Changes in the Thermal and Structural Properties of Polylactide and Its Composites During a Long-Term Degradation Process
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.10.03.01/00/22_003/0000045
European Just Transition Fund within the Operational Programme: Just Transition under the aegis of the Ministry of the Environment of the Czech Republic, project CirkArena
CZ.02.01.01/00/23_021/0009004
Operational Programme Johannes Amos Comenius OP JAC "Application potential development in the field of polymer materials in the context of circular economy compliance (POCEK)"
RP/CPS/2024-28/002
Ministry of Education Youth and Sports of the Czech Republic
TQ03000235
Technology Agency of the Czech Republic
PubMed
40430622
PubMed Central
PMC12114928
DOI
10.3390/polym17101326
PII: polym17101326
Knihovny.cz E-zdroje
- Klíčová slova
- calcium carbonate, crystallinity, hydrolysis, plasticizer, polylactide, polymer composite,
- Publikační typ
- časopisecké články MeSH
As a polymer degrades, its structure changes, and the course of composting also affects the rate and degree of decomposition. Moreover, the potential exists for the formation of microplastics. This work focuses on the investigation of the long-term hydrolytic degradation of PLA-based composites at different temperatures (50, 55, and 60 °C, respectively). Samples were prepared on semi-industrial equipment, simulating actual production conditions. The effect of the degradation temperature on molecular weight was studied by gel permeation chromatography. Variation in the thermal properties and crystallinity of the PLA and its composites was investigated using differential scanning calorimetry and thermal gravimetric analysis. Mass loss during hydrolytic degradation was assessed using the gravimetric technique, and confirmation of microplastic residues in the hydrolyzed samples was evaluated using Fourier-transform infrared spectroscopy.
Zobrazit více v PubMed
Kontou E., Niaounakis M., Panayiotis G. Comparative study of PLA nanocomposites reinforced with clay and silica nanofillers and their mixtures. J Appl. Polym. Sci. 2011;122:1519–1529. doi: 10.1002/app.34234. DOI
Balaguer M., Aliaga C., Fito C., Hortal M. Compostability assessment of nano-reinforced poly(lactic acid) films. Waste Manag. 2016;48:143–155. doi: 10.1016/j.wasman.2015.10.030. PubMed DOI
Gigante V., Coltelli M.-B., Vannozzi A., Panariello L., Fusco A., Trombi L., Lazzeri A. Flat die extruded biocompatible poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) based films. Polymers. 2019;11:1857. doi: 10.3390/polym11111857. PubMed DOI PMC
Pantani R., Sorrentino A. Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polym. Degrad. Stab. 2013;51:1089–1096. doi: 10.1016/j.polymdegradstab.2013.01.005. DOI
Olewnik-Kruszkowska E. Influence of the type of buffer solution on thermal and structural properties of polylactide-based composites. Polym. Degrad. Stab. 2016;129:87–95. doi: 10.1016/j.polymdegradstab.2016.04.009. DOI
Shi N., Dou Q. Non-isothermal cold crystallization kinetics of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/treated calcium carbonate composites. J. Therm. Anal. Calorim. 2015;119:635–642. doi: 10.1007/s10973-014-4162-z. DOI
Guo H., Zou X., Dai W., Zhang P., Xiao B. Properties and morphology of polylactic acid composites reinforced by orientation aligned calcium carbonate whisker. J Appl. Polym. Sci. 2022;140:e53622. doi: 10.1002/app.53622. DOI
