Changes in the Thermal and Structural Properties of Polylactide and Its Composites During a Long-Term Degradation Process

. 2025 May 13 ; 17 (10) : . [epub] 20250513

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40430622

Grantová podpora
CZ.10.03.01/00/22_003/0000045 European Just Transition Fund within the Operational Programme: Just Transition under the aegis of the Ministry of the Environment of the Czech Republic, project CirkArena
CZ.02.01.01/00/23_021/0009004 Operational Programme Johannes Amos Comenius OP JAC "Application potential development in the field of polymer materials in the context of circular economy compliance (POCEK)"
RP/CPS/2024-28/002 Ministry of Education Youth and Sports of the Czech Republic
TQ03000235 Technology Agency of the Czech Republic

As a polymer degrades, its structure changes, and the course of composting also affects the rate and degree of decomposition. Moreover, the potential exists for the formation of microplastics. This work focuses on the investigation of the long-term hydrolytic degradation of PLA-based composites at different temperatures (50, 55, and 60 °C, respectively). Samples were prepared on semi-industrial equipment, simulating actual production conditions. The effect of the degradation temperature on molecular weight was studied by gel permeation chromatography. Variation in the thermal properties and crystallinity of the PLA and its composites was investigated using differential scanning calorimetry and thermal gravimetric analysis. Mass loss during hydrolytic degradation was assessed using the gravimetric technique, and confirmation of microplastic residues in the hydrolyzed samples was evaluated using Fourier-transform infrared spectroscopy.

Zobrazit více v PubMed

Kontou E., Niaounakis M., Panayiotis G. Comparative study of PLA nanocomposites reinforced with clay and silica nanofillers and their mixtures. J Appl. Polym. Sci. 2011;122:1519–1529. doi: 10.1002/app.34234. DOI

Balaguer M., Aliaga C., Fito C., Hortal M. Compostability assessment of nano-reinforced poly(lactic acid) films. Waste Manag. 2016;48:143–155. doi: 10.1016/j.wasman.2015.10.030. PubMed DOI

Gigante V., Coltelli M.-B., Vannozzi A., Panariello L., Fusco A., Trombi L., Lazzeri A. Flat die extruded biocompatible poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) based films. Polymers. 2019;11:1857. doi: 10.3390/polym11111857. PubMed DOI PMC

Pantani R., Sorrentino A. Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polym. Degrad. Stab. 2013;51:1089–1096. doi: 10.1016/j.polymdegradstab.2013.01.005. DOI

Olewnik-Kruszkowska E. Influence of the type of buffer solution on thermal and structural properties of polylactide-based composites. Polym. Degrad. Stab. 2016;129:87–95. doi: 10.1016/j.polymdegradstab.2016.04.009. DOI

Shi N., Dou Q. Non-isothermal cold crystallization kinetics of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/treated calcium carbonate composites. J. Therm. Anal. Calorim. 2015;119:635–642. doi: 10.1007/s10973-014-4162-z. DOI

Guo H., Zou X., Dai W., Zhang P., Xiao B. Properties and morphology of polylactic acid composites reinforced by orientation aligned calcium carbonate whisker. J Appl. Polym. Sci. 2022;140:e53622. doi: 10.1002/app.53622. DOI

Chow W.S., Leu Y.Y., Mohd Ishak Z.A. Water absorption of poly(lactic acid) nanocomposites: Effects of nanofillers and maleated rubbers. Polym. Plast. Technol. Mater. 2014;53:858–863. doi: 10.1080/03602559.2014.886054. DOI

Leu Y.Y., Chow W.S. Kinetics of water absorption and thermal properties of poly(lactic acid)/organo montmorillonite/poly(ethylene glycol) nanocomposites. J. Vinyl Addit. Technol. 2011;17:40–47. doi: 10.1002/vnl.20259. DOI

Turan D., Sirin H., Ozkoc G. Effects of POSS particles on the mechanical, thermal, and morphological properties of PLA and plasticised PLA. J. Appl. Polym. Sci. 2010;121:1067–1075. doi: 10.1002/app.33802. DOI

