Advances in Materials with Self-Healing Properties: A Brief Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38793530
PubMed Central
PMC11123491
DOI
10.3390/ma17102464
PII: ma17102464
Knihovny.cz E-zdroje
- Klíčová slova
- ceramics, concrete, crack healing, hydrogels, implants, microcapsules, polymers, self-healing,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The development of materials with self-healing capabilities has garnered considerable attention due to their potential to enhance the durability and longevity of various engineering and structural applications. In this review, we provide an overview of recent advances in materials with self-healing properties, encompassing polymers, ceramics, metals, and composites. We outline future research directions and potential applications of self-healing materials (SHMs) in diverse fields. This review aims to provide insights into the current state-of-the-art in SHM research and guide future efforts towards the development of innovative and sustainable materials with enhanced self-repair capabilities. Each material type showcases unique self-repair mechanisms tailored to address specific challenges. Furthermore, this review investigates crack healing processes, shedding light on the latest developments in this critical aspect of self-healing materials. Through an extensive exploration of these topics, this review aims to provide a comprehensive understanding of the current landscape and future directions in self-healing materials research.
Zobrazit více v PubMed
McDonald S.A., Coban S.B., Sottos N.R., Withers P.J. Tracking capsule activation and crack healing in a microcapsule-based self-healing polymer. Sci. Rep. 2019;9:17773. doi: 10.1038/s41598-019-54242-7. PubMed DOI PMC
Balasubramanian M., Jayabalakrishnan D. Influence of Pin offset and Weave Pattern on the Performance of Al-Cu Joints Reinforced with Graphene Particles. Int. J. Automot. Mech. Eng. 2020;17:8186–8196. doi: 10.15282/ijame.17.3.2020.12.0616. DOI
Ramesh G., Jayabalakrishnan D., Rameshkumar C. Mechanical and thermal characterization of heat/surface treated egg shell filler diffused natural rubber green composite. J. Optoelectron. Biomed. Mater. 2018;10:21–28.
Mashkoor F., Lee S.J., Yi H., Noh S.M., Jeong C. Self-Healing Materials for Electronics Applications. Int. J. Mol. Sci. 2022;23:622. doi: 10.3390/ijms23020622. PubMed DOI PMC
Yang Y., Ding X., Urban M.W. Urban Chemical and physical aspects of self-healing materials. Prog. Polym. Sci. 2015;49–50:34–59. doi: 10.1016/j.progpolymsci.2015.06.001. DOI
Meraz M.M., Mim N.J., Mehedi M.T., Bhattacharya B., Aftab M.R., Billah M.M., Meraz M.M. Self-healing concrete: Fabrication, advancement, and effectiveness for long-term integrity of concrete infrastructures. Alexandria Eng. J. 2023;73:665–694. doi: 10.1016/j.aej.2023.05.008. DOI
Yue H., Wang Z., Zhen Y. Recent Advances of Self-Healing Electronic Materials Applied in Organic Field-Effect Transistors. ACS Omega. 2022;7:18197–18205. doi: 10.1021/acsomega.2c00580. PubMed DOI PMC
Ding Q., Xu X., Yue Y., Mei C., Huang C., Jiang S., Wu Q., Han J. Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications. ACS Appl. Mater. Interfaces. 2018;10:27987–28002. doi: 10.1021/acsami.8b09656. PubMed DOI
Jayabalakrishnan D., Muruga D.N., Bhaskar K., Pavan P., Balaji K., Rajakumar P.S., Priya C., Deepa R.A.B., Sendilvelan S., Prabhahar M. Self-Healing materials—A review. Mater. Today Proc. 2020;45:7195–7199. doi: 10.1016/j.matpr.2021.02.415. DOI
Uguzzoni A.M.P., Fregonara E., Ferrando D.G., Anglani G., Antonaci P., Tulliani J.-M. Concrete Self-Healing for Sustainable Buildings: A Focus on the Economic Evaluation from a Life-Cycle Perspective. Sustainability. 2023;15:13637. doi: 10.3390/su151813637. DOI
