuropilin-1 to promote mammary tumor growth and engages integrin α5β1 for efficient breast cancer metastasis. Oncogene 34:5494–5504. https://doi.org/10.1038/onc.2015.8 PubMed DOI
Li Y, Yuan S, Liu J et al (2020) CSE1L silence inhibits the growth and metastasis in gastric cancer by repressing GPNMB via positively regulating transcription factor MITF. J Cell Physiol 235:2071–2079. https://doi.org/10.1002/jcp.29107 PubMed DOI
Taya M, Hammes SR (2018) Glycoprotein non-metastatic melanoma protein B (GPNMB) and cancer: A novel potential therapeutic target. Steroids 133:102–107. https://doi.org/10.1016/j.steroids.2017.10.013 PubMed DOI
Kuan CT, Wakiya K, Dowell JM et al (2006) Glycoprotein nonmetastatic melanoma protein B, a potential molecular therapeutic target in patients with glioblastoma multiforme. Clin Cancer Res 12:1970–1982. https://doi.org/10.1158/1078-0432.CCR-05-2797 PubMed DOI
Ono Y, Chiba S, Yano H et al (2016) Glycoprotein nonmetastatic melanoma protein B (GPNMB) promotes the progression of brain glioblastoma via Na PubMed DOI
Bao G, Wang N, Li R et al (2016) Glycoprotein non-metastatic melanoma protein B promotes glioma motility and angiogenesis through the Wnt/β-catenin signaling pathway. Exp Biol Med (Maywood) 241:1968–1976. https://doi.org/10.1177/1535370216654224 PubMed DOI
Feng X, Zhang L, Ke S et al (2020) High expression of GPNMB indicates an unfavorable prognosis in glioma: Combination of data from the GEO and CGGA databases and validation in tissue microarray. Oncol Lett 20:2356–2368. https://doi.org/10.3892/ol.2020.11787 PubMed DOI PMC
Baba M, Furuya M, Motoshima T et al (2019) TFE3 Xp11.2 translocation renal cell carcinoma mouse model reveals novel therapeutic targets and identifies GPNMB as a diagnostic marker for human disease. Mol Cancer Res 17:1613–1626. https://doi.org/10.1158/1541-7786.MCR-18-1235 PubMed DOI PMC
Salles DC, Asrani K, Woo J et al (2022) GPNMB expression identifies TSC1/2/mTOR-associated and MiT family translocation-driven renal neoplasms. J Pathol 257:158–171. https://doi.org/10.1002/path.5875 PubMed DOI PMC
Li H, Argani P, Halper-Stromberg E et al (2023) Positive GPNMB immunostaining differentiates renal cell carcinoma with fibromyomatous stroma associated with TSC1/2/MTOR alterations from others. Am J Surg Pathol 47:1267–1273. https://doi.org/10.1097/PAS.0000000000002117 PubMed DOI PMC
Wangsiricharoen S, Ingram DR, Morey RR et al (2024) Glycoprotein nonmetastatic melanoma protein B (GPNMB) immunohistochemistry can be a useful ancillary tool to identify perivascular epithelioid cell tumor. Mod Pathol 37:100426. https://doi.org/10.1016/j.modpat.2024.100426 PubMed DOI
Soukup J, Gerykova L, Rachelkar A et al (2023) Diagnostic utility of immunohistochemical detection of MEOX2, SOX11, INSM1 and EGFR in gliomas. Diagnostics (Basel) 13:2546. https://doi.org/10.3390/diagnostics13152546 PubMed DOI
Panwar V, Singh A, Bhatt M et al (2023) Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther 8:375. https://doi.org/10.1038/s41392-023-01608-z PubMed DOI PMC
Landrum MJ, Lee JM, Benson M et al (2018) ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46:D1062–D1067. https://doi.org/10.1093/nar/gkx1153 PubMed DOI
Suda M, Shimizu I, Katsuumi G et al (2022) Glycoprotein nonmetastatic melanoma protein B regulates lysosomal integrity and lifespan of senescent cells. Sci Rep 12:6522. https://doi.org/10.1038/s41598-022-10522-3 PubMed DOI PMC
Bianco V, Kratky D (2023) Glycoprotein non-metastatic protein B (GPNMB): The missing link between lysosomes and obesity. Exp Clin Endocrinol Diabetes 131:639–645. https://doi.org/10.1055/a-2192-0101 PubMed DOI PMC
Szulzewsky F, Pelz A, Feng X et al (2015) Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS ONE 10:e0116644. https://doi.org/10.1371/journal.pone.0116644 PubMed DOI PMC
Yalcin F, Haneke H, Efe IE et al (2024) Tumor associated microglia/macrophages utilize GPNMB to promote tumor growth and alter immune cell infiltration in glioma. Acta Neuropathol Commun 12:50. https://doi.org/10.1186/s40478-024-01754-7 PubMed DOI PMC
Tyburczy ME, Kotulska K, Pokarowski P et al (2010) Novel proteins regulated by mTOR in subependymal giant cell astrocytomas of patients with tuberous sclerosis complex and new therapeutic implications. Am J Pathol 176:1878–1890. https://doi.org/10.2353/ajpath.2010.090950 PubMed DOI PMC
Pan R, Wang X, Fang R et al (2025) GPNMB expression differentiates subependymal giant cell astrocytoma from other mimickers. Ann Diagn Pathol 75:152442. https://doi.org/10.1016/j.anndiagpath.2025.152442 PubMed DOI
Furuya M, Hong SB, Tanaka R et al (2015) Distinctive expression patterns of glycoprotein non-metastatic B and folliculin in renal tumors in patients with Birt-Hogg-Dubé syndrome. Cancer Sci 106:315–323. https://doi.org/10.1111/cas.12601 PubMed DOI PMC
Lee B, Hwang S, Bae H et al (2024) Diagnostic utility of genetic alterations in distinguishing IDH-wildtype glioblastoma from lower-grade gliomas: Insight from next-generation sequencing analysis of 479 cases. Brain Pathol 34:e13234. https://doi.org/10.1111/bpa.13234 PubMed DOI PMC