Smart and Biodegradable Polymers in Tissue Engineering and Interventional Devices: A Brief Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40732854
PubMed Central
PMC12300715
DOI
10.3390/polym17141976
PII: polym17141976
Knihovny.cz E-zdroje
- Klíčová slova
- biodegradable polymers, controlled degradation, drug delivery systems, polymeric occluders, regenerative medicine, shape-memory polymers (SMPs), smart biomaterials, tissue engineering scaffolds,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Recent advancements in polymer science have catalyzed a transformative shift in biomedical engineering, particularly through the development of biodegradable and smart polymers. This review explores the evolution, functionality, and application of these materials in areas such as tissue scaffolding, cardiovascular occluders, and controlled drug delivery systems. Emphasis is placed on shape-memory polymers (SMPs), conductive polymers, and polymer-based composites that combine tunable degradation, mechanical strength, and bioactivity. The synergy between natural and synthetic polymers-augmented by nanotechnology and additive manufacturing-enables the creation of intelligent scaffolds and implantable devices tailored for specific clinical needs. Key fabrication methods, including electrospinning, freeze-drying, and emulsion-based techniques, are discussed in relation to pore structure and functionalization strategies. Finally, the review highlights emerging trends, including ionic doping, 3D printing, and multifunctional nanocarriers, outlining their roles in the future of regenerative medicine and personalized therapeutics.
Zobrazit více v PubMed
Lancaster M.A., Renner M., Martin C.A., Wenzel D., Bicknell L.S., Hurles M.E., Homfray T., Penninger J.M., Jackson A.P., Knoblich J.A. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–379. doi: 10.1038/nature12517. PubMed DOI PMC
Damaraju S.M., Shen Y., Elele E., Khusid B., Eshghinejad A., Li J., Jaffe M., Arinzeh T.L. Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials. 2017;149:51–62. doi: 10.1016/j.biomaterials.2017.09.024. PubMed DOI
Lipskas J., Deep K., Yao W. Robotic-assisted 3D bioprinting for repairing bone and cartilage defects through a minimally invasive approach. Sci. Rep. 2019;9:3746. doi: 10.1038/s41598-019-38972-2. PubMed DOI PMC
Dallaev R. Advances in Materials with Self-Healing Properties: A Brief Review. Materials. 2024;17:2464. doi: 10.3390/ma17102464. PubMed DOI PMC
Mura S., Nicolas J., Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013;12:991–1003. doi: 10.1038/nmat3776. PubMed DOI
Roy D., Cambre J.N., Sumerlin B.S. Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci. 2010;35:278–301. doi: 10.1016/j.progpolymsci.2009.10.008. DOI
Cohn D., Younes H. Biodegradable PEO/PLA block copolymers. J. Biomed. Mater. Res. 1988;22:993–1009. doi: 10.1002/jbm.820221104. PubMed DOI
Lendlein A., Kelch S. Shape-memory polymers as stimuli-sensitive implant materials. Clin. Hemorheol. Microcirc. 2005;32:105–116. PubMed
Toncheva A., Paneva D., Manolova N., Rashkov I. Electrospun poly(ε-caprolactone) membranes containing antimicrobial agents for wound dressing applications. Appl. Surf. Sci. 2011;257:3556–3565. doi: 10.1016/j.apsusc.2010.10.123. DOI
Wan X., Chen S., Ma J., Dong C., Banerjee H., Laperrousaz S., Piveteau P.L., Meng Y., Leng J., Sorin F. Multimaterial Shape Memory Polymer Fibers for Advanced Drug Release Applications. Adv. Fiber Mater. 2025 doi: 10.1007/s42765-025-00571-4. DOI
Ye X., He Z., Liu Y., Liu X., He R., Deng G., Peng Z., Liu J., Luo Z., He X., et al. Cryogenic 3D Printing of w/o Pickering Emulsions Containing Bifunctional Drugs for Producing Hierarchically Porous Bone Tissue Engineering Scaffolds with Antibacterial Capability. Int. J. Mol. Sci. 2022;23:9722. doi: 10.3390/ijms23179722. PubMed DOI PMC
Kumar A., Jacob A. Techniques in scaffold fabrication process for tissue engineering applications: A review. J. Appl. Biol. Biotechnol. 2022;10:163–176. doi: 10.7324/JABB.2022.100321. DOI
Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018;143:172–196. doi: 10.1016/j.compositesb.2018.02.012. DOI
Casarin M., Todesco M., Fontanella C.G., Morlacco A., Dal Moro F., Bagno A. Hybrid Materials for Tissue Repair and Replacement: Another Frontier in Biomaterial Exploitation Focusing on Cardiovascular and Urological Fields. Processes. 2023;11:2013. doi: 10.3390/pr11072013. DOI
Gunja N.J., Athanasiou K.A. Biodegradable materials in arthroscopy. Sports Med. Arthrosc. Rev. 2006;14:112–119. PubMed
Liu W., Cheong N., He Z., Zhang T. Application of Hydroxyapatite Composites in Bone Tissue Engineering: A Review. J. Funct. Biomater. 2025;16:127. doi: 10.3390/jfb16040127. PubMed DOI PMC
Ginebra M.P., Espanol M., Maazouz Y., Bergez V., Pastorino D. Bioceramics and bone healing. EFORT Open Rev. 2018;3:173–183. doi: 10.1302/2058-5241.3.170056. PubMed DOI PMC
Bondarenko A.V., Islamov S.R., Ignatyev K.V., Mardashov D.V. Laboratory Studies of Polymer Compositions for Well-Kill under Increased Fracturing. Perm J. Pet. Min. Eng. 2020;20:37–48. doi: 10.15593/2224-9923/2020.1.4. PubMed DOI PMC
Cecen B., Hassan S., Li X., Zhang Y.S. Smart Biomaterials in Biomedical Applications: Current Advances and Possible Future Directions. Macromol. Biosci. 2024;24:2200550. doi: 10.1002/mabi.202200550. PubMed DOI
Zhao W., Liu L., Zhang F., Leng J., Liu Y. Shape Memory Polymers and Their Composites in Biomedical Applications. Mater. Sci. Eng. C. 2019;97:864–883. doi: 10.1016/j.msec.2018.12.054. PubMed DOI
Dayyoub T., Maksimkin A.V., Filippova O.V., Tcherdyntsev V.V., Telyshev D.V. Shape Memory Polymers as Smart Materials: A Review. Polymers. 2022;14:3511. doi: 10.3390/polym14173511. PubMed DOI PMC
Kurowiak J., Klekiel T., Będziński R. Biodegradable Polymers in Biomedical Applications: A Review—Developments, Perspectives and Future Challenges. Int. J. Mol. Sci. 2023;24:16952. doi: 10.3390/ijms242316952. PubMed DOI PMC
Socci M.C., Rodríguez G., Oliva E., Fushimi S., Takabatake K., Nagatsuka H., Felice C.J., Rodríguez A.P. Polymeric Materials, Advances and Applications in Tissue Engineering: A Review. Bioengineering. 2023;10:218. doi: 10.3390/bioengineering10020218. PubMed DOI PMC
Khan T., Vadivel G., Ramasamy B., Murugesan G., Sebaey T.A. Biodegradable Conducting Polymer-Based Composites for Biomedical Applications—A Review. Polymers. 2024;16:1533. doi: 10.3390/polym16111533. PubMed DOI PMC
Balcerak-Woźniak A., Dzwonkowska-Zarzycka M., Kabatc-Borcz J. A Comprehensive Review of Stimuli-Responsive Smart Polymer Materials—Recent Advances and Future Perspectives. Materials. 2024;17:4255. doi: 10.3390/ma17174255. PubMed DOI PMC
El-Husseiny H.M., Mady E.A., El-Dakroury W.A., Doghish A.S., Tanaka R. Stimuli-Responsive Hydrogels: Smart State of-the-Art Platforms for Cardiac Tissue Engineering. Front. Bioeng. Biotechnol. 2023;11:1174075. doi: 10.3389/fbioe.2023.1174075. PubMed DOI PMC
Li Y.F., Chen Z.W., Xie Z.F., Wang S.S., Xie Y.M., Zhang Z.W. Recent Development of Biodegradable Occlusion Devices for Intra-Atrial Shunts. Rev. Cardiovasc. Med. 2024;25:159. doi: 10.31083/j.rcm2505159. PubMed DOI PMC
Soleimanzadeh H., Rolfe B., Bodaghi M., Jamalabadi M., Zhang X., Zolfagharian A. Sustainable Robots 4D Printing. Adv. Sustain. Syst. 2023;7:2300289. doi: 10.1002/adsu.202300289. DOI
Ma W., Hua D., Xiong R., Huang C. Bio-Based Stimuli-Responsive Materials for Biomedical Applications. Mater. Adv. 2022;4:458–475. doi: 10.1039/D2MA01011A. DOI
Huang H.J., Tsai Y.L., Lin S.H., Hsu S.H. Smart Polymers for Cell Therapy and Precision Medicine. J. Biomed. Sci. 2019;26:73. doi: 10.1186/s12929-019-0571-4. PubMed DOI PMC
Machado L.G., Savi M.A. Medical Applications of Shape Memory Alloys. Braz. J. Med. Biol. Res. 2003;36:683–691. doi: 10.1590/S0100-879X2003000600001. PubMed DOI
Islam R., Maparathne S., Chinwangso P., Lee T.R. Review of Shape-Memory Polymer Nanocomposites and Their Applications. Appl. Sci. 2025;15:2419. doi: 10.3390/app15052419. DOI
Sun L., Huang W.M. Mechanisms of the multi-shape memory effect and temperature memory effect in shape memorypolymers. Mater. Des. 2010;31:2684. doi: 10.1016/j.matdes.2009.11.036. DOI
Ryan J., Cohen D.J. Are Drug-Eluting Stents Cost-Effective? It Depends on Whom You Ask. Circulation. 2006;114:1736–1743. doi: 10.1161/CIRCULATIONAHA.105.546010. PubMed DOI
Baer G.M., Small W., IV, Wilson T.S., Benett W.J., Matthews D.L., Hartman J., Maitland D.J. Fabrication and In Vitro Deployment of a Laser Activated Shape Memory Polymer Vascular Stent. Biomed. Eng. Online. 2007;6:43. doi: 10.1186/1475-925X-6-43. PubMed DOI PMC
Baer G.M., Wilson T.S., Small W., IV, Hartman J., Benett W.J., Matthews D.L., Maitland D.J. Thermomechanical properties, collapse pressure, and expansion of shape memory polymer neurovascular stent prototypes. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008;90B:421–429. doi: 10.1002/jbm.b.31301. PubMed DOI PMC
Buffington S.L., Sadeghifar H., Meenach S.A., Lannutti J.J. Enzymatically triggered shape memory polymers. Acta Biomater. 2019;84:88–97. doi: 10.1016/j.actbio.2018.11.031. PubMed DOI
Tan L., Hu J., Huang H., Han J., Hu H. Study of Multi-Functional Electrospun Composite Nanofibrous Mats for Smart Wound Healing. Int. J. Biol. Macromol. 2015;79:469–476. doi: 10.1016/j.ijbiomac.2015.05.014. PubMed DOI
Ebara M. Shape-memory polymers for mechanobiology. Sci. Technol. Adv. Mater. 2015;16:014804. doi: 10.1088/1468-6996/16/1/014804. PubMed DOI PMC
Small W., IV, Wilson T.S., Buckley P.R., Benett W.J., Loge J.M., Hartman J., Maitland D.J. Prototype fabrication and preliminary in vitro testing of a shape memory endovascular thrombectomy device. IEEE Trans. Biomed. Eng. 2007;54:1657–1666. doi: 10.1109/TBME.2007.892921. PubMed DOI
Zhao X., Guo B., Wu H., Liang Y., Ma P.X. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat. Commun. 2018;9:2784. doi: 10.1038/s41467-018-04998-9. PubMed DOI PMC
Wan X., Wei H., Zhang F., Liu Y., Leng J. 3D Printing of Shape Memory Poly(d,l-Lactide-Co-Trimethylene Carbonate) by Direct Ink Writing for Shape-Changing Structures. J. Appl. Polym. Sci. 2019;136:48177. doi: 10.1002/app.48177. DOI
Neffe A.T., Hanh B.D., Steuer S., Lendlein A. Polymer networks combining controlled drug release, biodegradation, and shape memory capability. Adv. Mater. 2009;21:3394–3398. doi: 10.1002/adma.200802333. PubMed DOI
Song L., Ahmed M.F., Li Y., Bejoy J., Zeng C., Li Y. PCL PDMS PCL Copolymer Based Microspheres Mediate Cardiovascular Differentiation from Embryonic Stem Cells. Tissue Eng. Part C Methods. 2017;23:627–640. doi: 10.1089/ten.tec.2017.0307. PubMed DOI
Elumalai D., Hosseinnezhad R., Bondarenko V., Morawiec J., Vozniak I., Galeski A. Shape Memory Polymer Foam Based on Nanofibrillar Composites of Polylactide/Polyamide. Molecules. 2024;29:5045. doi: 10.3390/molecules29215045. PubMed DOI PMC
Jafari M., Paknejad Z., Rad M.R., Motamedian S.R., Eghbal M.J., Nadjmi N., Khojasteh A. Polymeric Scaffolds in Tissue Engineering: A Literature Review. J. Biomed. Mater. Res.-Part B Appl. Biomater. 2017;105:431–459. doi: 10.1002/jbm.b.33547. PubMed DOI
Ye B., Wu B., Su Y., Sun T., Guo X. Recent Advances in the Application of Natural and Synthetic Polymer-Based Scaffolds in Musculoskeletal Regeneration. Polymers. 2022;14:4566. doi: 10.3390/polym14214566. PubMed DOI PMC
Jagtap J.S., Labhade S.D., Chitlange S.S., Mahadevan S. Biopolymer Conjugated Protein-Based Hydrogel Scaffolds for Tissue Engineering Application. Int. J. Pharm. Pharm. Res. 2020;17:284–316.
