Accessible biocatalyst development by rapid in vitro semi-rational engineering (RISE) of enzymes
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41550753
PubMed Central
PMC12804161
DOI
10.1016/j.isci.2025.114257
PII: S2589-0042(25)02518-0
Knihovny.cz E-zdroje
- Klíčová slova
- Biocatalysis, Biotechnology, Enzyme engineering,
- Publikační typ
- časopisecké články MeSH
Tailoring natural enzymes to synthetic needs is often associated with high costs and long timelines, hindering the broader adoption of biocatalysis in the chemical and pharmaceutical industries. To address this, we developed the RISE (rapid in vitro semi-rational engineering) workflow that makes enzyme engineering accessible to chemistry laboratories. RISE integrates four key concepts: computational design of focused variant libraries, rapid generation of linear mutant DNA libraries via PCR, cell-free protein synthesis from linear template DNA, and iterative cycles of mutagenesis, expression, and testing to accumulate beneficial mutations. In a proof-of-concept study, we engineered a ketimine reductase from Rattus norvegicus (RnKIRED), achieving stereoselectivity inversion in one reductive amination reaction and a 400-fold activity improvement in another. These engineered variants enabled the gram-scale synthesis of key intermediates for ACE2 inhibitor drugs. RISE bridges the gap between inefficient wild-type enzymes and expensive directed evolution, promoting biocatalysis implementation in early chemical development.
Eötvös Loránd University Institute of Chemistry Budapest 1117 Hungary
International Clinical Research Center St Anne's University Hospital Brno 625 00 Czech Republic
Servier Research Institute of Medicinal Chemistry Budapest 1037 Hungary
Zobrazit více v PubMed
Buller R., Lutz S., Kazlauskas R.J., Snajdrova R., Moore J.C., Bornscheuer U.T. From nature to industry: Harnessing enzymes for biocatalysis. Science. 2023;382 doi: 10.1126/science.adh8615. PubMed DOI
Bell E.L., Finnigan W., France S.P., Green A.P., Hayes M.A., Hepworth L.J., Lovelock S.L., Niikura H., Osuna S., Romero E., et al. Biocatalysis. Nat. Rev. Methods Primers. 2021;1:46. doi: 10.1038/s43586-021-00044-z. DOI
Wu S., Snajdrova R., Moore J.C., Baldenius K., Bornscheuer U.T. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew. Chem. Int. Ed. 2021;60:88–119. doi: 10.1002/anie.202006648. PubMed DOI PMC
Choi J.M., Han S.S., Kim H.S. Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnol. Adv. 2015;33:1443–1454. doi: 10.1016/j.biotechadv.2015.02.014. PubMed DOI
Hughes D.L. Highlights of the Recent Patent Literature─Focus on Biocatalysis Innovation. Org. Process. Res. Dev. 2022;26:1878–1899. doi: 10.1021/acs.oprd.1c00417. DOI
Woodley J.M. Accelerating the implementation of biocatalysis in industry. Appl. Microbiol. Biotechnol. 2019;103:4733–4739. doi: 10.1007/s00253-019-09796-x. PubMed DOI
Romero E.O., Saucedo A.T., Hernández-Meléndez J.R., Yang D., Chakrabarty S., Narayan A.R.H. Enabling Broader Adoption of Biocatalysis in Organic Chemistry. JACS Au. 2023;3:2073–2085. doi: 10.1021/jacsau.3c00263. PubMed DOI PMC
Truppo M.D. Biocatalysis in the Pharmaceutical Industry: The Need for Speed. ACS Med. Chem. Lett. 2017;8:476–480. doi: 10.1021/acsmedchemlett.7b00114. PubMed DOI PMC
Goodwin N.C., Morrison J.P., Fuerst D.E., Hadi T. Biocatalysis in Medicinal Chemistry: Challenges to Access and Drivers for Adoption. ACS Med. Chem. Lett. 2019;10:1363–1366. doi: 10.1021/acsmedchemlett.9b00410. PubMed DOI PMC