Reda M.A., Chidiac S.E. Performance of Capsules in Self-Healing Cementitious Material. Materials. 2022;15:7302. doi: 10.3390/ma15207302. PubMed DOI PMC
Choi K., Noh A., Kim J., Hong P.H., Ko M.J., Hong S.W. Properties and Applications of Self-Healing Polymeric Materials: A Review. Polymers. 2023;15:4408. doi: 10.3390/polym15224408. PubMed DOI PMC
Wen N., Song T., Ji Z., Jiang D., Wu Z., Wang Y., Guo Z. Recent advancements in self-healing materials: Mechanicals, performances and features. React. Funct. Polym. 2021;168:105041. doi: 10.1016/j.reactfunctpolym.2021.105041. DOI
Hardman D., Thuruthel T.G., Iida F. Self-healing ionic gelatin/glycerol hydrogels for strain sensing applications. NPG Asia Mater. 2022;14:11. doi: 10.1038/s41427-022-00357-9. DOI
Rehman H.U., Chen Y., Guo Y., Du Q., Zhou J., Guo Y., Duan H., Li H., Liu H. Stretchable, strong and self-healing hydrogel by oxidized CNT-polymer composite, Self-healing nanocomposite materials: A review. Compos. Part A Appl. Sci. Manuf. 2016;90:250–260. doi: 10.1016/j.compositesa.2016.07.014. DOI
Cerdan K., Thys M., Cornellà A.C., Demir F., Norvez S., Vendamme R., Van Puyvelde P., Brancart J. Progress in Polymer Science Sustainability of self-healing polymers: A holistic perspective towards circularity in polymer networks. Prog. Polym. Sci. 2024;152:101816. doi: 10.1016/j.progpolymsci.2024.101816. DOI
Thakur V.K., Kessler M.R. Self-healing polymer nanocomposite materials: A review. Polymer. 2015;69:369–383. doi: 10.1016/j.polymer.2015.04.086. DOI
Dry C. Passive tuneable fibers and matrices. Int. J. Mod. Phys. B. 1992;6:2763–2771. doi: 10.1142/s0217979292001419. DOI
Luo J., Wang T., Sim C., Li Y. Mini-Review of Self-Healing Mechanism and Formulation Optimization of Polyurea Coating. Polymers. 2022;14:2808. doi: 10.3390/polym14142808. PubMed DOI PMC
Liu Y., Hsu S.-H. Synthesis and Biomedical Applications of Self-healing Hydrogels. Front. Chem. 2018;6:449. doi: 10.3389/fchem.2018.00449. PubMed DOI PMC
Liu B., Wu M., Du W., Jiang L., Li H., Wang L., Li J., Zuo D., Ding Q. The Application of Self-Healing Microcapsule Technology in the Field of Cement-Based Materials: A Review and Prospect. Polymers. 2023;15:2718. doi: 10.3390/polym15122718. PubMed DOI PMC
Zhu D.Y., Rong M.Z., Zhang M.Q. Self-healing polymeric materials based on microencapsulated healing agents: From design to preparation. Prog. Polym. Sci. 2015;49–50:175–220. doi: 10.1016/j.progpolymsci.2015.07.002. DOI
Jiang S., Lin Z., Tang C., Hao W. Preparation and Mechanical Properties of Microcapsule-Based Self-Healing Cementitious Composites. Materials. 2021;14:4866. doi: 10.3390/ma14174866. PubMed DOI PMC
Urdl K., Kandelbauer A., Kern W., Müller U., Thebault M., Zikulnig-Rusch E. Self-healing of densely crosslinked thermoset polymers—A critical review. Prog. Org. Coat. 2017;104:232–249. doi: 10.1016/j.porgcoat.2016.11.010. DOI
Scheiner M., Dickens T.J., Okoli O. Progress towards self-healing polymers for composite structural applications. Polymer. 2016;83:260–282. doi: 10.1016/j.polymer.2015.11.008. DOI
Bekas D., Tsirka K., Baltzis D., Paipetis A. Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. Compos. Part B Eng. 2016;87:92–119. doi: 10.1016/j.compositesb.2015.09.057. DOI
Sitnikov N.N., Mostovaya K.S., Khabibullina I.A., Mashchenko V.I. Self-healing materials: A review of self-healing mechanisms and their applications. [(accessed on 4 January 2023)];Video Sci. 2018 1:2–30. Available online: https://cyberleninka.ru/article/n/samovosstanavlivayuschiesya-materialy-obzor-mehanizmov-samovosstanovleniya-i-ih-primeneniy.