Gunther S.B., Graham J., Norris T.R., Ries M.D., Pruitt L. Wear in polyethylene components of hip and knee arthroplasty. J. Arthroplast. 2002;17:95–101. doi: 10.1054/arth.2002.27671. PubMed DOI
Tonsomboon K., Oyen M.L. Composite electrospun gelatin fiber–alginate gel scaffolds for mechanically robust tissue engineered cornea. J. Mech. Behav. Biomed. Mater. 2013;21:185–194. doi: 10.1016/j.jmbbm.2013.03.001. PubMed DOI
Yeong W.Y., Chua C.K., Leong K.F., Chandrasekaran M. Rapid prototyping in tissue engineering: Challenges and potential. Trends Biotechnol. 2004;22:643–652. doi: 10.1016/j.tibtech.2004.10.004. PubMed DOI
Zhu Y., Ke J., Zhang L. Antibacterial polymers in biomedical applications. In: Li B., Moriarty T.F., Webster T., Xing M., editors. Racing for the Surface: Antimicrobial and Interface Tissue Engineering. Springer International Publishing; Cham, Switzerland: 2020. pp. 333–348.
Donnaloja F., Jacchetti E., Soncini M., Raimondi M.T. Mechanosensing at the nanoscale: From single molecule force sensing to cell mechanosensitivity. Polymers. 2020;12:905. doi: 10.3390/polym12040905. PubMed DOI PMC
Arciola C.R., Campoccia D., Montanaro L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 2018;16:397–409. doi: 10.1038/s41579-018-0019-y. PubMed DOI
Takahashi H., Wang Y., Grainger D.W. Elevated cytokine responses from polymeric biomaterials: The role of DAMPs and immunological profiles. J. Control. Release. 2010;147:400–407. doi: 10.1016/j.jconrel.2010.08.019. PubMed DOI PMC
Wang X., Chang J., Wu C. Bioactive inorganic/organic nanocomposites for wound healing. Appl. Mater. Today. 2018;11:308–319. doi: 10.1016/j.apmt.2018.03.001. DOI
Rana M.M., De la Hoz Siegler H. Evolution of Hybrid Hydrogels: Next-Generation Biomaterials for Drug Delivery and Tissue Engineering. Gels. 2024;10:216. doi: 10.3390/gels10040216. PubMed DOI PMC
Björninen M., Gilmore K., Pelto J., Seppänen Kaijansinkkö R., Kellomäki M., Miettinen S., Wallace G., Grijpma D., Haimi S. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering. Ann. Biomed. Eng. 2017;45:1015–1026. doi: 10.1007/s10439-016-1755-7. PubMed DOI
Pan X., Sun B., Mo X. Electrospun Polypyrrole-Coated Polycaprolactone Nanoyarn Nerve Guidance Conduits for Nerve Tissue Engineering. Front. Mater. Sci. 2018;12:438–446. doi: 10.1007/s11706-018-0445-9. DOI
Zhou J.F., Wang Y.G., Cheng L., Wu Z., Sun X.D., Peng J. Preparation of Polypyrrole Embedded Electrospun Poly(Lactic Acid) Nanofibrous Scaffolds for Nerve Tissue Engineering. Neural Regen. Res. 2016;11:1644–1652. doi: 10.4103/1673-5374.193245. PubMed DOI PMC
Zanjanizadeh Ezazi N., Shahbazi M.A., Shatalin Y.V., Nadal E., Mäkilä E., Salonen J., Kemell M., Correia A., Hirvonen J., Santos H.A. Conductive Vancomycin Loaded Mesoporous Silica Polypyrrole Based Scaffolds for Bone Regeneration. Int. J. Pharm. 2018;536:241–250. doi: 10.1016/j.ijpharm.2017.11.065. PubMed DOI
Gelmi A., Zhang J., Cieslar Pobuda A., Ljunngren M.K. Electroactive 3D Materials for Cardiac Tissue Engineering. In: Bar Cohen Y., editor. Electroactive Polymer Actuators and Devices (EAPAD), Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 8–12 March 2015. Volume 9430. SPIE; San Diego, CA, USA: 2015. p. 94301T. DOI
Osman R.B., Swain M.V. A Critical Review of Dental Implant Materials with an Emphasis on Titanium versus Zirconia. Materials. 2015;8:932–958. doi: 10.3390/ma8030932. PubMed DOI PMC
Toncheva A., Khelifa F., Paint Y., Voué M., Lambert P., Dubois P., Raquez J.M. Fast IR-actuated shape-memory polymers using in situ silver nanoparticle-grafted cellulose nanocrystals. ACS Appl. Mater. Interfaces. 2018;10:29933–29942. doi: 10.1021/acsami.8b10159. PubMed DOI
Raphael B., Khalil T., Workman V.L., Smith A., Brown C.P., Streuli C., Saiani A., Domingos M. 3D Cell Bioprinting of Self-Assembling Peptide-Based Hydrogels. Mater. Lett. 2017;190:103–106. doi: 10.1016/j.matlet.2016.12.127. DOI
Asti A., Gioglio L. Natural and Synthetic Biodegradable Polymers: Different Scaffolds for Cell Expansion and Tissue Formation. Int. J. Artif. Organs. 2014;37:187–205. doi: 10.5301/ijao.5000307. PubMed DOI
Hamblin M.R., Huang Y.Y., Sharma S.K., Carroll J. Biphasic dose response in low level light therapy—An update. Dose-Response. 2011;9:602–618. PubMed PMC
Gkogkos A.S., Karoussis I.K., Prevezanos I.D., Marcopoulou K.E., Kyriakidou K., Vrotsos I.A. Effect of Nd:YAG Low Level Laser Therapy on Human Gingival Fibroblasts. Int. J. Dent. 2015;2015:258941. doi: 10.1155/2015/258941. PubMed DOI PMC
Sharma U., Concagh D., Core L., Kuang Y., You C., Pham Q., Zugates G., Busold R., Webber S., Merlo J., et al. The Development of Bioresorbable Composite Polymeric Implants with High Mechanical Strength. Nat. Mater. 2018;17:96–103. doi: 10.1038/nmat5016. PubMed DOI
Jahnavi S., Saravanan U., Arthi N., Bhuvaneshwar G.S., Kumary T.V., Rajan S., Verma R.S. Biological and Mechanical Evaluation of a Bio-Hybrid Scaffold for Autologous Valve Tissue Engineering. Mater. Sci. Eng. C. 2017;73:59–71. doi: 10.1016/j.msec.2016.11.116. PubMed DOI
Rizik D.G., Hermiller J.B., Kereiakes D.J. The ABSORB Bioresorbable Vascular Scaffold: A Novel, Fully Resorbable Drug-Eluting Stent: Current Concepts and Overview of Clinical Evidence. Catheter. Cardiovasc. Interv. 2015;86:664–677. doi: 10.1002/ccd.26172. PubMed DOI
Zhu L.Y., Li L., Shi J.P., Li Z.A., Yang J.Q. Mechanical characterization of 3D printed multi-morphology porous Ti6Al4V scaffolds based on triply periodic minimal surface architectures. Am. J. Transl. Res. 2018;10:3443–3454. PubMed PMC
Yang F., Chen C., Zhou Q., Gong Y., Li R., Li C., Klämpfl F., Freund S., Wu X., Sun Y., et al. Laser beam melting 3D printing of Ti6Al4V based porous structured dental implants: Fabrication, biocompatibility analysis and photoelastic study. Sci. Rep. 2017;7:45360. doi: 10.1038/srep45360. PubMed DOI PMC
Holten C.H. Lactic Acid: Properties and Chemistry of Lactic Acid and Derivatives. Verlag Chemie; Weinheim, Germany: 1971. 566p.