Gregorio N.E., Levine M.Z., Oza J.P. A User’s Guide to Cell-Free Protein Synthesis. Methods Protoc. 2019;2:24. doi: 10.3390/mps2010024. PubMed DOI PMC
Silverman A.D., Karim A.S., Jewett M.C. Cell-free gene expression: an expanded repertoire of applications. Nat. Rev. Genet. 2020;21:151–170. doi: 10.1038/s41576-019-0186-3. PubMed DOI
Levine M.Z., Gregorio N.E., Jewett M.C., Watts K.R., Oza J.P. Escherichia coli-Based Cell-Free Protein Synthesis: Protocols for a robust, flexible, and accessible platform technology. J. Vis. Exp. 2019;144:e58882. doi: 10.3791/58882. PubMed DOI
Contreras-Llano L.E., Tan C. High-throughput screening of biomolecules using cell-free gene expression systems. Synth. Biol. 2018;3 doi: 10.1093/synbio/ysy012. PubMed DOI PMC
Vasina M., Kovar D., Damborsky J., Ding Y., Yang T., Demello A., Mazurenko S., Stavrakis S., Prokop Z. In-depth analysis of biocatalysts by microfluidics: An emerging source of data for machine learning. Biotechnol. Adv. 2023;66 doi: 10.1016/j.biotechadv.2023.108171. PubMed DOI
Hadi T., Nozzi N., Melby J.O., Gao W., Fuerst D.E., Kvam E. Rolling circle amplification of synthetic DNA accelerates biocatalytic determination of enzyme activity relative to conventional methods. Sci. Rep. 2020;10 doi: 10.1038/s41598-020-67307-9. PubMed DOI PMC
Madani A., Krause B., Greene E.R., Subramanian S., Mohr B.P., Holton J.M., Olmos J.L., Xiong C., Sun Z.Z., Socher R., et al. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol. 2023;41:1099–1106. doi: 10.1038/s41587-022-01618-2. PubMed DOI PMC
Qu G., Li A., Acevedo-Rocha C.G., Sun Z., Reetz M.T. The Crucial Role of Methodology Development in Directed Evolution of Selective Enzymes. Angew. Chem. Int. Ed. 2020;59:13204–13231. doi: 10.1002/ANIE.201901491. PubMed DOI
Qin Z., Yuan B., Qu G., Sun Z. Rational enzyme design by reducing the number of hotspots and library size. Chem. Commun. 2024;60:10451–10463. doi: 10.1039/D4CC01394H. PubMed DOI
Quertinmont L.T., Orru R., Lutz S. RApid Parallel Protein EvaluatoR (RAPPER), from gene to enzyme function in one day. Chem. Commun. 2015;51:122–124. doi: 10.1039/C4CC08240K. PubMed DOI
Watanabe S., Ito M., Kigawa T. DiRect: Site-directed mutagenesis method for protein engineering by rational design. Biochem. Biophys. Res. Commun. 2021;551:107–113. doi: 10.1016/j.bbrc.2021.03.021. PubMed DOI
Landwehr G.M., Bogart J.W., Magalhaes C., Hammarlund E.G., Karim A.S., Jewett M.C. Accelerated enzyme engineering by machine-learning guided cell-free expression. Nat. Commun. 2025;16:865. doi: 10.1038/s41467-024-55399-0. PubMed DOI PMC
Planas-Iglesias J., Marques S.M., Pinto G.P., Musil M., Stourac J., Damborsky J., Bednar D. Computational design of enzymes for biotechnological applications. Biotechnol. Adv. 2021;47 doi: 10.1016/j.biotechadv.2021.107696. PubMed DOI
Marques S.M., Planas-Iglesias J., Damborsky J. Web-based tools for computational enzyme design. Curr. Opin. Struct. Biol. 2021;69:19–34. doi: 10.1016/j.sbi.2021.01.010. PubMed DOI
Bao Y., Xu Y., Huang X. Focused rational iterative site-specific mutagenesis (FRISM): A powerful method for enzyme engineering. Mol. Catal. 2024;553 doi: 10.1016/j.mcat.2023.113755. DOI
Hyslop J.F., Lovelock S.L., Sutton P.W., Brown K.K., Watson A.J.B., Roiban G.D. Biocatalytic Synthesis of Chiral N-Functionalized Amino Acids. Angew. Chem. Int. Ed. 2018;57:13821–13824. doi: 10.1002/anie.201806893. PubMed DOI
Telek A., Dargó G., Kovács R., Molnár Z., Vértessy B.G., Tasnádi G. Enzymatic Production of Opine-Type Chiral Amines with Controlled Stereoselectivity. ChemCatChem. 2025;17 doi: 10.1002/cctc.202402066. DOI