Guo W., Jia Y., Tian K., Xu Z., Jiao J., Li R., Wu Y., Cao L., Wang H. UVtriggered Self-healing of a Single Robust SiO2 Microcapsule Based on Cationic Polymerization for Potential Application in Aerospace Coatings. ACS Appl. Mater. Interfaces. 2016;8:21046–21054. doi: 10.1021/acsami.6b06091. PubMed DOI
Yue H.-B., Fernández-Blázquez J.P., Beneitoac D.F., Vilatela J.J. Real time monitoring of click chemistry self-healing in polymer composites. J. Mater. Chem. A. 2014;2:3881–3887. doi: 10.1039/c3ta14961g. DOI
Pernigoni L., Lafont U., Grande A.M. Self healing materials for space applications: Overview of present development and major limitations. CEAS Space J. 2021;13:341–352. doi: 10.1007/s12567-021-00365-5. DOI
Aïssa B., Tagziria K., Haddad E., Jamroz W., Loiseau J., Higgins A., Asgar-Khan M., Hoa S.V., Merle P.G., Therriault D., et al. The Selfhealing capability of carbon fibre composite structures subjected to hypervelocity impacts simulating orbital space debris. Int. Sch. Res. Not. 2012;2012:351205.
Ma E., Chen X., Lai J., Kong X., Guo C. Self-healing of microcapsule-based materials for highway construction: A review. J. Traffic Transp. Eng. 2023;10:368–384. doi: 10.1016/j.jtte.2023.02.003. DOI
Hu K., Li Y., Ke Z., Yang H., Lu C., Li Y., Guo Y., Wang W. History, progress and future challenges of artificial blood vessels: A narrative review. Biomater Transl. 2022;3:81–98. doi: 10.12336/biomatertransl.2022.01.008. PubMed DOI PMC
Los D.M., Shapovalov V.M., Zotov S.V. Application of polymer materials for medical products. [(accessed on 5 January 2023)];Probl. Health Ecol. 2020 2:5–12. Available online: https://cyberleninka.ru/article/n/primenenie-polimernyh-materialov-dlya-izdeliy-meditsinskogo-naznacheniya.
Del Prado-Audelo M.L., Caballero-Florán I.H., Mendoza-Muñoz N., Giraldo-Gomez D., Sharifi-Rad J., Patra J.K., González-Torres M., Florán B., Cortes H., Leyva-Gómez G. Current progress of self-healing polymers for medical applications in tissue engineering. Iran. Polym. J. 2021;31:7–29. doi: 10.1007/s13726-021-00943-8. DOI
Muslov S.A., Yarema I.V., Danilevskaya O.V. Nitinol—A new generation medical material. [(accessed on 10 April 2024)];Mod. Sci. Intensive Technol. 2007 11:55–56. Available online: https://top-technologies.ru/ru/article/view?id=25600.
Lee M.W., An S., Yoon S.S., Yarin A.L. Advances in self-healing materials based on vascular networks with mechanical self-repair characteristics. Adv. Colloid Interface Sci. 2017;252:21–37. doi: 10.1016/j.cis.2017.12.010. PubMed DOI
Hansen C.J., Wu W., Toohey K.S., Sottos N.R., White S.R., Lewis J.A. Self-healing materials with interpenetrating microvascular networks. Adv. Mater. 2009;21:4143–4147. doi: 10.1002/adma.200900588. DOI
Hamilton A.R., Sottos N.R., White S.R. Self-healing of internal damage in synthetic vascular materials. Adv. Mater. 2010;22:5159–5163. doi: 10.1002/adma.201002561. PubMed DOI
Cho S., Hwang S.Y., Oh D.X., Park J. Recent progress in self-healing polymers and hydrogels based on reversible dynamic B-O bonds: Boronic/boronate esters, borax, and benzoxaborole. J. Mater. Chem. 2021;9:14630–14655. doi: 10.1039/D1TA02308J. DOI
Rumon M.H., Akib A.A., Sultana F., Moniruzzaman, Niloy M.S., Shakil S., Roy C.K. Self-Healing Hydrogels: Development, Biomedical Applications, and Challenges. Polymers. 2022;14:4539. doi: 10.3390/polym14214539. PubMed DOI PMC
Pathan N., Shende P. Strategic conceptualization and potential of self-healing polymers in biomedical field. Mater. Sci. Eng. C. 2021;125:112099. doi: 10.1016/j.msec.2021.112099. PubMed DOI
Shirokova E.S., Vesnin R.L., Khusainov A.D. Materials based on thermoplastic elastomers for use in medicine and the pharmaceutical industry. [(accessed on 5 January 2023)];Bull. Kazan Technol. Univ. 2016 11:106–110. Available online: https://cyberleninka.ru/article/n/materialy-na-osnove-termoelastoplastov-dlya-primeneniya-v-meditsine-i-farmatsevticheskoy-promyshlennosti.