Cohn D., Younes H., Marom G. Amorphous and Crystalline Morphologies in Glycolic Acid and Lactic Acid Polymers. Polymer. 1987;28:2018–2022. doi: 10.1016/0032-3861(87)90035-8. DOI
Bezwada R.S., Jamiolkowski D.D., Lee I.-Y., Agarwal V., Persivale J., Trenka-Benthin S., Erneta M., Suryadevara J., Yang A., Liu S. Monocryl Suture, a New Ultra-Pliable Absorbable Monofilament Suture. Biomaterials. 1995;16:1141–1148. doi: 10.1016/0142-9612(95)93577-Z. PubMed DOI
Deshpande A.A., Heller J., Gurny R. Bioerodible Polymers for Ocular Drug Delivery. Crit. Rev. Ther. Drug Carrier Syst. 1998;15:381–420. doi: 10.1615/CritRevTherDrugCarrierSyst.v15.i4.20. PubMed DOI
Engelberg I., Kohn J. Physico-mechanical properties of degradable polymers used in medical applications: A comparative study. Biomaterials. 1991;12:292–304. doi: 10.1016/0142-9612(91)90037-B. PubMed DOI
Nho Y.-C., Park J.-S., Lim Y.-M. Preparation of Poly(acrylic acid) Hydrogel by Radiation Crosslinking and Its Application for Mucoadhesives. Polymers. 2014;6:890–898. doi: 10.3390/polym6030890. DOI
Li Y., Vora L.K., Wang J., Sabri A.H.B., Graham A., McCarthy H.O., Donnelly R.F. Poly(acrylic acid)/Poly(vinyl alcohol) Microarray Patches for Continuous Transdermal Delivery of Levodopa and Carbidopa: In Vitro and In Vivo Studies. Pharmaceutics. 2024;16:676. doi: 10.3390/pharmaceutics16050676. PubMed DOI PMC
Hari S.K., Gauba A., Shrivastava N., Tripathi R.M., Jain S.K., Pandey A.K. Polymeric micelles and cancer therapy: An ingenious multimodal tumor-targeted drug delivery system. Drug Deliv. Transl. Res. 2023;13:135–163. doi: 10.1007/s13346-022-01197-4. PubMed DOI
Li Y., Thouas G.A., Chen Q.Z. Biodegradable Soft Elastomers: Synthesis/Properties of Materials and Fabrication of Scaffolds. RSC Adv. 2012;2:8229–8242. doi: 10.1039/c2ra20736b. DOI
Yang J., Webb A.R., Pickerill S.J., Hageman G., Ameer G.A. Synthesis and Evaluation of Poly(Diol Citrate) Biodegradable Elastomers. Biomaterials. 2006;27:1889–1898. doi: 10.1016/j.biomaterials.2005.05.106. PubMed DOI
Gyawali D., Nair P., Kim H.K.W., Yang J. Citrate-Based Biodegradable Injectable Hydrogel Composites for Orthopedic Applications. Biomater. Sci. 2013;1:52–64. doi: 10.1039/C2BM00026A. PubMed DOI PMC
Qiu H., Yang J., Kodali P., Koh J., Ameer G.A. A Citric Acid-Based Hydroxyapatite Composite for Orthopedic Implants. Biomaterials. 2006;27:5845–5854. doi: 10.1016/j.biomaterials.2006.07.042. PubMed DOI
Liu H., Liu S., Xiao Z., Chen Q., Yang D. Excess molar enthalpies of binary mixtures for (tributyl phosphate + methanol/ethanol) at 298.15 K. J. Therm. Anal. Calorim. 2006;85:541–544. doi: 10.1007/s10973-006-7635-x. DOI
Oh S.H., Kang S.G., Kim E.S., Cho S.H., Lee J.H. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate leaching method. Biomaterials. 2003;24:4011–4021. doi: 10.1016/S0142-9612(03)00284-9. PubMed DOI
Ren Y., Hu X., Chen Y., Liu L., Qu R., Xu H., Song X. A Drug-Loaded Amphiphilic Polymer/Poly(L-Lactide) Shape-Memory System. Int. J. Biol. Macromol. 2022;217:1037–1043. doi: 10.1016/j.ijbiomac.2022.07.167. PubMed DOI
Nie L., Wu Q., Long H., Hu K., Li P., Wang C., Sun M., Dong J., Wei X., Suo J., et al. Development of chitosan/gelatin hydrogels incorporating biphasic calcium phosphate nanoparticles for bone tissue engineering. J. Biomater. Sci. Polym. Ed. 2019;30:1636–1657. doi: 10.1080/09205063.2019.1654210. PubMed DOI
Yun P.-Y., Kim Y.-K., Jeong K.-I., Park J.-C., Choi Y.-J. Influence of bone morphogenetic protein and proportion of hydroxyapatite on new bone formation in biphasic calcium phosphate graft: Two pilot studies in animal bony defect model. J. Cranio-Maxillofac. Surg. 2014;42:1909–1917. doi: 10.1016/j.jcms.2014.07.011. PubMed DOI
Yan L.-P., Silva-Correia J., Oliveira M.B., Vilela C., Pereira H., Sousa R.A., Mano J.F., Oliveira A.L., Oliveira J.M., Reis R.L. Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance. Acta Biomater. 2015;12:227–241. doi: 10.1016/j.actbio.2014.10.021. PubMed DOI
Yan L.-P., Silva-Correia J., Correia C., Caridade S.G., Fernandes E.M., Sousa R.A., Mano J.F., Oliveira A.L., Oliveira J.M., Reis R.L. Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomedicine. 2013;8:359–378. doi: 10.2217/nnm.12.118. PubMed DOI
Bochicchio B., Barbaro K., De Bonis A., Rau J.V., Pepe A. Electrospun poly(d,l-lactide)/gelatin/glass-ceramics tricomponent nanofibrous scaffold for bone tissue engineering. J. Biomed. Mater. Res. Part A. 2020;108:1064–1076. doi: 10.1002/jbm.a.36882. PubMed DOI
Ramakrishna S., Mayer J., Wintermantel E., Leong K.W. Biomedical applications of polymer-composite materials: A review. Compos. Sci. Technol. 2001;61:1189. doi: 10.1016/S0266-3538(00)00241-4. DOI
Chiellini F., Ferri M., Morelli A., Dipaola L., Latini G. Perspectives on Alternatives and Additives to Phthalate Plasticized PVC in Medical Devices. Prog. Polym. Sci. 2013;38:1067–1088. doi: 10.1016/j.progpolymsci.2013.03.001. DOI
Schwitalla A.D., Spintig T., Kallage I., Müller W.-D. Flexural Behavior of PEEK Materials for Dental Application. Dent. Mater. 2015;31:1377–1384. doi: 10.1016/j.dental.2015.08.151. PubMed DOI
Song J., Xiang D., Wang S., Liao Z., Lu J., Liu Y., Liu W., Peng Z. In vitro wear study of PEEK and CFRPEEK against UHMWPE for artificial cervical disc application. Tribol. Int. 2018;122:218–227. doi: 10.1016/j.triboint.2018.02.034. DOI
Xu R., Ma S., Wu Y., Lee H., Zhou F., Liu W. Adaptive control in lubrication, adhesion, and hemostasis by Chitosan–Catechol–pNIPAM. Biomater. Sci. 2019;7:3599–3611. doi: 10.1039/C9BM00697D. PubMed DOI
Ullah K., Ali Khan S., Murtaza G., Sohail M., Azizullah, Manan A., Afzal A. Gelatin-Based Hydrogels as Potential Biomaterials for Colonic Delivery of Oxaliplatin. Int. J. Pharm. 2019;556:236–245. doi: 10.1016/j.ijpharm.2018.12.020. PubMed DOI
Zhai X., Ma Y., Hou C., Gao F., Zhang Y., Ruan C., Pan H., Lu W.W., Liu W. 3D-printed high strength bioactive supramolecular polymer/clay nanocomposite hydrogel scaffold for bone regeneration. ACS Biomater. Sci. Eng. 2017;3:1109–1118. doi: 10.1021/acsbiomaterials.7b00224. PubMed DOI
Wang Y.-J., Jeng U.-S., Hsu S.-H. Biodegradable Water-Based Polyurethane Shape Memory Elastomers for Bone Tissue Engineering. ACS Biomater. Sci. Eng. 2018;4:1397–1406. doi: 10.1021/acsbiomaterials.8b00091. PubMed DOI
Hergenrother P.M. The Use, Design, Synthesis, and Properties of High-Performance/High-Temperature Polymers: An Overview. High Perform. Polym. 2003;15:3–45. doi: 10.1177/095400830301500101. DOI
Ren H., Bull J.L., Meyerhoff M.E. Transport of Nitric Oxide (NO) in Various Biomedical-Grade Polyurethanes: Measurements and Modeling Impact on NO Release Properties of Medical Devices. ACS Biomater. Sci. Eng. 2016;2:1483–1492. doi: 10.1021/acsbiomaterials.6b00215. PubMed DOI PMC
Xu L.C., Meyerhoff M.E., Siedlecki C.A. Blood Coagulation Response and Bacterial Adhesion to Biomimetic Polyurethane Biomaterials Prepared with Surface Texturing and Nitric Oxide Release. Acta Biomater. 2019;84:77–87. doi: 10.1016/j.actbio.2018.11.035. PubMed DOI PMC
Wang C., Zolotarskaya O., Ashraf K.M., Wen X., Ohman D.E., Wynne K.J. Surface Characterization, Antimicrobial Effectiveness, and Human Cell Response for a Biomedical-Grade Polyurethane Blended with Mixed-Soft-Block PTMO-Quat/PEG Copolyoxetane Polyurethane. ACS Appl. Mater. Interfaces. 2019;11:20699–20714. doi: 10.1021/acsami.9b04697. PubMed DOI
Castel N., Soon-Sutton T., Deptula P., Flaherty A., Parsa F.D. Polyurethane-Coated Breast Implants Revisited: A 30-Year Follow-Up. Arch. Plast. Surg. 2015;42:186–193. doi: 10.5999/aps.2015.42.2.186. PubMed DOI PMC
Wang W., Wang C., Davim J.P. The Design and Manufacture of Medical Devices. Woodhead Publishing; Oxford, UK: 2012. pp. 115–151. DOI
Wildgruber M., Lueg C., Borgmeyer S., Karimov I., Braun U., Kiechle M., Meier R., Koehler M., Ettl J., Berger H. The Role of Image-Guided Biopsy in Metastatic Breast Cancer. Eur. J. Cancer. 2016;59:113–124. doi: 10.1016/j.ejca.2016.02.011. PubMed DOI
Singhal P., Small W., Cosgriff-Hernandez E., Maitland D.J., Wilson T.S. Low-Density Biodegradable Shape memory Polyurethane Foams for Embolic Biomedical Applications. Acta Biomater. 2014;10:67–76. doi: 10.1016/j.actbio.2013.09.027. PubMed DOI PMC
Bil M., Jurczyk-Kowalska M., Kopeć K., Heljak M. Study of Correlation between Structure and Shape-Memory Effect/Drug-Release Profile of Polyurethane/Hydroxyapatite Composites for Antibacterial Implants. Polymers. 2023;15:938. doi: 10.3390/polym15040938. PubMed DOI PMC
Cherng J.Y., Hou T.Y., Shih M.F., Talsma H., Hennink W.E. Polyurethane-Based Drug Delivery Systems. Int. J. Pharm. 2013;450:145–162. doi: 10.1016/j.ijpharm.2013.04.063. PubMed DOI
Guo Q., Knight P.T., Mather P.T. Tailored Drug Release from Biodegradable Stent Coatings Based on Hybrid Polyurethanes. J. Control. Release. 2009;137:224–233. doi: 10.1016/j.jconrel.2009.04.016. PubMed DOI
Lowinger M.B., Barrett S.E., Zhang F., Williams R.O., III Sustained Release Drug Delivery Applications of Polyurethanes. Pharmaceutics. 2018;10:55. doi: 10.3390/pharmaceutics10020055. PubMed DOI PMC
Kucińska-Lipka J. Polyurethanes Crosslinked with Poly(Vinyl Alcohol) as Slowly Degradable and Hydrophilic Materials of Potential Use in Regenerative Medicine. Materials. 2018;11:352. doi: 10.3390/ma11030352. PubMed DOI PMC
Zhou L., Liang D., He X., Li J., Tan H., Li J., Fu Q., Gu Q. The Degradation and Biocompatibility of pH-Sensitive Biodegradable Polyurethanes for Intracellular Multifunctional Antitumor Drug Delivery. Biomaterials. 2012;33:2734–2745. doi: 10.1016/j.biomaterials.2011.11.009. PubMed DOI
Kucinska-Lipka J., Gubanska I., Janik H., Pokrywczynska M., Drewa T. L-Ascorbic Acid Modified Poly(Ester Urethane)s as Suitable Candidates for Soft Tissue Engineering Applications. React. Funct. Polym. 2015;97:105–115. doi: 10.1016/j.reactfunctpolym.2015.10.008. DOI
Kucińska-Lipka J., Gubanska I., Skwarska A. Microporous Polyurethane Thin Layer as a Promising Scaffold for Tissue Engineering. Polymers. 2017;9:277. doi: 10.3390/polym9070277. PubMed DOI PMC
Lipka J.K., Lewandowska I.G.A., Pokrywczynska M., Ramakrishna S. Antibacterial Polyurethanes Modified with Cinnamaldehyde as Potential Materials for Wound Dressings. Polym. Bull. 2018;75:2955–2976.