Salihovic A., Ascham A., Taladriz-Sender A., Bryson S., Withers J.M., McKean I.J.W., Hoskisson P.A., Grogan G., Burley G.A. Gram-scale enzymatic synthesis of 2′-deoxyribonucleoside analogues using nucleoside transglycosylase-2. Chem. Sci. 2024;15:15399–15407. doi: 10.1039/D4SC04938A. PubMed DOI PMC
Salihovic A., Ascham A., Rosenqvist P.S., Taladriz-Sender A., Hoskisson P.A., Hodgson D.R.W., Grogan G., Burley G.A. Biocatalytic synthesis of ribonucleoside analogues using nucleoside transglycosylase-2. Chem. Sci. 2025;16:1302–1307. doi: 10.1039/D4SC07521H. PubMed DOI PMC
Sumbalova L., Stourac J., Martinek T., Bednar D., Damborsky J. HotSpot Wizard 3.0: web server for automated design of mutations and smart libraries based on sequence input information. Nucleic Acids Res. 2018;46:W356–W362. doi: 10.1093/NAR/GKY417. PubMed DOI PMC
Chovancova E., Pavelka A., Benes P., Strnad O., Brezovsky J., Kozlikova B., Gora A., Sustr V., Klvana M., Medek P., et al. CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures. PLoS Comput. Biol. 2012;8 doi: 10.1371/JOURNAL.PCBI.1002708. PubMed DOI PMC
Jurcik A., Bednar D., Byska J., Marques S.M., Furmanova K., Daniel L., Kokkonen P., Brezovsky J., Strnad O., Stourac J., et al. CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics. 2018;34:3586–3588. doi: 10.1093/bioinformatics/bty386. PubMed DOI PMC
Smith C.I.E., Zain R. Therapeutic Oligonucleotides: State of the Art. Annu. Rev. Pharmacol. Toxicol. 2019;59:605–630. doi: 10.1146/annurev-pharmtox-010818-021050. PubMed DOI
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., De Beer T.A.P., Rempfer C., Bordoli L., et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–W303. doi: 10.1093/NAR/GKY427. PubMed DOI PMC
Borel F., Hachi I., Palencia A., Gaillard M.C., Ferrer J.L. Crystal structure of mouse mu-crystallin complexed with NADPH and the T3 thyroid hormone. FEBS J. 2014;281:1598–1612. doi: 10.1111/febs.12726. PubMed DOI
Anandakrishnan R., Aguilar B., Onufriev A.V. H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res. 2012;40:W537–W541. doi: 10.1093/nar/gks375. PubMed DOI PMC
Maier J.A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K.E., Simmerling C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015;11:3696–3713. doi: 10.1021/acs.jctc.5b00255. PubMed DOI PMC
Wang J., Wang W., Kollman P.A., Case D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006;25:247–260. doi: 10.1016/j.jmgm.2005.12.005. PubMed DOI
Holmberg N., Ryde U., Bülow L. Redesign of the coenzyme specificity in L-Lactate dehydrogenase from Bacillus stearothermophilus using site-directed mutagenesis and media engineering. Protein Eng. 1999;12:851–856. doi: 10.1093/protein/12.10.851. PubMed DOI
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI
Hopkins C.W., Le Grand S., Walker R.C., Roitberg A.E. Long-time-step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theory Comput. 2015;11:1864–1874. doi: 10.1021/ct5010406. PubMed DOI
Ryckaert J.P., Ciccotti G., Berendsen H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23:327–341. doi: 10.1016/0021-9991(77)90098-5. DOI
Davidchack R.L., Handel R., Tretyakov M.V. Langevin thermostat for rigid body dynamics. J. Chem. Phys. 2009;130 doi: 10.1063/1.3149788. PubMed DOI
Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., DiNola A., Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI
Armstrong S.R., Cook W.J., Short S.A., Ealick S.E. Crystal structures of nucleoside 2-deoxyribosyltransferase in native and ligand-bound forms reveal architecture of the active site. Structure. 1996;4:97–107. doi: 10.1016/S0969-2126(96)00013-5. PubMed DOI