Chow W.S., Leu Y.Y., Mohd Ishak Z.A. Water absorption of poly(lactic acid) nanocomposites: Effects of nanofillers and maleated rubbers. Polym. Plast. Technol. Mater. 2014;53:858–863. doi: 10.1080/03602559.2014.886054. DOI
Leu Y.Y., Chow W.S. Kinetics of water absorption and thermal properties of poly(lactic acid)/organo montmorillonite/poly(ethylene glycol) nanocomposites. J. Vinyl Addit. Technol. 2011;17:40–47. doi: 10.1002/vnl.20259. DOI
Turan D., Sirin H., Ozkoc G. Effects of POSS particles on the mechanical, thermal, and morphological properties of PLA and plasticised PLA. J. Appl. Polym. Sci. 2010;121:1067–1075. doi: 10.1002/app.33802. DOI
Zuo U., Chen X., Ding Y., Cui L., Fan B., Pan L., Zhang K. Novel designed PEG-dicationic imidazolium-based ionic liquids as effective plasticizers for sustainable polylactide. Chin. J. Chem. 2021;39:2234–2240. doi: 10.1002/cjoc.202100217. DOI
Cisar J., Drosler P., Pummerova M., Sedlarik V., Skoda D. Composite based on PLA with improved shape stability under high-temperature conditions. Polymer. 2023;276:125943. doi: 10.1016/j.polymer.2023.125943. DOI
Li Y., Han C., Yu Y., Xiao L., Shao Y. Crystallization behaviors of poly(lactic acid) composites fabricated using functionalized eggshell powder and poly(ethylene glycol) Thermochim. Acta. 2018;663:67–76. doi: 10.1016/j.tca.2018.03.011. DOI
Bhiogade A., Kannan M., Devanathan S. Degradation kinetics study of Poly lactic acid (PLA) based biodegradable green composites. Mater. Today. 2020;24:806–814. doi: 10.1016/j.matpr.2020.04.389. DOI
Rocha D.B., Souza de Carvalho J., Aparecida de Oliveira S. A new approach for flexible PBAT/PLA/CaCO3 films into agriculture. J. Appl. Polym. Sci. 2018;135:46660. doi: 10.1002/app.46660. DOI
Vidović E., Faraguna F., Jukić A. Influence of inorganic fillers on PLA crystallinity and thermal properties. J. Therm. Anal. Calorim. 2017;127:371–380. doi: 10.1007/s10973-016-5750-x. DOI
Gayer C., Ritter J., Bullemer M., Grom S., Jauer L., Meiners W., Schleifenbaum J.H. Development of a solvent-free polylactide/calcium carbonate composite for selective laser sintering of bone tissue engineering scaffolds. Mater. Sci. Eng. C. 2019;101:660–673. doi: 10.1016/j.msec.2019.03.101. PubMed DOI
Donate R., Monzón M., Alemán-Domínguez M.E., Ortega Z. Enzymatic degradation study of PLA-based composite scaffolds. Rev. Adv. Mater. Sci. 2020;59:170–175. doi: 10.1515/rams-2020-0005. DOI
Polyák P., Nagy K., Vértessy B., Pukánszky B. Self-regulating degradation technology for the biodegradation of poly(lactic acid) Environ. Technol. Innov. 2023;29:103000. doi: 10.1016/j.eti.2022.103000. DOI
Kalita N.K., Damare N.A., Hazarika D., Bhagabati P., Kalamdhad A., Katiyar V. Biodegradation and characterization study of compostable PLA bioplastic containing algae biomass as potential degradation accelerator. Environ. Chall. 2021;3:100067. doi: 10.1016/j.envc.2021.100067. DOI
Ruggero F., Belardi S., Carretti E., Lotti T., Lubello C., Gori R. Rigid and film bioplastics degradation under suboptimal composting conditions: A kinetic study. Waste Manag. Res. 2022;40:1311–1321. doi: 10.1177/0734242X211063731. PubMed DOI