Zuo U., Chen X., Ding Y., Cui L., Fan B., Pan L., Zhang K. Novel designed PEG-dicationic imidazolium-based ionic liquids as effective plasticizers for sustainable polylactide. Chin. J. Chem. 2021;39:2234–2240. doi: 10.1002/cjoc.202100217. DOI

Cisar J., Drosler P., Pummerova M., Sedlarik V., Skoda D. Composite based on PLA with improved shape stability under high-temperature conditions. Polymer. 2023;276:125943. doi: 10.1016/j.polymer.2023.125943. DOI

Li Y., Han C., Yu Y., Xiao L., Shao Y. Crystallization behaviors of poly(lactic acid) composites fabricated using functionalized eggshell powder and poly(ethylene glycol) Thermochim. Acta. 2018;663:67–76. doi: 10.1016/j.tca.2018.03.011. DOI

Bhiogade A., Kannan M., Devanathan S. Degradation kinetics study of Poly lactic acid (PLA) based biodegradable green composites. Mater. Today. 2020;24:806–814. doi: 10.1016/j.matpr.2020.04.389. DOI

Rocha D.B., Souza de Carvalho J., Aparecida de Oliveira S. A new approach for flexible PBAT/PLA/CaCO3 films into agriculture. J. Appl. Polym. Sci. 2018;135:46660. doi: 10.1002/app.46660. DOI

Vidović E., Faraguna F., Jukić A. Influence of inorganic fillers on PLA crystallinity and thermal properties. J. Therm. Anal. Calorim. 2017;127:371–380. doi: 10.1007/s10973-016-5750-x. DOI

Gayer C., Ritter J., Bullemer M., Grom S., Jauer L., Meiners W., Schleifenbaum J.H. Development of a solvent-free polylactide/calcium carbonate composite for selective laser sintering of bone tissue engineering scaffolds. Mater. Sci. Eng. C. 2019;101:660–673. doi: 10.1016/j.msec.2019.03.101. PubMed DOI

Donate R., Monzón M., Alemán-Domínguez M.E., Ortega Z. Enzymatic degradation study of PLA-based composite scaffolds. Rev. Adv. Mater. Sci. 2020;59:170–175. doi: 10.1515/rams-2020-0005. DOI

Polyák P., Nagy K., Vértessy B., Pukánszky B. Self-regulating degradation technology for the biodegradation of poly(lactic acid) Environ. Technol. Innov. 2023;29:103000. doi: 10.1016/j.eti.2022.103000. DOI

Kalita N.K., Damare N.A., Hazarika D., Bhagabati P., Kalamdhad A., Katiyar V. Biodegradation and characterization study of compostable PLA bioplastic containing algae biomass as potential degradation accelerator. Environ. Chall. 2021;3:100067. doi: 10.1016/j.envc.2021.100067. DOI

Ruggero F., Belardi S., Carretti E., Lotti T., Lubello C., Gori R. Rigid and film bioplastics degradation under suboptimal composting conditions: A kinetic study. Waste Manag. Res. 2022;40:1311–1321. doi: 10.1177/0734242X211063731. PubMed DOI

Briassoulis D., Pikasi A., Hiskakis M. Organic recycling of post-consumer /industrial bio-based plastics through industrial aerobic composting and anaerobic digestion—Techno-economic sustainability criteria and indicators. Polym. Degrad. Stab. 2021;190:109642. doi: 10.1016/j.polymdegradstab.2021.109642. DOI

Hottle T.A., Agüero M.L., Bilec M.M., Landis A.E. Alkaline amendment for the enhancement of compost degradation for polylactic acid biopolymer products. Compost Sci. Util. 2016;24:159–173. doi: 10.1080/1065657X.2015.1102664. DOI

