Accessible biocatalyst development by rapid in vitro semi-rational engineering (RISE) of enzymes

. 2026 Jan 16 ; 29 (1) : 114257. [epub] 20251127

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41550753
Odkazy

PubMed 41550753
PubMed Central PMC12804161
DOI 10.1016/j.isci.2025.114257
PII: S2589-0042(25)02518-0
Knihovny.cz E-zdroje

Tailoring natural enzymes to synthetic needs is often associated with high costs and long timelines, hindering the broader adoption of biocatalysis in the chemical and pharmaceutical industries. To address this, we developed the RISE (rapid in vitro semi-rational engineering) workflow that makes enzyme engineering accessible to chemistry laboratories. RISE integrates four key concepts: computational design of focused variant libraries, rapid generation of linear mutant DNA libraries via PCR, cell-free protein synthesis from linear template DNA, and iterative cycles of mutagenesis, expression, and testing to accumulate beneficial mutations. In a proof-of-concept study, we engineered a ketimine reductase from Rattus norvegicus (RnKIRED), achieving stereoselectivity inversion in one reductive amination reaction and a 400-fold activity improvement in another. These engineered variants enabled the gram-scale synthesis of key intermediates for ACE2 inhibitor drugs. RISE bridges the gap between inefficient wild-type enzymes and expensive directed evolution, promoting biocatalysis implementation in early chemical development.

Zobrazit více v PubMed

Buller R., Lutz S., Kazlauskas R.J., Snajdrova R., Moore J.C., Bornscheuer U.T. From nature to industry: Harnessing enzymes for biocatalysis. Science. 2023;382 doi: 10.1126/science.adh8615. PubMed DOI

Bell E.L., Finnigan W., France S.P., Green A.P., Hayes M.A., Hepworth L.J., Lovelock S.L., Niikura H., Osuna S., Romero E., et al. Biocatalysis. Nat. Rev. Methods Primers. 2021;1:46. doi: 10.1038/s43586-021-00044-z. DOI

Wu S., Snajdrova R., Moore J.C., Baldenius K., Bornscheuer U.T. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew. Chem. Int. Ed. 2021;60:88–119. doi: 10.1002/anie.202006648. PubMed DOI PMC

Choi J.M., Han S.S., Kim H.S. Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnol. Adv. 2015;33:1443–1454. doi: 10.1016/j.biotechadv.2015.02.014. PubMed DOI

Hughes D.L. Highlights of the Recent Patent Literature─Focus on Biocatalysis Innovation. Org. Process. Res. Dev. 2022;26:1878–1899. doi: 10.1021/acs.oprd.1c00417. DOI

Woodley J.M. Accelerating the implementation of biocatalysis in industry. Appl. Microbiol. Biotechnol. 2019;103:4733–4739. doi: 10.1007/s00253-019-09796-x. PubMed DOI

Romero E.O., Saucedo A.T., Hernández-Meléndez J.R., Yang D., Chakrabarty S., Narayan A.R.H. Enabling Broader Adoption of Biocatalysis in Organic Chemistry. JACS Au. 2023;3:2073–2085. doi: 10.1021/jacsau.3c00263. PubMed DOI PMC

Truppo M.D. Biocatalysis in the Pharmaceutical Industry: The Need for Speed. ACS Med. Chem. Lett. 2017;8:476–480. doi: 10.1021/acsmedchemlett.7b00114. PubMed DOI PMC

Goodwin N.C., Morrison J.P., Fuerst D.E., Hadi T. Biocatalysis in Medicinal Chemistry: Challenges to Access and Drivers for Adoption. ACS Med. Chem. Lett. 2019;10:1363–1366. doi: 10.1021/acsmedchemlett.9b00410. PubMed DOI PMC

Gregorio N.E., Levine M.Z., Oza J.P. A User’s Guide to Cell-Free Protein Synthesis. Methods Protoc. 2019;2:24. doi: 10.3390/mps2010024. PubMed DOI PMC

Silverman A.D., Karim A.S., Jewett M.C. Cell-free gene expression: an expanded repertoire of applications. Nat. Rev. Genet. 2020;21:151–170. doi: 10.1038/s41576-019-0186-3. PubMed DOI