Wolf C., Lederer K., Pfragner R., Schauenstein K., Ingolic E., Siegl V. Biocompatibility of ultra-high molecular weight polyethylene (UHMW-PE) stabilized with α-tocopherol used for joint endoprostheses assessed in vitro. J. Mater. Sci. Mater. Med. 2007;18:1247–1252. doi: 10.1007/s10856-006-0098-6. PubMed DOI
Paxton N.C., Allenby M.C., Lewis P.M., Woodruff M.A. Biomedical applications of polyethylene. Eur. Polym. J. 2019;118:412–428. doi: 10.1016/j.eurpolymj.2019.05.037. DOI
Zhukovsky V.A. Polymer Implants for Reconstructive Surgery. Innova. 2016. [(accessed on 5 January 2023)]. No. 2 (3) Available online: https://cyberleninka.ru/article/n/polimernye-implantaty-dlya-rekonstruktivnoy-hirurgii.
Zhukovsky V.A. Polymer Endoprostheses for Hernioplasty: Production, Properties, Possibilities for Improvement. Volume 170. Surgery Bulletin; Saint Petersburg, Russia: 2011. [(accessed on 10 April 2024)]. pp. 82–86. Available online: https://cyberleninka.ru/article/n/polimernye-endoprotezy-dlya-gernioplastiki-poluchenie-svoystva-vozmozhnosti-sovershenstvovaniya.
Shi Y., Wang M., Ma C., Wang Y., Li X., Yu G. A Conductive Self-Healing Hybrid Gel Enabled by Metal–Ligand Supramolecule and Nanostructured Conductive Polymer. Nano Lett. 2015;15:6276–6281. doi: 10.1021/acs.nanolett.5b03069. PubMed DOI
Guo H., Tan Y.J., Chen G., Wang Z., Susanto G.J., See H.H., Yang Z., Lim Z.W., Yang L., Tee B.C.K. Artificially innervated self-healing foams as synthetic piezo-impedance sensor skins. Nat. Commun. 2020;11:5747. doi: 10.1038/s41467-020-19531-0. PubMed DOI PMC
Szarek A., Postawa P., Stachowiak T., Paszta P., Redutko J., Mordal K., Kalwik A., Łukomska-Szarek J., Gzik M., Joszko K., et al. The Analysis of Polyethylene Hip Joint Endoprostheses Strength Parameters Changes after Use inside the Human Body. Materials. 2021;14:7091. doi: 10.3390/ma14227091. PubMed DOI PMC
Kütting M., Roggenkamp J., Urban U., Schmitz-Rode T., Steinseifer U. Polyurethane heart valves: Past, present and future. Expert Rev. Med. Devices. 2011;8:227–233. doi: 10.1586/erd.10.79. PubMed DOI
Zare M., Ghomi E.R., Venkatraman P.D., Ramakrishna S. Silicone-based biomaterials for biomedical applications: Antimicrobial strategies and 3D printing technologies. J. Appl. Polym. Sci. 2021;138:50969. doi: 10.1002/app.50969. DOI
On S.-W., Cho S.-W., Byun S.-H., Yang B.-E. Bioabsorbable Osteofixation Materials for Maxillofacial Bone Surgery: A Review on Polymers and Magnesium-Based Materials. Biomedicines. 2020;8:300. doi: 10.3390/biomedicines8090300. PubMed DOI PMC
Vasnetsova O.A. Meditsinskoye i Farmatsevticheskoye Tovarovedeniye. 3rd ed. Avtorskaya Akademiya; Moscow, Russia: 2016. 424p. pererab. i dop. (In Russian)
Gazazjan M.G., Ponomarjova S.V., Lipatov V.A., Pugachjova A.P. Heskij Vestnik “Chelovek i ego Zdorov’e”. 2012. [(accessed on 2 October 2016)]. No. 1. Available online: http://cyberleninka.ru/article/n/eksperimentalnoe-obosnovanie-primeneniya-implantata-mezogel-dlya-profilaktikivnutrimatochnoy-adgezii.
Lipatov V.A., Indrkhov M.A., Yarmamedov D.M., Lysanskaya K.V. Morphological and physical-mechanical properties of polymer film implants in in vitro experiments. Transbaikal Med. Bull. 2015;2:67–73.