Kale G., Auras R., Singh S.P., Narayan R. Biodegradability of polylactide bottles in real and simulated composting conditions. Polym. Test. 2007;26:1049–1061. doi: 10.1016/j.polymertesting.2007.07.006. DOI

Guzman-Sielicka A., Janik H., Sielicki P. Proposal of new starch-blends composition quickly degradable in marine environment. J. Polym. Environ. 2013;21:802–806. doi: 10.1007/s10924-012-0558-7. DOI

Donate R., Monzón M., Alemán-Domínguez M.E., Rodríguez-Esparragón F. Effects of ceramic additives and bioactive coatings on the degradation of polylactic acid-based bone scaffolds under hydrolytic conditions. J. Biomed. Mater. Res. B. 2023;111:429–441. doi: 10.1002/jbm.b.35162. PubMed DOI PMC

Kucharczyk P., Hnatkova E., Dvorak Z., Sedlarik V. Novel aspects of the degradation process of PLA based bulky samples under conditions of high partial pressure of water vapour. Polym. Degrad. Stab. 2013;98:150–157. doi: 10.1016/j.polymdegradstab.2012.10.016. DOI

Liao R., Yang B., Yu W., Zhou C. Isothermal cold crystallization kinetics of polylactide/nucleating agents. J. Appl. Polym. Sci. 2007;104:310–317. doi: 10.1002/app.25733. DOI

Hoque E.M., Ghorban D.M., Khalid M. Next generation biomimetic bone tissue engineering matrix from poly (L- lactic acid) PLA/calcium carbonate composites doped with silver nanoparticles. Curr. Anal. Chem. 2018;14:268–277. doi: 10.2174/1573411013666171003155024. DOI

De Santis F., Pantani R., Titomanlio G. Nucleation and crystallization kinetics of poly(lactic acid) Thermochim. Acta. 2011;522:128–1334. doi: 10.1016/j.tca.2011.05.034. DOI

Pantani R., De Santis F., Sorrentino A., De Maio F., Titomanlio G. Crystallization kinetics of virgin and processed poly(lactic acid) Polym. Degrad. Stab. 2010;95:1148–1159. doi: 10.1016/j.polymdegradstab.2010.04.018. DOI

Muller J., Jimenez A., Gonzalez-Martinez C., Chiralt A. Influence of plasticizers on thermal properties and crystallization behaviour of poly(lactic acid) films obtained by compression moulding. Polym. Int. 2016;65:970–978. doi: 10.1002/pi.5142. DOI

Papadopoulou K., Klonos P.A., Kyritsis A., Tarani E., Chrissafis K., Masek O., Tsachouridis K., Anastasiou A.D., Bikiaris D.N. Synthesis and characterization of PLA/biochar bio-composites containing different biochar types and content. Polymers. 2025;17:263. doi: 10.3390/polym17030263. PubMed DOI PMC

Backes E.H., Pires L.D., Costa L.C., Passador F.R., Pessan L.A. Analysis of the degradation during melt processing of PLA/Biosilicate® composites. J. Compos. Sci. 2019;3:1–12. doi: 10.3390/jcs3020052. DOI

Drohsler P., Yasir M., Fabian D.R.C., Cisar J., Yadollahi Z., Sedlarik V. Comparative degradation study of a biodegradable composite based on polylactide with halloysite nanotubes and a polyacrylic acid copolymer. Mater. Today Commun. 2022;33:10440. doi: 10.1016/j.mtcomm.2022.104400. DOI

Krishnudu M.D., Reddy V.P., Kumar V.M., Reddy S.R., Rao U.A. Effect of CaCO3 filler reinforcement on PLA matrix composites fabricated through injection moulding. Phys. Scr. 2024;99:065053. doi: 10.1088/1402-4896/ad4eae. DOI

Yu Y., Zhu B., Ding Y., Zhou C., Ge S. Impacts of poly(lactic acid) microplastics on organic compound leaching and heavy metal distribution during hydrothermal treatment of sludge. Sci. Total Environ. 2023;901:166012. doi: 10.1016/j.scitotenv.2023.166012. PubMed DOI