Levine M.Z., Gregorio N.E., Jewett M.C., Watts K.R., Oza J.P. Escherichia coli-Based Cell-Free Protein Synthesis: Protocols for a robust, flexible, and accessible platform technology. J. Vis. Exp. 2019;144:e58882. doi: 10.3791/58882. PubMed DOI

Contreras-Llano L.E., Tan C. High-throughput screening of biomolecules using cell-free gene expression systems. Synth. Biol. 2018;3 doi: 10.1093/synbio/ysy012. PubMed DOI PMC

Vasina M., Kovar D., Damborsky J., Ding Y., Yang T., Demello A., Mazurenko S., Stavrakis S., Prokop Z. In-depth analysis of biocatalysts by microfluidics: An emerging source of data for machine learning. Biotechnol. Adv. 2023;66 doi: 10.1016/j.biotechadv.2023.108171. PubMed DOI

Hadi T., Nozzi N., Melby J.O., Gao W., Fuerst D.E., Kvam E. Rolling circle amplification of synthetic DNA accelerates biocatalytic determination of enzyme activity relative to conventional methods. Sci. Rep. 2020;10 doi: 10.1038/s41598-020-67307-9. PubMed DOI PMC

Madani A., Krause B., Greene E.R., Subramanian S., Mohr B.P., Holton J.M., Olmos J.L., Xiong C., Sun Z.Z., Socher R., et al. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol. 2023;41:1099–1106. doi: 10.1038/s41587-022-01618-2. PubMed DOI PMC

Qu G., Li A., Acevedo-Rocha C.G., Sun Z., Reetz M.T. The Crucial Role of Methodology Development in Directed Evolution of Selective Enzymes. Angew. Chem. Int. Ed. 2020;59:13204–13231. doi: 10.1002/ANIE.201901491. PubMed DOI

Qin Z., Yuan B., Qu G., Sun Z. Rational enzyme design by reducing the number of hotspots and library size. Chem. Commun. 2024;60:10451–10463. doi: 10.1039/D4CC01394H. PubMed DOI

Quertinmont L.T., Orru R., Lutz S. RApid Parallel Protein EvaluatoR (RAPPER), from gene to enzyme function in one day. Chem. Commun. 2015;51:122–124. doi: 10.1039/C4CC08240K. PubMed DOI

Watanabe S., Ito M., Kigawa T. DiRect: Site-directed mutagenesis method for protein engineering by rational design. Biochem. Biophys. Res. Commun. 2021;551:107–113. doi: 10.1016/j.bbrc.2021.03.021. PubMed DOI

Landwehr G.M., Bogart J.W., Magalhaes C., Hammarlund E.G., Karim A.S., Jewett M.C. Accelerated enzyme engineering by machine-learning guided cell-free expression. Nat. Commun. 2025;16:865. doi: 10.1038/s41467-024-55399-0. PubMed DOI PMC

Planas-Iglesias J., Marques S.M., Pinto G.P., Musil M., Stourac J., Damborsky J., Bednar D. Computational design of enzymes for biotechnological applications. Biotechnol. Adv. 2021;47 doi: 10.1016/j.biotechadv.2021.107696. PubMed DOI

Marques S.M., Planas-Iglesias J., Damborsky J. Web-based tools for computational enzyme design. Curr. Opin. Struct. Biol. 2021;69:19–34. doi: 10.1016/j.sbi.2021.01.010. PubMed DOI

Bao Y., Xu Y., Huang X. Focused rational iterative site-specific mutagenesis (FRISM): A powerful method for enzyme engineering. Mol. Catal. 2024;553 doi: 10.1016/j.mcat.2023.113755. DOI

Hyslop J.F., Lovelock S.L., Sutton P.W., Brown K.K., Watson A.J.B., Roiban G.D. Biocatalytic Synthesis of Chiral N-Functionalized Amino Acids. Angew. Chem. Int. Ed. 2018;57:13821–13824. doi: 10.1002/anie.201806893. PubMed DOI

Telek A., Dargó G., Kovács R., Molnár Z., Vértessy B.G., Tasnádi G. Enzymatic Production of Opine-Type Chiral Amines with Controlled Stereoselectivity. ChemCatChem. 2025;17 doi: 10.1002/cctc.202402066. DOI