Heureux L., Fricain J.-C., Catros S., Le Nihouannen D. Characterization of Printed PLA Scaffolds for Bone Tissue Engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2018;106:887–894. doi: 10.1002/jbm.b.33999. PubMed DOI
Mi H., Jing X., Yu E., Wang X., Li Q., Turng L.-S. Manipulating the Structure and Mechanical Properties of Thermoplastic Polyurethane/Polycaprolactone Hybrid Small-Diameter Vascular Scaffolds Fabricated via Electrospinning Using an Assembled Rotating Collector. J. Mech. Behav. Biomed. Mater. 2018;78:433–441. doi: 10.1016/j.jmbbm.2017.11.046. PubMed DOI
Li L., Li Q., Yang J., Sun L., Guo J., Yao Y., Zhong L., Li D. Enhancement in Mechanical Properties and Cell Activity of Polyurethane Scaffold Derived from Gastrodin. Mater. Lett. 2018;228:435–438. doi: 10.1016/j.matlet.2018.06.061. DOI
Barnes C.P., Sell S.A., Boland E.D., Simpson D.G., Bowlin G.L. Nanofiber Technology: Designing the Next Generation of Tissue Engineering Scaffolds. Adv. Drug Deliv. Rev. 2007;59:1413–1433. doi: 10.1016/j.addr.2007.04.022. PubMed DOI
Zhang S., Wang L., Yang S., Gong Y. Improved Biocompatibility of Phosphorylcholine End-Capped Poly(Butylene Succinate) Sci. China Chem. 2013;56:174–180. doi: 10.1007/s11426-012-4759-7. DOI
Hou Z., Xu J., Teng J., Jia Q., Wang X. Facile Preparation of Medical Segmented Poly(Ester-Urethane) Containing Uniformly Sized Hard Segments and Phosphorylcholine Groups for Improved Hemocompatibility. Mater. Sci. Eng. C. 2020;109:110571. doi: 10.1016/j.msec.2019.110571. PubMed DOI
Gudiño-Rivera J., Medellín-Rodríguez F.J., Ávila-Orta C., Palestino-Escobedo A.G., Sánchez-Valdés S. Structure/Property Relationships of Poly(L-Lactic Acid)/Mesoporous Silica Nanocomposites. J. Polym. 2013;2013:729061. doi: 10.1155/2013/162603. DOI
Lipsa R., Tudorachi N., Vasile C.P. Poly(α-Hydroxy Acids) in Biomedical Applications: Synthesis and Properties of Lactic Acid Polymers. e-Polymers. 2010;10:350–364. doi: 10.1515/epoly.2010.10.1.946. DOI
Ulery B.D., Nair L.S., Laurencin C.T. Biomedical Applications of Biodegradable Polymers. J. Polym. Sci. B Polym. Phys. 2011;49:832–864. doi: 10.1002/polb.22259. PubMed DOI PMC
Liechty W.B., Kryscio D.R., Slaughter B.V., Peppas N.A. Polymers for Drug Delivery Systems. Annu. Rev. Chem. Biomol. Eng. 2010;1:149–173. doi: 10.1146/annurev-chembioeng-073009-100847. PubMed DOI PMC
Patil N.V. Smart Polymers Are in the Biotech Future. BioProcess Int. 2006;4:42–46.
Galaev I., Mattiasson B. Smart Polymers and What They Could Do in Biotechnology and Medicine. Trends Biotechnol. 1999;17:335–340. doi: 10.1016/S0167-7799(99)01345-1. PubMed DOI
Kim Y.H., Kwon I.C., Bae Y.H., Kim S.W. Saccharide Effect on the Lower Critical Solution Temperature of Thermo-Sensitive Polymers. Macromolecules. 1995;28:939–944. doi: 10.1021/ma00108a022. DOI
National Research Council (U.S.) Board on Chemical Sciences and Technology. Polymer Science and Engineering: The Shifting Research Frontiers. Royal Society of Chemistry; London, UK: 1994.
Liu P., Jimaja S., Immel S., Thomas C., Mayer M., Weder C., Bruns N. Mechanically triggered on-demand degradation of polymers synthesized by radical polymerizations. Nat. Chem. 2024;16:1184–1192. doi: 10.1038/s41557-024-01508-x. PubMed DOI PMC
Becker F., Klaiber M., Franzreb M., Bräse S., Lahann J. On Demand Light-Degradable Polymers Based on 9,10-Dialkoxyanthracenes. Macromol. Rapid Commun. 2020;41:2000314. doi: 10.1002/marc.202000314. PubMed DOI
Li S., Zhang H., Zhong J., Zhang B., Zhang K., Zhang Y., Li L., Yang Y., Wu Y., Hoogenboom R. X-ray-Induced Photodegradation of Hydrogels by the Incorporation of X-ray-Activated Long Persistent Luminescent Nanoparticles. J. Am. Chem. Soc. 2025;147:20273–20283. doi: 10.1021/jacs.4c14477. PubMed DOI
Png Z.M., Wang C.G., Yeo J.C.C., Lee J.J.C., Surat’man N.E., Tan Y.L., Liu H., Wang P., Tan B.H., Xu J.W., et al. Stimuli-Responsive Structure-Property Switchable Polymer Materials. Mol. Syst. Des. Eng. 2023;8:1097–1129. doi: 10.1039/D3ME00002H. DOI
Choi H., Choi B., Yu B., Li W., Matsumoto M.M., Harris K.R., Lewandowski R.J., Larson A.C., Mouli S.K., Kim D.H. On-Demand Degradable Embolic Microspheres for Immediate Restoration of Blood Flow during Image-Guided Embolization Procedures. Biomaterials. 2021;265:120408. doi: 10.1016/j.biomaterials.2020.120408. PubMed DOI PMC
Li W., Bei Y., Pan X., Zhu J., Zhang Z., Zhang T., Liu J., Wu D., Li M., Wu Y., et al. Selenide-Linked Polydopamine-Reinforced Hybrid Hydrogels with on-Demand Degradation and Light-Triggered Nanozyme Release for Diabetic Wound Healing. Biomater. Res. 2023;27:49. doi: 10.1186/s40824-023-00367-w. PubMed DOI PMC
Mulchandani N., Narayan R. Redesigning Carbon–Carbon Backbone Polymers for Biodegradability–Compostability at the End-of-Life Stage. Molecules. 2023;28:3832. doi: 10.3390/molecules28093832. PubMed DOI PMC
Arsuffi B., Siqueira G., Nyström G., Titotto S., Magrini T., Daraio C. Programmable Multi-Responsive Nanocellulose-Based Hydrogels with Embodied Logic. Adv. Funct. Mater. 2024;34:2409864. doi: 10.1002/adfm.202409864. DOI
Miklavčič D., Pavšelj N., Hart F.X. Electric Properties of Tissues. In: Akay M., editor. Wiley Encyclopedia of Biomedical Engineering. Wiley-Interscience; Hoboken, NJ, USA: 2006. pp. 1–12. DOI
Guarino V., Alvarez-Perez M.A., Borriello A., Napolitano T., Ambrosio L. Conductive PANi/PEGDA macroporous hydrogels for nerve regeneration. Adv. Healthc. Mater. 2013;2:218–227. doi: 10.1002/adhm.201200152. PubMed DOI
Li L., Ge J., Wang L., Guo B., Ma P.X. Electroactive nanofibrous biomimetic scaffolds by thermally induced phase separation. J. Mater. Chem. B. 2014;2:6119–6130. doi: 10.1039/C4TB00493K. PubMed DOI
Guo B., Finne-Wistrand A., Albertsson A.-C. Facile Synthesis of Degradable and Electrically Conductive Polysaccharide Hydrogels. Biomacromolecules. 2011;12:2601–2609. doi: 10.1021/bm200389t. PubMed DOI
Wei Z., Faul C.F.J. Aniline Oligomers—Architecture, Function and New Opportunities for Nanostructured Materials. Macromol. Rapid Commun. 2008;29:280–292. doi: 10.1002/marc.200700741. DOI
Hardy J.G., Mouser D.J., Arroyo-Currás N., Geissler S., Chow J.K., Nguy L., Kim J.M., Schmidt C.E. Biodegradable Electroactive Polymers for Electrochemically-Triggered Drug Delivery. J. Mater. Chem. B. 2014;2:6809–6822. doi: 10.1039/C4TB00355A. PubMed DOI
Green R., Abidian M.R. Conducting Polymers for Neural Prosthetic and Neural Interface Applications. Adv. Mater. 2015;27:7620–7637. doi: 10.1002/adma.201501810. PubMed DOI PMC
Yang G., Kampstra K.L., Abidian M.R. High-Performance Conducting Polymer Nanofiber Biosensors for Detection of Biomolecules. Adv. Mater. 2014;26:5068–5072. doi: 10.1002/adma.201470201. PubMed DOI PMC
Ghasemi-Mobarakeh L., Prabhakaran M.P., Morshed M., Nasr-Esfahani M.H., Baharvand H., Kiani S., Al-Deyab S.S., Ramakrishna S. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J. Tissue Eng. Regen. Med. 2011;5:e17–e35. doi: 10.1002/term.383. PubMed DOI
Bidez P.R., Li S., MacDiarmid A.G., Venancio E.C., Wei Y., Lelkes P.I. Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J. Biomater. Sci. Polym. Ed. 2006;17:199–212. doi: 10.1163/156856206774879180. PubMed DOI
Polo-Corrales L., Latorre-Esteves M., Ramirez-Vick J.E. Scaffold design for bone regeneration. J. Nanosci. Nanotechnol. 2014;14:15–56. doi: 10.1166/jnn.2014.9127. PubMed DOI PMC
Tahmasbi Rad A., Ali N., Kotturi H.S.R., Yazdimamaghani M., Smay J., Vashaee D., Tayebi L. Conducting scaffolds for liver tissue engineering. J. Biomed. Mater. Res. A. 2014;102:4169–4181. doi: 10.1002/jbm.a.35080. PubMed DOI
Mihardja S.S., Sievers R.E., Lee R.J. The effect of polypyrrole on arteriogenesis in an acute rat infarct model. Biomaterials. 2008;29:4205–4210. doi: 10.1016/j.biomaterials.2008.07.021. PubMed DOI PMC
Nishizawa M., Nozaki H., Kaji H., Kitazume T., Kobayashi N., Ishibashi T., Abe T. Electrodeposition of anchored polypyrrole film on microelectrodes and stimulation of cultured cardiac myocytes. Biomaterials. 2007;28:1480–1485. doi: 10.1016/j.biomaterials.2006.11.034. PubMed DOI
Gharibi R., Yeganeh H., Rezapour-Lactoee A., Hassan Z.M. Stimulation of Wound Healing by Electroactive, Antibacterial, and Antioxidant Polyurethane/Siloxane Dressing Membranes: In Vitro and in Vivo Evaluations. ACS Appl. Mater. Interfaces. 2015;7:24296–24311. doi: 10.1021/acsami.5b08376. PubMed DOI