Briassoulis D., Pikasi A., Hiskakis M. Organic recycling of post-consumer /industrial bio-based plastics through industrial aerobic composting and anaerobic digestion—Techno-economic sustainability criteria and indicators. Polym. Degrad. Stab. 2021;190:109642. doi: 10.1016/j.polymdegradstab.2021.109642. DOI
Hottle T.A., Agüero M.L., Bilec M.M., Landis A.E. Alkaline amendment for the enhancement of compost degradation for polylactic acid biopolymer products. Compost Sci. Util. 2016;24:159–173. doi: 10.1080/1065657X.2015.1102664. DOI
Kale G., Auras R., Singh S.P., Narayan R. Biodegradability of polylactide bottles in real and simulated composting conditions. Polym. Test. 2007;26:1049–1061. doi: 10.1016/j.polymertesting.2007.07.006. DOI
Guzman-Sielicka A., Janik H., Sielicki P. Proposal of new starch-blends composition quickly degradable in marine environment. J. Polym. Environ. 2013;21:802–806. doi: 10.1007/s10924-012-0558-7. DOI
Donate R., Monzón M., Alemán-Domínguez M.E., Rodríguez-Esparragón F. Effects of ceramic additives and bioactive coatings on the degradation of polylactic acid-based bone scaffolds under hydrolytic conditions. J. Biomed. Mater. Res. B. 2023;111:429–441. doi: 10.1002/jbm.b.35162. PubMed DOI PMC
Kucharczyk P., Hnatkova E., Dvorak Z., Sedlarik V. Novel aspects of the degradation process of PLA based bulky samples under conditions of high partial pressure of water vapour. Polym. Degrad. Stab. 2013;98:150–157. doi: 10.1016/j.polymdegradstab.2012.10.016. DOI
Liao R., Yang B., Yu W., Zhou C. Isothermal cold crystallization kinetics of polylactide/nucleating agents. J. Appl. Polym. Sci. 2007;104:310–317. doi: 10.1002/app.25733. DOI
Hoque E.M., Ghorban D.M., Khalid M. Next generation biomimetic bone tissue engineering matrix from poly (L- lactic acid) PLA/calcium carbonate composites doped with silver nanoparticles. Curr. Anal. Chem. 2018;14:268–277. doi: 10.2174/1573411013666171003155024. DOI
De Santis F., Pantani R., Titomanlio G. Nucleation and crystallization kinetics of poly(lactic acid) Thermochim. Acta. 2011;522:128–1334. doi: 10.1016/j.tca.2011.05.034. DOI
Pantani R., De Santis F., Sorrentino A., De Maio F., Titomanlio G. Crystallization kinetics of virgin and processed poly(lactic acid) Polym. Degrad. Stab. 2010;95:1148–1159. doi: 10.1016/j.polymdegradstab.2010.04.018. DOI
Muller J., Jimenez A., Gonzalez-Martinez C., Chiralt A. Influence of plasticizers on thermal properties and crystallization behaviour of poly(lactic acid) films obtained by compression moulding. Polym. Int. 2016;65:970–978. doi: 10.1002/pi.5142. DOI
Papadopoulou K., Klonos P.A., Kyritsis A., Tarani E., Chrissafis K., Masek O., Tsachouridis K., Anastasiou A.D., Bikiaris D.N. Synthesis and characterization of PLA/biochar bio-composites containing different biochar types and content. Polymers. 2025;17:263. doi: 10.3390/polym17030263. PubMed DOI PMC
Backes E.H., Pires L.D., Costa L.C., Passador F.R., Pessan L.A. Analysis of the degradation during melt processing of PLA/Biosilicate® composites. J. Compos. Sci. 2019;3:1–12. doi: 10.3390/jcs3020052. DOI
Drohsler P., Yasir M., Fabian D.R.C., Cisar J., Yadollahi Z., Sedlarik V. Comparative degradation study of a biodegradable composite based on polylactide with halloysite nanotubes and a polyacrylic acid copolymer. Mater. Today Commun. 2022;33:10440. doi: 10.1016/j.mtcomm.2022.104400. DOI