Salihovic A., Ascham A., Taladriz-Sender A., Bryson S., Withers J.M., McKean I.J.W., Hoskisson P.A., Grogan G., Burley G.A. Gram-scale enzymatic synthesis of 2′-deoxyribonucleoside analogues using nucleoside transglycosylase-2. Chem. Sci. 2024;15:15399–15407. doi: 10.1039/D4SC04938A. PubMed DOI PMC

Salihovic A., Ascham A., Rosenqvist P.S., Taladriz-Sender A., Hoskisson P.A., Hodgson D.R.W., Grogan G., Burley G.A. Biocatalytic synthesis of ribonucleoside analogues using nucleoside transglycosylase-2. Chem. Sci. 2025;16:1302–1307. doi: 10.1039/D4SC07521H. PubMed DOI PMC

Sumbalova L., Stourac J., Martinek T., Bednar D., Damborsky J. HotSpot Wizard 3.0: web server for automated design of mutations and smart libraries based on sequence input information. Nucleic Acids Res. 2018;46:W356–W362. doi: 10.1093/NAR/GKY417. PubMed DOI PMC

Chovancova E., Pavelka A., Benes P., Strnad O., Brezovsky J., Kozlikova B., Gora A., Sustr V., Klvana M., Medek P., et al. CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures. PLoS Comput. Biol. 2012;8 doi: 10.1371/JOURNAL.PCBI.1002708. PubMed DOI PMC

Jurcik A., Bednar D., Byska J., Marques S.M., Furmanova K., Daniel L., Kokkonen P., Brezovsky J., Strnad O., Stourac J., et al. CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics. 2018;34:3586–3588. doi: 10.1093/bioinformatics/bty386. PubMed DOI PMC

Smith C.I.E., Zain R. Therapeutic Oligonucleotides: State of the Art. Annu. Rev. Pharmacol. Toxicol. 2019;59:605–630. doi: 10.1146/annurev-pharmtox-010818-021050. PubMed DOI

Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., De Beer T.A.P., Rempfer C., Bordoli L., et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–W303. doi: 10.1093/NAR/GKY427. PubMed DOI PMC

Borel F., Hachi I., Palencia A., Gaillard M.C., Ferrer J.L. Crystal structure of mouse mu-crystallin complexed with NADPH and the T3 thyroid hormone. FEBS J. 2014;281:1598–1612. doi: 10.1111/febs.12726. PubMed DOI

Anandakrishnan R., Aguilar B., Onufriev A.V. H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res. 2012;40:W537–W541. doi: 10.1093/nar/gks375. PubMed DOI PMC

Maier J.A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K.E., Simmerling C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015;11:3696–3713. doi: 10.1021/acs.jctc.5b00255. PubMed DOI PMC

Wang J., Wang W., Kollman P.A., Case D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006;25:247–260. doi: 10.1016/j.jmgm.2005.12.005. PubMed DOI

Holmberg N., Ryde U., Bülow L. Redesign of the coenzyme specificity in L-Lactate dehydrogenase from Bacillus stearothermophilus using site-directed mutagenesis and media engineering. Protein Eng. 1999;12:851–856. doi: 10.1093/protein/12.10.851. PubMed DOI

Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI

Hopkins C.W., Le Grand S., Walker R.C., Roitberg A.E. Long-time-step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theory Comput. 2015;11:1864–1874. doi: 10.1021/ct5010406. PubMed DOI

Ryckaert J.P., Ciccotti G., Berendsen H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23:327–341. doi: 10.1016/0021-9991(77)90098-5. DOI

Davidchack R.L., Handel R., Tretyakov M.V. Langevin thermostat for rigid body dynamics. J. Chem. Phys. 2009;130 doi: 10.1063/1.3149788. PubMed DOI

Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., DiNola A., Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI

Armstrong S.R., Cook W.J., Short S.A., Ealick S.E. Crystal structures of nucleoside 2-deoxyribosyltransferase in native and ligand-bound forms reveal architecture of the active site. Structure. 1996;4:97–107. doi: 10.1016/S0969-2126(96)00013-5. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...