Rana A.K., Thakur M.K., Saini A.K., Mokhta S.K., Moradi O., Rydzkowski T., Alsanie W.F., Wang Q., Grammatikos S., Thakur V.K. Recent developments in microbial degradation of polypropylene: Integrated approaches towards a sustainable environment. Sci. Total. Environ. 2022;826:154056. doi: 10.1016/j.scitotenv.2022.154056. PubMed DOI
Shim D., Yeon J., Yi J., Park J., Park S.N., Lee N. A wide-angle camera module for disposable endoscopy. Opt. Rev. 2016;23:596–600. doi: 10.1007/s10043-016-0227-5. DOI
Kim S.J., Choi B., Kim K.S., Bae W.J., Hong S.H., Lee J.Y., Hwang T.K., Kim S.W. The potential role of polymethyl methacrylate as a new packaging material for the implantable medical device in the bladder. Biomed Res. Int. 2015;2015:852456. doi: 10.1155/2015/852456. PubMed DOI PMC
Kantarci Z., Aksoy S., Hasirci N. Estimation of Monomer Content in Polymethyl Methacrylate Contact Lens Materials by Raman Spectroscopy. Int. J. Artif. Organs. 1997;20:407–411. doi: 10.1177/039139889702000709. PubMed DOI
Zafar M.S. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers. 2020;12:2299. doi: 10.3390/polym12102299. PubMed DOI PMC
Özdemir T., Usanmaz A. Use of poly(methyl methacrylate) in radioactive waste management: I. Radiation stability and degradation. Prog. Nucl. Energy. 2009;51:240–245. doi: 10.1016/j.pnucene.2008.04.004. DOI
Vargas K.F., Borghetti R.L., Moure S.P., Salum F.G., Cherubini K., de Figueiredo M.A.Z. Use of polymethylmethacrylate as permanent filling agent in the jaw, mouth and face regions—Implications for dental practice. Gerodontology. 2011;29:e16–e22. doi: 10.1111/j.1741-2358.2011.00479.x. PubMed DOI
Allègre L., Le Teuff I., Leprince S., Warembourg S., Taillades H., Garric X., Letouzey V., Huberlant S. A new bioabsorbable polymer film to prevent peritoneal adhesions validated in a post-surgical animal model. PLoS ONE. 2018;13:e0202285. doi: 10.1371/journal.pone.0202285. PubMed DOI PMC
Cai J., Guo J., Wang S. Application of Polymer Hydrogels in the Prevention of Postoperative Adhesion: A Review. Gels. 2023;9:98. doi: 10.3390/gels9020098. PubMed DOI PMC
Taylor D.L., In Het Panhuis M. Self-Healing Hydrogels. Adv Mater. 2016;28:9060–9093. doi: 10.1002/adma.201601613. PubMed DOI
Sobczyk M., Wallmersperger T. Modeling and simulation of the electro-chemical behavior of chemically stimulated polyelectrolyte hydrogel layer composites. J. Intell. Mater. Syst. Struct. 2016;27:1725–1737. doi: 10.1177/1045389x15606997. DOI
Nonoyama T., Gong J.P. Double-network hydrogel and its potential biomedical application: A review. J. Eng. Med. 2015;229:853–863. doi: 10.1177/0954411915606935. PubMed DOI
Zhang D., Di F., Zhu Y., Xiao Y., Che J. Electroactive hybrid hydrogel: Toward a smart coating for neural electrodes. J. Bioact. Compat. Polym. 2015;30:600–616. doi: 10.1177/0883911515591647. DOI
MJaiswal V. Koul. Assessment of multicomponent hydrogel scaffolds of poly(acrylic acid-2-hydroxy ethyl methacrylate)/gelatin for tissue engineering applications. J. Biomater. Appl. 2013;27:848–861. doi: 10.1177/0885328211428524. PubMed DOI
Nistor M.T., Vasile C., Chiriac A.P., Tarţău L. Biocompatibility, biodegradability, and drug carrier ability of hybrid collagen-based hydrogel nanocomposites. J. Bioact. Compat. Polym. 2013;28:540–556. doi: 10.1177/0883911513509021. DOI
Cometa S., Iatta R., Ricci M.A., Ferretti C., De Giglio E. Analytical characterization and antimicrobial properties of novel copper nanoparticle–loaded electrosynthesized hydrogel coatings. J. Bioact. Compat. Polym. 2013;28:508–522. doi: 10.1177/0883911513498960. DOI
Zhang Y., Gao C., Li X., Xu C., Zhang Y., Sun Z., Liu Y., Gao J. Thermosensitive methyl cellulose-based injectable hydrogels for post-operation anti-adhesion. Carbohydr. Polym. 2014;101:171–178. doi: 10.1016/j.carbpol.2013.09.001. PubMed DOI
Park H., Baek S., Kang H., Lee D. Biomaterials to Prevent Post-Operative Adhesion. Materials. 2020;13:E3056. doi: 10.3390/ma13143056. PubMed DOI PMC
Lazarenko V.A., Sukovatyh B.S., Bezhin A.I., Lipatov V.A., Dubonos A.A., Zhukovskij V.A. Chelovek i Ego Zdorov’e”. 2011. [(accessed on 26 September 2016)]. No. 1. Available online: http://cyberleninka.ru/article/n/pervyy-opyt-primeneniya-protivospaechnogorassasyvayuschegosya-polimernogo-sredstva-mezogel-pri-ostrom-appenditsite.