Liu Y., Cui H., Zhuang X., Zhang P., Cui Y., Wang X., Chen X., Wei Y. Nano-hydroxyapatite surfaces grafted with electroactive aniline tetramers for bone-tissue engineering. Macromol. Biosci. 2013;13:356–365. doi: 10.1002/mabi.201200345. PubMed DOI
Touri R., Moztarzadeh F., Sadeghian Z., Bizari D., Mozafari M. Use of carbon nanotubes to reinforce 45S5 bioglass-based scaffolds for tissue engineering applications. BioMed Res. Int. 2013;2013:465086. doi: 10.1155/2013/465086. PubMed DOI PMC
Cao J., Man Y., Li L. Electrical Stimuli Improve Osteogenic Differentiation Mediated by Aniline Pentamer and PLGA Nanocomposites. Biomed. Rep. 2013;1:428–432. doi: 10.3892/br.2013.70. PubMed DOI PMC
Zhang L., Li Y., Li L., Guo B., Ma P.X. Non-Cytotoxic Conductive Carboxymethyl-Chitosan/Aniline Pentamer Hydrogels. React. Funct. Polym. 2014;82:81–88. doi: 10.1016/j.reactfunctpolym.2014.06.003. DOI
Huang L., Hu J., Lang L., Wang X., Zhang P., Jing X., Wang Y., Chen X., Lelkes P.I., MacDiarmid A.G., et al. Synthesis and Characterization of Electroactive and Biodegradable ABA Block Copolymer of Polylactide and Aniline Pentamer. Biomaterials. 2007;28:1741–1751. doi: 10.1016/j.biomaterials.2006.12.007. PubMed DOI
Green T.R., Fisher J., Matthews J.B., Stone M.H., Ingham E. Effect of size and dose on bone resorption activity of macrophages by in vitro clinically relevant ultra high molecular weight polyethylene particles. J. Biomed. Mater. Res. 2000;53:490–497. doi: 10.1002/1097-4636(200009)53:5<490::AID-JBM7>3.0.CO;2-7. PubMed DOI
Kashi M., Baghbani F., Moztarzadeh F., Mobasheri H., Kowsari E. Green synthesis of degradable conductive thermosensitive oligopyrrole/chitosan hydrogel intended for cartilage tissue engineering. Int. J. Biol. Macromol. 2018;107:1567–1575. doi: 10.1016/j.ijbiomac.2017.10.015. PubMed DOI
Schmidt C., Rivers T.J., Hudson T.W., Collier J.H. Modification of Electroactive Biomaterials for Neural Engineering Applications. ACS Symp. Ser. 2003;832:154–165. doi: 10.1021/bk-2003-0832.ch012. DOI
Ali A., Kamra M., Roy S., Muniyappa K., Bhattacharya S., Sasor A. Novel Oligopyrrole Carboxamide Based Nickel(II) and Palladium(II) Salens, Their Targeting of Human G-Quadruplex DNA, and Selective Cancer Cell Toxicity. Chem.–Asian J. 2016;11:2542–2554. doi: 10.1002/asia.201600655. PubMed DOI
Spicer C.D., Booth M.A., Mawad D., Armgarth A., Nielsen C.B., Stevens M.M. Synthesis of Hetero-Bifunctional, End-Capped Oligo-EDOT Derivatives. Chem. 2017;2:125–138. doi: 10.1016/j.chempr.2016.12.003. PubMed DOI PMC
Zhang D., Shadrin I.Y., Lam J., Xian H.-Q., Snodgrass H.R., Bursac N. Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials. 2013;34:5813–5820. doi: 10.1016/j.biomaterials.2013.04.026. PubMed DOI PMC
Hasan A., Khattab A., Islam M.A., Abou Hweij K., Zeitouny J., Waters R., Sayegh M., Hossain M.M., Paul A. Injectable hydrogels for cardiac tissue repair after myocardial infarction. Adv. Sci. 2015;2:1500122. doi: 10.1002/advs.201500122. PubMed DOI PMC
Kim P.H., Cho J.Y. Myocardial tissue engineering using electrospun nanofiber composites. BMB Rep. 2016;49:26–36. doi: 10.5483/BMBRep.2016.49.1.165. PubMed DOI PMC
Hasan A., Morshed M., Memic A., Hassan S., Webster T.J., Marei H.E.-S. Nanoparticles in tissue engineering: Applications, challenges and prospects. Int. J. Nanomed. 2018;13:5637–5655. doi: 10.2147/IJN.S153758. PubMed DOI PMC
Ciocci M., Mochi F., Carotenuto F., Di Giovanni E., Prosposito P., Francini R., De Matteis F., Reshetov I., Casalboni M., Melino S., et al. Scaffold in Scaffold Potential to Induce Growth and Differentiation of Cardiac Progenitor Cells. Stem Cells Dev. 2017;26:1438–1447. doi: 10.1089/scd.2017.0051. PubMed DOI
Carotenuto F., Teodori L., Maccari A.M., Delbono L., Orlando G., Di Nardo P. Turning regenerative technologies into treatment to repair myocardium injuries. J. Cell. Mol. Med. 2020;24:2704–2716. doi: 10.1111/jcmm.14630. PubMed DOI PMC
Carotenuto F., Manzari V., Di Nardo P. Cardiac Regeneration: The Heart of the Issue. Curr. Transpl. Rep. 2021;8:67–75. doi: 10.1007/s40472-021-00319-0. DOI
Lalegül Ülker Ö., Murat Y. Magnetic and electrically conductive silica coated iron oxide/polyaniline nanocomposites for biomedical applications. Mater. Sci. Eng. C. 2021;119:111600. doi: 10.1016/j.msec.2020.111600. PubMed DOI
Karimi Soflou R., Nejati S., Karkhaneh A. Electroactive and antioxidant injectable in situ forming hydrogels with tunable properties by polyethylenimine and polyaniline for nerve tissue engineering. Colloids Surf. B Biointerfaces. 2021;199:111565. doi: 10.1016/j.colsurfb.2021.111565. PubMed DOI
Zhang M., Guo B. Electroactive 3D Scaffolds Based on Silk Fibroin and Water Borne Polyaniline for Skeletal Muscle Tissue Engineering. Macromol. Biosci. 2017;17:1700147. doi: 10.1002/mabi.201700147. PubMed DOI
Wibowo A., Vyas C., Cooper G., Qulub F., Suratman R., Mahyuddin A.I., Dirgantara T., Bartolo P. 3D Printing of Polycaprolactone–Polyaniline Electroactive Scaffolds for Bone Tissue Engineering. Materials. 2020;13:512. doi: 10.3390/ma13030512. PubMed DOI PMC
Choi C.H., Park S.H., Woo S.I. Binary and Ternary Doping of Nitrogen, Boron, and Phosphorus into Carbon for Enhancing Electrochemical Oxygen Reduction Activity. ACS Nano. 2012;6:7084–7091. doi: 10.1021/nn3021234. PubMed DOI
Heo D.N., Lee S.J., Timsina R., Qiu X., Castro N.J., Zhang L.G. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Mater. Sci. Eng. C. 2019;99:582–590. doi: 10.1016/j.msec.2019.02.008. PubMed DOI
Guex A.G., Puetzer J.L., Armgarth A., Littmann E., Stavrinidou E., Giannelis E.P., Malliaras G.G., Stevens M.M. Highly porous scaffolds of PEDOT:PSS for bone tissue engineering. Acta Biomater. 2017;62:91–101. doi: 10.1016/j.actbio.2017.08.045. PubMed DOI PMC
Lu B., Yuk H., Lin S., Jian N., Qu K., Xu J., Zhao X. Pure PEDOT:PSS hydrogels. Nat. Commun. 2019;10:1043. doi: 10.1038/s41467-019-09003-5. PubMed DOI PMC
Daculsi G., Laboux O., Malard O., Weiss P. Current state of the art of biphasic calcium phosphate bioceramics. J. Mater. Sci. Mater. Med. 2003;14:195–200. doi: 10.1023/A:1022842404495. PubMed DOI
Bohner M. Calcium orthophosphates in medicine: From ceramics to calcium phosphate cements. Injury. 2000;31((Suppl. S4)):37–47. doi: 10.1016/S0020-1383(00)80022-4. PubMed DOI
Silva T.H., Alves A., Ferreira B.M., Oliveira J.M., Reys L.L., Ferreira R.J.F., Sousa R.A., Silva S.S., Mano J.F., Reis R.L. Materials of marine origin: A review on polymers and ceramics of biomedical interest. Int. Mater. Rev. 2012;57:276–306. doi: 10.1179/1743280412Y.0000000002. DOI
Oliveira J., Costa S., Leonor I., Malafaya P., Mano J., Reis R. Novel hydroxyapatite/carboxymethylchitosan composite scaffolds prepared through an innovative “autocatalytic” electroless coprecipitation route. J. Biomed. Mater. Res. A. 2009;88:470–480. doi: 10.1002/jbm.a.31817. PubMed DOI
Oliveira J.M., Kotobuki N., Tadokoro M., Hirose M., Mano J.F., Reis R.L., Ohgushi H. Ex vivo culturing of stromal cells with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles promotes ectopic bone formation. Bone. 2010;46:1424–1435. doi: 10.1016/j.bone.2010.02.007. PubMed DOI
Piña S., Ferreira J. Brushite-forming Mg-, Zn- and Sr-substituted bone cements for clinical applications. Materials. 2010;3:519–535. doi: 10.3390/ma3010519. DOI
Tomoaia G., Mocanu A., Vida-Simiti I., Jumate N., Bobos L.D., Soritau O., Tomoaia-Cotisel M. Silicon effect on the composition and structure of nanocalcium phosphates: In vitro biocompatibility to human osteoblasts. Mater. Sci. Eng. C. 2014;37:37–47. doi: 10.1016/j.msec.2013.12.027. PubMed DOI
Vallet-Regí M., Arcos D. Silicon substituted hydroxyapatites: A method to upgrade calcium phosphate based implants. J. Mater. Chem. 2005;15:1509–1516. doi: 10.1039/B414143A. DOI
Köse N., Otuzbir A., Pekşen C., Kiremitçi A., Doğan A. A silver ion-doped calcium phosphate-based ceramic nanopowder-coated prosthesis increased infection resistance. Clin. Orthop. Relat. Res. 2013;471:2532–2539. doi: 10.1007/s11999-013-2894-x. PubMed DOI PMC
LeGeros R.Z., Kijkowska R., Bautista C., Retino M., LeGeros J.P. Magnesium incorporation in apatites: Effect of CO3 and F. J. Dent. Res. 1996;75:60.