Krishnudu M.D., Reddy V.P., Kumar V.M., Reddy S.R., Rao U.A. Effect of CaCO3 filler reinforcement on PLA matrix composites fabricated through injection moulding. Phys. Scr. 2024;99:065053. doi: 10.1088/1402-4896/ad4eae. DOI
Yu Y., Zhu B., Ding Y., Zhou C., Ge S. Impacts of poly(lactic acid) microplastics on organic compound leaching and heavy metal distribution during hydrothermal treatment of sludge. Sci. Total Environ. 2023;901:166012. doi: 10.1016/j.scitotenv.2023.166012. PubMed DOI
Gbadeyan O.L. Thermomechanical characterization of bioplastic films produced using a combination of polylactic acid and bionano calcium carbonate. Sci. Rep. 2022;15538:1–9. doi: 10.1038/s41598-022-20004-1. PubMed DOI PMC
Nekhamanurak B., Patanathabutr P., Hongsriphan N. The influence of micro-/nano-CaCO3 on thermal stability and melt rheology behavior of poly(lactic acid) Energy Procedia. 2014;56:118–128. doi: 10.1016/j.egypro.2014.07.139. DOI
Kim H.-S., Park B.H., Choi J.H., Yoon J.-S. Mechanical properties and thermal stability of poly(L-lactide)/calcium carbonate composites. J. Appl. Polym. Sci. 2008;109:3087–3092. doi: 10.1002/app.28229. DOI
Tsuji H., Echizen Y., Saha S.K., Nishimura Y. Photodegradation of poly(L-lactic acid): Effects of photosensitizer. Macromol. Mater. Eng. 2008;290:1192–1203. doi: 10.1002/mame.200500278. DOI
Kalia S., Avérous L. Biodegradable and Biobased Polymers for Environmental and Biomedical Applications. 1st ed. Wiley; Hoboken, NJ, USA: 2016. pp. 171–224.
Dreier J., Brütting C., Ruckdäschel H., Altstädt V., Bonten C. Investigation of the thermal and hydrolytic degradation of polylactide during autoclave foaming. Polymers. 2021;16:2624. doi: 10.3390/polym13162624. PubMed DOI PMC
Odelius K., Hoglund A., Kumar S., Hakkarainen M., Ghosh A.K., Bhatnagar N., Albertsson A.-C. Porosity and pore size regulate the degradation product profile of polylactide. Biomacromolecules. 2011;12:1250–1258. doi: 10.1021/bm1015464. PubMed DOI
Zhou Z., Zhou J., Yi Q., Liu L., Zhao Y., Nie H., Liu X., Zou J., Chen L. Biological evaluation of poly-L-lactic acid composite containing bioactive glass. Polym. Bull. 2010;65:411–423. doi: 10.1007/s00289-010-0266-1. DOI
Dobircau L., Delpouve N., Herbinet R., Domenek S., Le Pluart L., Delbreilh L., Dacrue V., Dargent E. Molecular mobility and physical ageing of plasticized poly(lactide) Polym. Eng. Sci. 2015;55:858–865. doi: 10.1002/pen.23952. DOI
Wolf M.H., Gil-Castel O., Cea J., Carrasco J.C., Ribes-Greus A. Degradation of Plasticised Poly(lactide) Composites with nanofibrillated cellulose in different hydrothermal environments. J. Polym. Environ. 2023;31:2055–2072. doi: 10.1007/s10924-022-02711-y. DOI
Gonzala G.L., Babetto A.S., Goncalves L.M., Bettini S.H., Souza A.M. Biodegradation behavior of poly (lactic acid) samples obtained by three-dimensional printing: Influence of temperature and pigment presence. Polym. Eng. Sci. 2024;64:2812–2823. doi: 10.1002/pen.26727. DOI
Kara Y., Molnar K. Decomposition behavior of stereocomplex PLA melt-blown fine fiber mats in water and in compost. J. Polym. Environ. 2022;31:1398–1414. doi: 10.1007/s10924-022-02694-w. PubMed DOI PMC
Fortunati E., Armentano I., Iannoni A., Barbale M., Zaccheo S., Scavone M., Visai L., Kenny J.M. New multifunctional poly(lactide acid) composites: Mechanical, antibacterial, and degradation properties. J. Appl. Polym. Sci. 2012;124:1. doi: 10.1002/app.35039. DOI