Huang H.-J., Tsai Y.-L., Lin S.-H., Hsu S.-H. Smart polymers for cell therapy and precision medicine. J. Biomed. Sci. 2019;26:1–11. doi: 10.1186/s12929-019-0571-4. PubMed DOI PMC
Sheftel’ V.O., Dyshinevich N.E., Sova R.E. Toksikologiya Polimernykh Materialov. Izdaniye “Zdorov’ye”; Moscow, Russia: 1988. 216p
Mashchenko V.I., Shashkova Y.O., Solomatin A.C., Belyaev V.V. Features of the formation of the microstructure of borosiloxane-based liquid crystal composites. Bull. MGOU. Ser. Phys. Math. 2017;2:34–45.
Kuhl N., Bode S., Hager M.D., Schubert U.S. Self-Healing Polymers Based on Reversible Covalent Bonds. In: Hager M., van der Zwaag S., Schubert U., editors. Self-healing Materials. Advances in Polymer Science. Volume 273. Springer; Cham, Switzerland: 2015. DOI
Xie Z., Hu B.-L., Li R.-W., Zhang Q. Hydrogen Bonding in Self-Healing Elastomers. ACS Omega. 2021;6:9319–9333. doi: 10.1021/acsomega.1c00462. PubMed DOI PMC
Guo H., Han Y., Zhao W., Yang J., Zhang L. Universally autonomous self-healing elastomer with high stretchability. Nat. Commun. 2020;11:2037. doi: 10.1038/s41467-020-15949-8. PubMed DOI PMC
Kar A.K. Photofluidics—A New Platform for Biophotonics; Proceedings of the 2012 International Conference on Fiber Optics and Photonics (PHOTONICS); Chennai, India. 9–12 December 2012.
Yimyai T., Crespy D., Pena-Francesch A. Self-Healing Photochromic Elastomer Composites for Wearable UV-Sensors. Adv. Funct. Mater. 2023;33:2213717. doi: 10.1002/adfm.202213717. DOI
Saito M., Sakiyama K. Self-healable photochromic elastomer that transmits optical signals depending on the pulse frequency. J. Opt. 2013;15:105404. doi: 10.1088/2040-8978/15/10/105404. DOI
Wang S., Lee J.M., Yeong W.Y. Smart hydrogels for 3D bioprinting. Int. J. Bioprinting. 2015;1:3–14. doi: 10.18063/IJB.2015.01.005. DOI
El Choufi N., Mustapha S., Tehrani B.A., Grady B.P. An Overview of Self-Healable Polymers and Recent Advances in the Field. Macromol. Rapid Commun. 2022;43:e2200164. doi: 10.1002/marc.202200164. PubMed DOI
Champagne J., Pang S., Li G. Effect of Confinement Level and Local Heating on Healing Efficiency of Self-healing Particulate Composites. Compos. Part B. 2016;97:344–352. doi: 10.1016/j.compositesb.2016.05.002. DOI
Lee J., Bhattacharyya D., Zhang M.Q., Yuan Y.C. Mechanical properties of mendable composites containing self-healing thermoplastic agents. Compos. Part B. 2014;62:10–18.