Piña S., Canadas R.F., Jiménez G., Perán M., Marchal J.A., Reis R.L., Oliveira J.M. Biofunctional ionic-doped calcium phosphates—Silk fibroin composites for bone tissue engineering scaffolding. Cells Tissues Organs. 2017;204:150–163. doi: 10.1159/000469703. PubMed DOI
Zheng T., Yu Y., Pang Y., Zhang D., Wang Y., Zhao H., Zhang X., Leng H., Yang X., Cai Q. Improving Bone Regeneration with Composites Consisting of Piezoelectric Poly(L-Lactide) and Piezoelectric Calcium/Manganese Co-Doped Barium Titanate Nanofibers. Compos. Part B Eng. 2022;234:109734. doi: 10.1016/j.compositesb.2022.109734. DOI
Thorrez L., Shansky J., Wang L., Fast L., VandenDriessche T., Chuah M., Mooney D., Vandenburgh H. Growth, differentiation, transplantation and survival of human skeletal myofibers on biodegradable scaffolds. Biomaterials. 2008;29:75–84. doi: 10.1016/j.biomaterials.2007.09.014. PubMed DOI PMC
Salinas A.J., Vallet-Regí M. Bioactive ceramics: From bone grafts to tissue engineering. RSC Adv. 2013;3:11116–11131. doi: 10.1039/c3ra00166k. DOI
Hasan M.S., Ahmed I., Parsons A.J., Rudd C.D., Walker G.S., Scotchford C.A. Investigating the use of coupling agents to improve the interfacial properties between a resorbable phosphate glass and polylactic acid matrix. J. Biomater. Appl. 2013;28:354–366. doi: 10.1177/0885328212453634. PubMed DOI
Wang S., Liu L., Li K., Zhu L., Chen J., Hao Y. Pore functionally graded Ti6Al4V scaffolds for bone tissue engineering application. Mater. Des. 2019;168:107643. doi: 10.1016/j.matdes.2019.107643. DOI
Kolos E., Ruys A. Biomimetic coating on porous alumina for tissue engineering: Characterisation by cell culture and confocal microscopy. Materials. 2015;8:3584. doi: 10.3390/ma8063584. DOI
Pieralli S., Kohal R.J., Jung R.E., Vach K., Spies B.C. Clinical outcomes of zirconia dental implants: A systematic review. J. Dent. Res. 2016;96:38–46. doi: 10.1177/0022034516664043. PubMed DOI
Kurtz S.M., Kocagöz S., Arnholt C., Huet R., Ueno M., Walter W.L. Advances in zirconia toughened alumina biomaterials for total joint replacement. J. Mech. Behav. Biomed. Mater. 2014;31:107–116. doi: 10.1016/j.jmbbm.2013.03.022. PubMed DOI PMC
Chocholata P., Kulda V., Babuska V. Fabrication of Scaffolds for Bone-Tissue Regeneration. Materials. 2019;12:568. doi: 10.3390/ma12040568. PubMed DOI PMC
Gerhardt L.-C., Boccaccini A.R. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials. 2010;3:3867–3910. doi: 10.3390/ma3073867. PubMed DOI PMC
Sartori I.A.M., Ribeiro R.F., Francischone C.E., De Mattos M.G.C. In vitro comparative analysis of the fit of gold alloy or commercially pure titanium implant-supported prostheses before and after electroerosion. J. Prosthet. Dent. 2004;92:132. doi: 10.1016/j.prosdent.2004.04.001. PubMed DOI
Cowley A., Woodward B. A Healthy Future: Platinum in Medical Applications Platinum Group Metals Enhance the Quality of Life of the Global Population. Platin. Met. Rev. 2011;55:98–107. doi: 10.1595/147106711X566816. DOI
Burdușel A.-C., Gherasim O., Grumezescu M.A., Mogoantă L., Ficai A., Andronescu E. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials. 2018;8:681. doi: 10.3390/nano8090681. PubMed DOI PMC
Drouet C., Leriche A., Hampshire S., Kashani M., Stamboulis A., Iafisco M., Tampieri A. In: Advances in Ceramic Biomaterials. Palmero P., Cambier F., De Barra E., editors. Woodhead Publishing; Sawston, UK: 2017. p. 21.
Kaur R., Pathak L., Vyas P. Biobased polymers of plant and microbial origin and their applications—A review. Biotechnol. Sustain. Mater. 2024;1:13. doi: 10.1186/s44316-024-00014-x. DOI
Mano J., Silva G., Azevedo H., Malafaya P., Sousa R., Silva S., Reis R. Natural origin biodegradable systems in tissue engineering and regenerative medicine: Present status and some moving trends. J. R. Soc. Interface. 2007;4:999–1030. doi: 10.1098/rsif.2007.0220. PubMed DOI PMC
Malafaya P.B., Silva G.A., Reis R.L. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev. 2007;59:207–233. doi: 10.1016/j.addr.2007.03.012. PubMed DOI
Nair L.S., Laurencin C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007;32:762–798. doi: 10.1016/j.progpolymsci.2007.05.017. DOI
Cho J.K., Jin Y.G., Rha S.J., Kim S.J., Hwang J.H. Biochemical characteristics of four marine fish skins in Korea. Food Chem. 2014;159:200–207. doi: 10.1016/j.foodchem.2014.03.012. PubMed DOI
Zhai X., Geng X., Li W., Cui H., Wang Y., Qin S. Comprehensive Review on Application Progress of Marine Collagen Cross-Linking Modification in Bone Repairs. Mar. Drugs. 2025;23:151. doi: 10.3390/md23040151. PubMed DOI PMC
Lee K.Y., Mooney D.J. Hydrogels for tissue engineering. Chem. Rev. 2001;101:1869–1879. doi: 10.1021/cr000108x. PubMed DOI
Kirschner C.M., Anseth K.S. Hydrogels in healthcare: From static to dynamic material microenvironments. Acta Mater. 2013;61:931–944. doi: 10.1016/j.actamat.2012.10.037. PubMed DOI PMC
Singh S., Dutt D., Kaur P., Singh H., Mishra N.C. Microfibrous paper scaffold for tissue engineering application. J. Biomater. Sci. Polym. Ed. 2020;31:1091–1106. doi: 10.1080/09205063.2020.1740965. PubMed DOI
Zhang H.B., Xing T.L., Yin R.X., Shi Y., Yang S.M., Zhang W.J. Three-dimensional bioprinting is not only about cell-laden structures. Chin. J. Traumatol. 2016;19:187–192. doi: 10.1016/j.cjtee.2016.06.007. PubMed DOI PMC
Kenry W.C.L., Loh K.P., Lim C.T. When stem cells meet graphene: Opportunities and challenges in regenerative medicine. Biomaterials. 2018;155:236–250. doi: 10.1016/j.biomaterials.2017.10.004. PubMed DOI
Gohil S.V., Brittain S., Kan H.M., Drissi H., Rowe D., Nair L.S. Evaluation of enzymatically crosslinked injectable glycol chitosan gel. J. Mater. Chem. B. 2015;3:5511–5522. doi: 10.1039/C5TB00663E. PubMed DOI
Rodrigues S.C., Salgado C.L., Sahu A., Garcia M.P., Fernandes M.H., Monteiro F.J. Preparation and characterization of collagen-nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications. J. Biomed. Mater. Res. Part A. 2013;101A:1080–1094. doi: 10.1002/jbm.a.34394. PubMed DOI
Kumar A., Mishra R., Reinwald Y., Bhat S. Cryogels: Freezing unveiled by thawing. Mater. Today. 2010;13:42–44. doi: 10.1016/S1369-7021(10)70202-9. DOI
Ahmed E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015;6:105–121. doi: 10.1016/j.jare.2013.07.006. PubMed DOI PMC
Kumar H., Sakthivel K., Mohamed M.G.A., Boras E., Shin S.R., Kim K. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication. Macromol. Biosci. 2021;21:2000317. doi: 10.1002/mabi.202170001. PubMed DOI
Castilho M., de Ruijter M., Beirne S., Villette C.C., Ito K., Wallace G.G., Malda J. Multitechnology Biofabrication: A New Approach for the Manufacturing of Functional Tissue Structures? Trends Biotechnol. 2020;38:1316–1328. doi: 10.1016/j.tibtech.2020.04.014. PubMed DOI
Alkaron W., Almansoori A., Balázsi C., Balázsi K. A Critical Review of Natural and Synthetic Polymer-Based Biological Apatite Composites for Bone Tissue Engineering. J. Compos. Sci. 2024;8:523. doi: 10.3390/jcs8120523. DOI
Balla E., Daniilidis V., Karlioti G., Kalamas T., Stefanidou M., Bikiaris N.D., Vlachopoulos A., Koumentakou I., Bikiaris D.N. Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers. 2021;13:1822. doi: 10.3390/polym13111822. PubMed DOI PMC
Quan F., Zhang A., Cheng F., Cui L., Liu J., Xia Y. Biodegradable Polymeric Architectures via Reversible Deactivation Radical Polymerizations. Polymers. 2018;10:758. doi: 10.3390/polym10070758. PubMed DOI PMC
Kumar S., Gaddala R., Thomas S., Schumacher J., Schönherr H. Green Synthesis of Polymer Materials via Enzyme- Initiated RAFT Polymerization. Polym. Chem. 2024;15:2011–2027. doi: 10.1039/D4PY00294F. DOI