Gbadeyan O.L. Thermomechanical characterization of bioplastic films produced using a combination of polylactic acid and bionano calcium carbonate. Sci. Rep. 2022;15538:1–9. doi: 10.1038/s41598-022-20004-1. PubMed DOI PMC

Nekhamanurak B., Patanathabutr P., Hongsriphan N. The influence of micro-/nano-CaCO3 on thermal stability and melt rheology behavior of poly(lactic acid) Energy Procedia. 2014;56:118–128. doi: 10.1016/j.egypro.2014.07.139. DOI

Kim H.-S., Park B.H., Choi J.H., Yoon J.-S. Mechanical properties and thermal stability of poly(L-lactide)/calcium carbonate composites. J. Appl. Polym. Sci. 2008;109:3087–3092. doi: 10.1002/app.28229. DOI

Tsuji H., Echizen Y., Saha S.K., Nishimura Y. Photodegradation of poly(L-lactic acid): Effects of photosensitizer. Macromol. Mater. Eng. 2008;290:1192–1203. doi: 10.1002/mame.200500278. DOI

Kalia S., Avérous L. Biodegradable and Biobased Polymers for Environmental and Biomedical Applications. 1st ed. Wiley; Hoboken, NJ, USA: 2016. pp. 171–224.

Dreier J., Brütting C., Ruckdäschel H., Altstädt V., Bonten C. Investigation of the thermal and hydrolytic degradation of polylactide during autoclave foaming. Polymers. 2021;16:2624. doi: 10.3390/polym13162624. PubMed DOI PMC

Odelius K., Hoglund A., Kumar S., Hakkarainen M., Ghosh A.K., Bhatnagar N., Albertsson A.-C. Porosity and pore size regulate the degradation product profile of polylactide. Biomacromolecules. 2011;12:1250–1258. doi: 10.1021/bm1015464. PubMed DOI

Zhou Z., Zhou J., Yi Q., Liu L., Zhao Y., Nie H., Liu X., Zou J., Chen L. Biological evaluation of poly-L-lactic acid composite containing bioactive glass. Polym. Bull. 2010;65:411–423. doi: 10.1007/s00289-010-0266-1. DOI

Dobircau L., Delpouve N., Herbinet R., Domenek S., Le Pluart L., Delbreilh L., Dacrue V., Dargent E. Molecular mobility and physical ageing of plasticized poly(lactide) Polym. Eng. Sci. 2015;55:858–865. doi: 10.1002/pen.23952. DOI

Wolf M.H., Gil-Castel O., Cea J., Carrasco J.C., Ribes-Greus A. Degradation of Plasticised Poly(lactide) Composites with nanofibrillated cellulose in different hydrothermal environments. J. Polym. Environ. 2023;31:2055–2072. doi: 10.1007/s10924-022-02711-y. DOI

Gonzala G.L., Babetto A.S., Goncalves L.M., Bettini S.H., Souza A.M. Biodegradation behavior of poly (lactic acid) samples obtained by three-dimensional printing: Influence of temperature and pigment presence. Polym. Eng. Sci. 2024;64:2812–2823. doi: 10.1002/pen.26727. DOI

Kara Y., Molnar K. Decomposition behavior of stereocomplex PLA melt-blown fine fiber mats in water and in compost. J. Polym. Environ. 2022;31:1398–1414. doi: 10.1007/s10924-022-02694-w. PubMed DOI PMC

Fortunati E., Armentano I., Iannoni A., Barbale M., Zaccheo S., Scavone M., Visai L., Kenny J.M. New multifunctional poly(lactide acid) composites: Mechanical, antibacterial, and degradation properties. J. Appl. Polym. Sci. 2012;124:1. doi: 10.1002/app.35039. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Smart and Biodegradable Polymers in Tissue Engineering and Interventional Devices: A Brief Review

. 2025 Jul 18 ; 17 (14) : . [epub] 20250718

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...