Doan T.Q., Leslie L.S., Kim S.Y., Bhargava R., White S.R., Sottos N.R. Characterization of core-shell microstructure and self-healing performance of electrospun fiber coatings. Polymer. 2016;107:263–272. doi: 10.1016/j.polymer.2016.10.062. DOI
Rong Z., Li Y., Lim R.Z., Wang H., Dong Z., Li K., Wang X. Fire-retardant effect of titania-polyurea coating and additional enhancement via aromatic diamine and modified melamine polyphosphate. Npj Mater. Degrad. 2022;6:38. doi: 10.1038/s41529-022-00248-y. DOI
Shen X., Dong Z., Sim C., Li Y. A Comparative Study on the Self-Healing Characterizations and Formulation Optimization of Polyurea Coating. Polymers. 2022;14:3520. doi: 10.3390/polym14173520. PubMed DOI PMC
Ma J., Porath L.E., Haque F., Sett S., Rabbi K.F., Nam S., Miljkovic N., Evans C.M. Ultra-thin self-healing vitrimer coatings for durable hydrophobicity. Nat. Commun. 2021;12:5210. doi: 10.1038/s41467-021-25508-4. PubMed DOI PMC
Zhu D.Y., Chen F., Rong M.Z., Zhang M.Q. Chapter 5—Capsules-based self-healing polymers and polymer composites. In: Li G., Feng X., editors. Recent Advances in Smart Self-Healing Polymers and Composites. 2nd ed. Woodhead Publishing; Shaston, UK: 2022. pp. 113–140. DOI
Kosarli M., Bekas D., Tsirka K., Paipetis A.S. In: Capsule-Based Self-Healing Polymers and Composites. Thomas S., Surendran A., editors. Elsevier; Amsterdam, The Netherlands: 2020. pp. 259–278. Self-healing polymer-based systems. DOI
Kötteritzsch J., Hager M.D., Schubert U.S. Tuning the self-healing behavior of one-component intrinsic polymers. Polymer. 2015;69:321–329. doi: 10.1016/j.polymer.2015.03.027. DOI
Li Y., Yang Z., Zhang J., Ding L., Pan L., Huang C., Zheng X., Zeng C., Lin C. Novel polyurethane with high self-healing efficiency for functional energetic composites. Polym. Test. 2019;76:82–89. doi: 10.1016/j.polymertesting.2019.03.014. DOI
Zavada S.R., McHardy N.R., Gordon K.L., Scott T.F. Rapid, Puncture-Initiated Healing via Oxygen-Mediated Polymerization. ACS Macro Lett. 2015;4:819–824. doi: 10.1021/acsmacrolett.5b00315. PubMed DOI
Hia I.L., Vahedi V., Pasbakhsh P. Self-Healing Polymer Composites: Prospects, Challenges, and Applications. Polym. Rev. 2016;56:225–261. doi: 10.1080/15583724.2015.1106555. DOI
Wang J., Xu W., Li Z., Zhou Z. Damping and Self-Healing Properties of Polyborosiloxane Composites. Polym. Mater. Sci. Eng. 2018;34:84–90.
Wu T., Chen B. Synthesis of Multiwalled Carbon Nanotube-Reinforced Polyborosiloxane Nanocomposites with Mechanically Adaptive and Self-Healing Capabilities for Flexible Conductors. ACS Appl. Mater. Interfaces. 2016;8:24071–24078. doi: 10.1021/acsami.6b06137. PubMed DOI
Osada T., Kamoda K., Mitome M., Hara T., Abe T., Tamagawa Y., Nakao W., Ohmura T. A Novel Design Approach for Self-Crack-Healing Structural Ceramics with 3D Networks of Healing Activator. Sci. Rep. 2017;7:17853. doi: 10.1038/s41598-017-17942-6. PubMed DOI PMC
Turkenburg D.H., Fischer H.R. Reversible cross-linking in composite binders—In-situ repair options and recyclability. Adv. Mater. Lett. 2018;9:861–866. doi: 10.5185/amlett.2018.2162. DOI
Yoshioka S., Nakao W. Methodology for evaluating self-healing agent of structural ceramics. J. Intell. Mater. Syst. Struct. 2015;26:1395–1403. doi: 10.1177/1045389X14544137. DOI
Nakao W., Abe S. Enhancement of the self-healing ability in oxidation induced self-healing ceramic by modifying the healing agent. Smart Mater. Struct. 2012;21:025002. doi: 10.1088/0964-1726/21/2/025002. DOI
Farle A.S., Kwakernaak C., van der Zwaag S., Sloof W.G. A conceptual study into the potential of Mn+1AXn-phase ceramics for self-healing of crack damage. J. Eur. Ceram. Soc. 2015;35:37–45. doi: 10.1016/j.jeurceramsoc.2014.08.046. DOI
Li S., Song G., Kwakernaak K., van der Zwaag S., Sloof W.G. Multiple crack healing of a Ti2AlC ceramic. J. Eur. Ceram. Soc. 2012;32:1813–1820. doi: 10.1016/j.jeurceramsoc.2012.01.017. DOI
Ghosh S.K. Self-Healing Materials: Fundamentals, Design Strategies, and Applications Edited by Swapan Kumar Ghosh. WILEY-VCH Verlag GmbH & Co.; Weinheim, Germany: 2009. p. 306.