Wei M., Gao Y., Li X., Serpe M.J. Stimuli-Responsive Polymers and Their Applications. Polym. Chem. 2017;8:127–143. doi: 10.1039/C6PY01585A. DOI
Lam K.Y., Lee C.S., Tan R.Y.H. NIR-Induced Photothermal-Responsive Shape Memory Polyurethane for Versatile Smart Material Applications. RSC Adv. 2024;14:24265–24286. doi: 10.1039/D4RA04754K. PubMed DOI PMC
Sessini V., Salaris V., Oliver-Cuenca V., Tercjak A., Fiori S., López D., Kenny J.M., Peponi L. Thermally-Activated Shape Memory Behavior of Biodegradable Blends Based on Plasticized PLA and Thermoplastic Starch. Polymers. 2024;16:1107. doi: 10.3390/polym16081107. PubMed DOI PMC
Farrukh A., Nayab S. Shape Memory Hydrogels for Biomedical Applications. Gels. 2024;10:270. doi: 10.3390/gels10040270. PubMed DOI PMC
Kumpfer J.R., Rowan S.J. Thermo-, Photo-, and Chemo-Responsive Shape-Memory Properties from Photo-Cross-Linked Metallo-Supramolecular Polymers. J. Am. Chem. Soc. 2011;133:12866–12874. doi: 10.1021/ja205332w. PubMed DOI
Smola-Dmochowska A., Śmigiel-Gac N., Kaczmarczyk B., Sobota M., Janeczek H., Karpeta-Jarząbek P., Kasperczyk J., Dobrzyński P. Triple-Shape Memory Behavior of Modified Lactide/Glycolide Copolymers. Polymers. 2020;12:2984. doi: 10.3390/polym12122984. PubMed DOI PMC
Behl M., Razzaq M.Y., Lendlein A. Multifunctional Shape-Memory Polymers. Adv. Mater. 2010;22:3388–3410. doi: 10.1002/adma.200904447. PubMed DOI
Cavicchi K.A., Pantoja M., Cakmak M. Shape Memory Ionomers. J. Polym. Sci. Part B Polym. Phys. 2016;54:1389–1396. doi: 10.1002/polb.24052. DOI
Rokaya D., Skallevold H.E., Srimaneepong V., Marya A., Shah P.K., Khurshid Z., Zafar M.S., Sapkota J. Shape Memory Polymeric Materials for Biomedical Applications: An Update. J. Compos. Sci. 2023;7:24. doi: 10.3390/jcs7010024. DOI
Cha K.J., Lih E., Choi J., Joung Y.K., Ahn D.J., Han D.K. Shape-Memory Effect by Specific Biodegradable Polymer Blending for Biomedical Applications. Macromol. Biosci. 2014;14:667–678. doi: 10.1002/mabi.201300481. PubMed DOI
Mora P., Schäfer H., Jubsilp C., Rimdusit S., Koschek K. Thermosetting Shape Memory Polymers and Composites Based on Polybenzoxazine Blends, Alloys and Copolymers. Chem. Asian J. 2019;14:4129–4139. doi: 10.1002/asia.201900969. PubMed DOI PMC
Leonés A., Peponi L., Fiori S., Lieblich M. Effect of the Addition of MgO Nanoparticles on the Thermally-Activated Shape Memory Behavior of Plasticized PLA Electrospun Fibers. Polymers. 2022;14:2657. doi: 10.3390/polym14132657. PubMed DOI PMC
Cisar J., Pummerova M., Drohsler P., Masar M., Sedlarik V. Changes in the Thermal and Structural Properties of Polylactide and Its Composites During a Long-Term Degradation Process. Polymers. 2025;17:1326. doi: 10.3390/polym17101326. PubMed DOI PMC
Shi J., Liu Y., Peng X., Li Z., Wang X. Role of Entropy-Enthalpy Competition on the Thermochemically Driven Shape Memory Effect in Amorphous Polymer Films. Materials. 2025;18:1630. doi: 10.3390/ma18071630. PubMed DOI PMC
Li Z., Zhang X., Wang S., Yang Y., Qin B., Wang K., Xie T., Wei Y., Ji Y. Polydopamine Coated Shape Memory Polymer: Enabling Light Triggered Shape Recovery, Light Controlled Shape Reprogramming and Surface Functionalization. Chem. Sci. :2016. doi: 10.1039/C6SC00584E. PubMed DOI PMC
Wang Q., Yan X., Liu P., Xu Y., Guan Q., You Z. Near-Infrared Light Triggered the Shape Memory Behavior of Polydopamine-Nanoparticle-Filled Epoxy Acrylate. Polymers. 2023;15:3394. doi: 10.3390/polym15163394. PubMed DOI PMC
Heo M.-S., Kim T.-H., Chang Y.-W., Jang K.S. Near-Infrared Light-Responsive Shape Memory Polymer Fabricated from Reactive Melt Blending of Semicrystalline Maleated Polyolefin Elastomer and Polyaniline. Polymers. 2021;13:3984. doi: 10.3390/polym13223984. PubMed DOI PMC
Song Q., Chen H., Zhou S., Zhao K., Wang B., Hu P. Thermo- and PH-Sensitive Shape Memory Polyurethane Containing Carboxyl Groups. Polym. Chem. 2016;7:1739–1746. doi: 10.1039/C5PY02010G. DOI
Tan R.Y.H., Lee C.S., Pichika M.R., Cheng S.F., Lam K.Y. PH Responsive Polyurethane for the Advancement of Biomedical and Drug Delivery. Polymers. 2022;14:1672. doi: 10.3390/polym14091672. PubMed DOI PMC
Tang H., Zhao W., Yu J., Li Y., Zhao C. Recent Development of pH-Responsive Polymers for Cancer Nanomedicine. Molecules. 2019;24:4. doi: 10.3390/molecules24010004. PubMed DOI PMC
Katari R.S., Peloso A., Orlando G. Tissue engineering and regenerative medicine: Semantic considerations for an evolving paradigm. Adv. Surg. 2014;48:137–154. doi: 10.1016/j.yasu.2014.05.007. PubMed DOI PMC
Liao C.J., Chen C.F., Chen J.H., Chiang S.F., Lin Y.J., Chang K.Y. Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method. J. Biomed. Mater. Res. 2002;59:676–681. doi: 10.1002/jbm.10030. PubMed DOI
Johnson T., Bahrampourian R., Patel A., Mequanint K. Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens. Biomed. Mater. Eng. 2010;20:107–118. doi: 10.3233/BME-2010-0621. PubMed DOI
Turnbull G., Clarke J., Picard F., Riches P., Jia L., Han F., Li B., Shu W. 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 2018;3:278–314. doi: 10.1016/j.bioactmat.2017.10.001. PubMed DOI PMC
Yashaswini Y.D., Prabhu A., Anil S., Venkatesan J. Preparation and characterization of dexamethasone loaded sodium alginate-graphene oxide microspheres for bone tissue engineering. J. Drug Deliv. Sci. Technol. 2021;64:102624. doi: 10.1016/j.jddst.2021.102624. DOI
Qian L., Zhang H. Controlled freezing and freeze drying: A versatile route for porous and micro-/nano-structured materials. J. Chem. Technol. Biotechnol. 2011;86:172–184. doi: 10.1002/jctb.2495. DOI
Whang K., Thomas C.H., Healy K.E., Nuber G. A novel method to fabricate bioabsorbable scaffolds. Polymer. 1995;36:837–842. doi: 10.1016/0032-3861(95)93115-3. DOI
Gupta K.C., Haider A., Choi Y.R., Kang I.K. Nanofibrous Scaffolds in Biomedical Applications. Biomater. Res. 2014;18:5. doi: 10.1186/2055-7124-18-5. PubMed DOI PMC
Papež N., Pisarenko T., Ščasnovič E., Sobola D., Ţălu Ş., Dallaev R., Částková K., Sedlák P. A Brief Introduction and Current State of Polyvinylidene Fluoride as an Energy Harvester. Coatings. 2022;12:1429. doi: 10.3390/coatings12101429. DOI
Liang D., Hsiao B.S., Chu B. Functional Electrospun Nanofibrous Scaffolds for Biomedical Applications. Adv. Drug Deliv. Rev. 2007;59:1392–1412. doi: 10.1016/j.addr.2007.04.021. PubMed DOI PMC
Jung J.T., Kim J.F., Wang H.H., Di Nicolo E., Drioli E., Lee Y.M. Understanding the NIPS effect during the fabrication of microporous PVDF membranes via TIPS. J. Memb. Sci. 2016;514:250–263. doi: 10.1016/j.memsci.2016.04.069. DOI
Guillen G.R., Pan Y., Li M., Hoek E.M.V. Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review. Ind. Eng. Chem. Res. 2011;50:3798–3817. doi: 10.1021/ie101928r. DOI
Mi H.Y., Jing X., Turng L.S. Fabrication of porous synthetic polymer scaffolds for tissue engineering. J. Cell. Plast. 2014;51:165–196. doi: 10.1177/0021955X14531002. DOI
Lu T., Li Y., Chen T. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int. J. Nanomed. 2013;8:337–350. doi: 10.2147/IJN.S38635. PubMed DOI PMC
Rusakov D., Menner A., Bismarck A. High-Performance Polymer Foams by Thermally Induced Phase Separation. Macromol. Rapid Commun. 2020;41:2000110. doi: 10.1002/marc.202000110. PubMed DOI
DiMaio E., Mensitieri G., Iannace S., Nicolais L., Li W., Flumerfelt R.W. Structure optimization of polycaprolactone foams by using mixtures of CO2 and N2 as blowing agents. Polym. Eng. Sci. 2005;45:432–441. doi: 10.1002/pen.20289. DOI
Nam Y.S., Yoon J.J., Park T.G. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J. Biomed. Mater. Res. 2000;53:1–7. doi: 10.1002/(SICI)1097-4636(2000)53:1<1::AID-JBM1>3.0.CO;2-R. PubMed DOI
Zhu N., Che X. Biofabrication of Tissue Scaffolds. Adv. Biomater. Sci. Biomed. Appl. 2013;12:315–328.