Ono M., Nakao W., Takahashi K., Nakatani M., Ando K. A new methodology to guarantee the structural integrity of Al2O3/SiC composite using crack healing and a proof test. Fatigue Fract. Eng. Mater. Struct. 2007;30:599–607. doi: 10.1111/j.1460-2695.2007.01132.x. DOI
Zhang S., Kwakernaak C., Sloof W., Brück E., van der Zwaag S., van Dijk N. Self healing of creep damage by gold precipitation in iron alloys. Adv. Eng. Mater. 2015;17:598–603. doi: 10.1002/adem.201400511. DOI
Al-Fakih A., Mahamood M.A.A., Al-Osta M.A., Ahmad S. Performance and efficiency of self-healing geopolymer technologies: A review. Constr. Build. Mater. 2023;386:131571. doi: 10.1016/j.conbuildmat.2023.131571. DOI
Laha K., Kyono J., Shinya N. An advanced creep cavitation resistance Cu-containing 18Cr–12Ni–Nb austenitic stainless steel. Scr. Mater. 2007;56:915–918. doi: 10.1016/j.scriptamat.2006.12.030. DOI
Kodzoev M.-B.K., Isachenko S.L. Self-healing concrete [Electronic resource] [(accessed on 18 April 2024)];Sci. J. Bull. Sci. Pract. 2018 4:287–290. Available online: http://www.bulletennauki.com/kodzoev-isachenko-1.
Jonkers H.M., Schlangen E. Development of a bacteria-based self healing concrete. Tailor Made Concr. Struct. 2008;1:425–430. doi: 10.1201/9781439828410.ch72. DOI
Stefanidou M., Tsardaka E.-C., Karozou A. Nanoparticles controlling self-healing properties in cement pastes. Mater. Today Proc. 2021;54:22–27. doi: 10.1016/j.matpr.2021.07.028. DOI
Ahn T.H., Kishi T. Crack self-healing behavior of cementitious composites incorporating various miner admixtures. J. Adv. Concr. Technol. 2010;8:171–186. doi: 10.3151/jact.8.171. DOI
Solskiy S.V., Orlova N.L., Velichko A.S. Crack self-healing in clay-cement concrete diaphragm of embankment dam. Mag. Civ. Eng. 2018;77:3–12.
Tolstoy A., Gridchin A., Glagolev E., Lesovik R., Shapovalov N. Efficient Construction Composites for Construction in the North and the Arctic. Lect. Notes Civ. Eng. 2021;147:15–22.
Terzis D., Laloui L. A decade of progress and turning points in the understanding of bio-improved soils: A review. Géoméch. Energy Environ. 2019;19:100116. doi: 10.1016/j.gete.2019.03.001. DOI
Bruyako M., Grigorieva L., Grigorieva A., Ivanova I. Treatment of natural zeolites for increasing the sorption capacity. Solid State Phenom. 2016;871:70–75. doi: 10.4028/www.scientific.net/MSF.871.70. DOI
Bruyako M., Grigoryeva L. Bioactive additives for self-healing of concretete microstructure. Mater. Sci. Forum. 2018;945:36–41. doi: 10.4028/www.scientific.net/MSF.945.36. DOI
Bruyako M., Grigor’eva A., Stepina I., Golotenko D., Podsevalova A. Biomodified building materials on the base of mineral binders; Proceedings of the IOP Conference Series: Materials Science and Engineering, 7th International Scientific Conference on Integration, Partnership and Innovation in Construction Science and Education; Tashkent, Uzbekistan. 11–14 November 2020; p. 012005.