Barbetta A., Rizzitelli G., Bedini R., Pecci R., Dentini M. Porous gelatin hydrogels by gas-in-liquid foam templating. Soft Matter. 2010;6:1785–1792. doi: 10.1039/b920049e. DOI
Barbetta A., Gumiero A., Pecci R., Bedini R., Dentini M. Gas-in-liquid foam templating as a method for the production of highly porous scaffolds. Biomacromolecules. 2009;10:3188–3192. doi: 10.1021/bm901051c. PubMed DOI
Quirk R.A., France R.M., Shakesheff K.M., Howdle S.M. Supercritical fluid technologies and tissue engineering scaffolds. Curr. Opin. Solid State Mater. Sci. 2004;8:313–321. doi: 10.1016/j.cossms.2003.12.004. DOI
Arifin N., Sudin I., Ngadiman N.H.A., Ishak M.S.A. A Comprehensive Review of Biopolymer Fabrication in Additive Manufacturing Processing for 3D-Tissue-Engineering Scaffolds. Polymers. 2022;14:2119. doi: 10.3390/polym14102119. PubMed DOI PMC
Grace Varghese M., Thomas A., Rupesh S., Sameer K.M., Joseph D., Mathew T.A., George Thomas N. Novel Biomaterials for Tissue Engineering. IntechOpen; London, UK: 2024. Fabrication Techniques for Scaffolds Applied in Regenerative Medicine. DOI
Vesvoranan O., Anup A., Hixon K.R. Current Concepts and Methods in Tissue Interface Scaffold Fabrication. Biomimetics. 2022;7:151. doi: 10.3390/biomimetics7040151. PubMed DOI PMC
Jeyachandran D., Cerruti M. Glass, Ceramic, Polymeric, and Composite Scaffolds with Multiscale Porosity for Bone Tissue Engineering. Adv. Eng. Mater. 2023;25:2201743. doi: 10.1002/adem.202201743. DOI
Krishani M., Shin W.Y., Suhaimi H., Sambudi N.S. Development of Scaffolds from Bio-Based Natural Materials for Tissue Regeneration Applications: A Review. Gels. 2023;9:100. doi: 10.3390/gels9020100. PubMed DOI PMC
Dalton P.D., Vaquette C., Farrugia B.L., Dargaville T.R., Brown T.D., Hutmacher D.W. Electrospinning and Additive Manufacturing: Converging Technologies. Biomater. Sci. 2013;1:171–185. doi: 10.1039/C2BM00039C. PubMed DOI
Gharibshahian M., Salehi M., Beheshtizadeh N., Kamalabadi-Farahani M., Atashi A., Nourbakhsh M.S., Alizadeh M. Recent Advances on 3D-Printed PCL-Based Composite Scaffolds for Bone Tissue Engineering. Front. Bioeng. Biotechnol. 2023;11:1168504. doi: 10.3389/fbioe.2023.1168504. PubMed DOI PMC
Wang K., Man L., Zhang M., Jia Y.-G., Zhu X.X. Programmable Polymers with Shape Memory for Biomedical Applications. Program. Mater. 2023;1:e2. doi: 10.1017/pma.2023.2. DOI
Alam F., Ashfaq Ahmed M., Jalal A.H., Siddiquee I., Adury R.Z., Hossain G.M.M., Pala N. Recent Progress and Challenges of Implantable Biodegradable Biosensors. Micromachines. 2024;15:475. doi: 10.3390/mi15040475. PubMed DOI PMC
Zou F., Xu J., Yuan L., Zhang Q., Jiang L. Recent Progress on Smart Hydrogels for Biomedicine and Bioelectronics. Biosurface Biotribol. 2022;8:212–224. doi: 10.1049/bsb2.12046. DOI
Mullen M.J., Hildick-Smith D., De Giovanni J.V., Duke C., Hillis W.S., Morrison W.L., Jux C. BioSTAR Evaluation Study (BEST): A Prospective, Multicenter, Phase I Clinical Trial to Evaluate the Feasibility, Efficacy, and Safety of the BioSTAR Bioabsorbable Septal Repair Implant for the Closure of Atrial-Level Shunts. Circulation. 2006;114:1962–1967. doi: 10.1161/CIRCULATIONAHA.106.664672. PubMed DOI
Jux C., Bertram H., Wohlsein P., Bruegmann M., Paul T. Interventional Atrial Septal Defect Closure Using a Totally Bioresorbable Occluder Matrix: Development and Preclinical Evaluation of the BioSTAR Device. J. Am. Coll. Cardiol. 2006;48:161–169. doi: 10.1016/j.jacc.2006.02.057. PubMed DOI
Pavčnik D., Wright K.C., Wallace S. Monodisk: Device for percutaneous transcatheter closure of cardiac septal defects. Cardiovasc. Interv. Radiol. 1993;16:308–312. doi: 10.1007/BF02629163. PubMed DOI
Pavčnik D., Takulve K., Uchida B.T., Pavčnik Arnol M., VanAlstine W., Keller F., Rösch J. Biodisk: A new device for closure of patent foramen ovale: A feasibility study in swine. Catheter Cardiovasc. Interv. 2010;75:861–867. doi: 10.1002/ccd.22429. PubMed DOI
Sigler M., Söderberg B., Schmitt B., Mellmann A., Bernhard J. Carag bioresorbable septal occluder (CBSO): Histopathology of experimental implants. EuroIntervention. 2018;13:1655–1661. doi: 10.4244/EIJ-D-17-00006. PubMed DOI
Song L., Shi P., Zheng X., Hongxin L., Li Z., Lv M., Wang H. Echocardiographic characteristics of transcatheter closure of patent foramen ovale with Mallow biodegradable occluder: A single-center, phase III clinical study. Front. Cardiovasc. Med. 2022;9:945275. doi: 10.3389/fcvm.2022.945275. PubMed DOI PMC
Duong-Hong D., Tang Y.D., Wu W., Venkatraman S.S., Boey F., Lim J., Yip J. Fully biodegradable septal defect occluder—A double umbrella design. Catheter Cardiovasc. Interv. 2010;76:711–718. doi: 10.1002/ccd.22735. PubMed DOI
Wu W., Yip J., Tang Y.D., Khoo V., Kong J.F., Duong-Hong D., Boey F., Venkatraman S.S. A novel biodegradable septal defect occluder: The “Chinese Lantern” design, proof of concept. Innovations. 2011;6:221–230. doi: 10.1097/imi.0b013e31822a2c42. PubMed DOI
Liu S.J., Peng K.M., Hsiao C.Y., Liu K.S., Chung H.T., Chen J.K. Novel biodegradable polycaprolactone occlusion device combining nanofibrous PLGA/collagen membrane for closure of atrial septal defect. Ann. Biomed. Eng. 2011;39:2759–2766. doi: 10.1007/s10439-011-0368-4. PubMed DOI
Zhu Y.F., Huang X.M., Cao J., Hu J.Q., Bai Y., Jiang H.B., Li Z.F., Chen Y., Wang W., Qin Y.W., et al. Animal experimental study of the fully biodegradable atrial septal defect (ASD) occluder. J. Biomed. Biotechnol. 2012;2012:735989. doi: 10.1155/2012/735989. PubMed DOI PMC
Xie Z.F., Wang S.S., Zhang Z.W., Zhuang J., Liu X.D., Chen X.M., Zhang G., Zhang D. A novel-design poly-L-lactic acid biodegradable device for closure of atrial septal defect: Long-term results in swine. Cardiology. 2016;135:179–187. doi: 10.1159/000446313. PubMed DOI
Lu W., Ouyang W., Wang S., Liu Y., Zhang F., Wang W., Pan X. A novel totally biodegradable device for effective atrial septal defect closure: A 2-year study in sheep. J. Interv. Cardiol. 2018;31:841–848. doi: 10.1111/joic.12550. PubMed DOI
Matsuzaki Y., Berman D.P., Kurobe H., Kelly J.M., Iwaki R., Blum K., Toshihiro S., Harrison A., Cheatham J.P., Shinoka T. Pre-clinical evolution of a novel transcatheter bioabsorbable ASD/PFO occluder device. Pediatr. Cardiol. 2022;43:986–994. doi: 10.1007/s00246-021-02809-5. PubMed DOI
Li Y., Xie Y., Li B., Xie Z., Shen J., Wang S., Zhang Z. Initial Clinical Experience with the Biodegradable AbsnowTM Device for Percutaneous Closure of Atrial Septal Defect: A 3-Year Follow-Up. J. Interv. Cardiol. 2021;2021:6369493. doi: 10.1155/2021/6369493. PubMed DOI PMC
Du Y., Xie H., Shao H., Cheng G., Wang X., He X., Lan B., He L., Zhang Y. A Prospective, Single-Center, Phase I Clinical Trial to Evaluate the Value of Transesophageal Echocardiography in the Closure of Patent Foramen Ovale with a Novel Biodegradable Occluder. Front. Cardiovasc. Med. 2022;9:849459. doi: 10.3389/fcvm.2022.849459. PubMed DOI PMC
Bhargav D. Bioresorbable Scaffolds: Current Evidence in the Treatment of Coronary Artery Disease. J. Clin. Diagn. Res. 2016;10:KE01–KE04. doi: 10.7860/jcdr/2016/21915.8429. PubMed DOI PMC
Pineda-Castillo S.A., Stiles A.M., Bohnstedt B.N., Lee H., Liu Y., Lee C.-H. Shape Memory Polymer-Based Endovascular Devices: Design Criteria and Future Perspective. Polymers. 2022;14:2526. doi: 10.3390/polym14132526. PubMed DOI PMC
Singh S., Wu B.M., Dunn J.C.Y. Accelerating Vascularization in Polycaprolactone Scaffolds by Endothelial Progenitor Cells. Tissue Eng.-Part A. 2011;17:1819–1830. doi: 10.1089/ten.tea.2010.0708. PubMed DOI PMC
Rocha C.V., Gonçalves V., da Silva M.C., Bañobre-López M., Gallo J. PLGA-Based Composites for Various Biomedical Applications. Int. J. Mol. Sci. 2022;23:2034. doi: 10.3390/ijms23042034. PubMed DOI PMC
Belousov A., Lushpeev V., Sokolov A., Sultanbekov R., Tyan Y., Ovchinnikov E., Shvets A., Bushuev V., Islamov S. Experimental Research of the Possibility of Applying the Hartmann–Sprenger Effect to Regulate the Pressure of Natural Gas in Non-Stationary Conditions. Processes. 2025;13:1189. doi: 10.3390/pr13041189. DOI
Yan S., Zhang F., Luo L., Wang L., Liu Y., Leng J. Shape Memory Polymer Composites: 4D Printing, Smart Structures, and Applications. Research. 2023;6:0234. doi: 10.34133/research.0234. PubMed DOI PMC
Zhang W., Hu J., Wu H., Lin X., Cai L. Stimuli-Responsive Hydrogel Dressing for Wound Healing. APL Mater. 2025;13:010601. doi: 10.1063/5.0245545. DOI
Zhang C., Cai D., Liao P., Su J.W., Deng H., Vardhanabhuti B., Ulery B.D., Chen S.Y., Lin J. 4D Printing of Shape-Memory Polymeric Scaffolds for Adaptive Biomedical Implantation. Acta Biomater. 2021;122:101–110. doi: 10.1016/j.actbio.2020.12.042. PubMed DOI PMC
Zhou Y., Zhou D., Cao P., Zhang X., Wang Q., Wang T., Li Z., He W., Ju J., Zhang Y. 4D Printing of Shape Memory Vascular Stent Based on ΒCD-g-Polycaprolactone. Macromol. Rapid Commun. 2021;42:2100176. doi: 10.1002/marc.202100176. PubMed DOI
Slavkovic V., Palic N., Milenkovic S., Zivic F., Grujovic N. Thermo-Mechanical Characterization of 4D-Printed Biodegradable Shape-Memory Scaffolds Using Four-Axis 3D-Printing System. Materials. 2023;16:5186. doi: 10.3390/ma16145186. PubMed DOI PMC
Xue L., An R., Zhao J., Qiu M., Wang Z., Ren H., Yu D., Zhu X. Self-Healing Hydrogels: Mechanisms and Biomedical Applications. MedComm. 2025;6:e70181. doi: 10.1002/mco2.70181. PubMed DOI PMC
Harito C., Utari L., Putra B.R., Yuliarto B., Purwanto S., Zaidi S.Z.J., Bavykin D.V., Marken F., Walsh F.C. Review—The Development of Wearable Polymer-Based Sensors: Perspectives. J. Electrochem. Soc. 2020;167:037566. doi: 10.1149/1945-7111/ab697c. DOI
Zhai Z., Du X., Long Y., Zheng H. Biodegradable Polymeric Materials for Flexible and Degradable Electronics. Front. Electron. 2022;3:985681. doi: 10.3389/felec.2022.985681. DOI
Kaushal J.B., Raut P., Kumar S. Organic Electronics in Biosensing: A Promising Frontier for Medical and Environmental Applications. Biosensors. 2023;13:976. doi: 10.3390/bios13110976. PubMed DOI PMC