Selection of Probiotics for Honey Bees: The In Vitro Inhibition of Paenibacillus larvae, Melissococcus plutonius, and Serratia marcescens Strain Sicaria by Host-Specific Lactobacilli and Bifidobacteria
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK21010088
CZECH NATIONAL AGRICULTURAL RESEARCH AGENCY
Project No. LM2023064
METROFOOD-CZ Research Infrastructure (https://metrofood.cz), supported by the Ministry of Education, Youth and Sports of the Czech Republic
PubMed
40431330
PubMed Central
PMC12113734
DOI
10.3390/microorganisms13051159
PII: microorganisms13051159
Knihovny.cz E-zdroje
- Klíčová slova
- Melissococcus plutonius, Paenibacillus larvae, Serratia marcescens strain sicaria, bifidobacteria, honey bee probiotics, in vitro inhibition, lactobacilli,
- Publikační typ
- časopisecké články MeSH
Host-specific Lactobacillus and Bifidobacterium species constitute the core microbiota of the honey bee digestive tract and are recognized for their probiotic properties. One of the properties of these bacteria is the inhibition of bacterial pathogens such as Paenibacillus larvae and Melissococcus plutonius, the causative agents of American and European foulbrood, respectively. Additionally, Serratia marcescens has emerged as a relevant opportunistic pathogen. Although several previously published studies have examined the inhibition of selected bacterial pathogens of bees by members of the bee physiological microbiota, none have simultaneously investigated the inhibition of multiple clinical isolates of P. larvae, M. plutonius, and S. marcescens using a wide range of bifidobacterial and lactobacilli strains isolated from various locations within a single country. Thus, this study evaluated the antimicrobial potential of Lactobacillus and Bifidobacterium strains against these pathogens, with a focus on strain-dependent inhibition. A total of 111 bacterial strains (62 Lactobacillus and 49 Bifidobacterium) were isolated from the digestive tracts of honey bees collected from eight sites across the Czech Republic. Using 16S rRNA gene sequencing, the isolates were classified and tested in vitro against four P. larvae isolates, one M. plutonius isolate, and the S. marcescens strain sicaria in modified BHI medium. Twenty-eight strains (~26%) exhibited strong inhibition (≥21 mm) against at least two P. larvae isolates, while 12 strains showed moderate inhibition (16-20 mm) against all four isolates. Inhibition of M. plutonius and S. marcescens was observed in three and twenty strains, respectively. The most effective strains belonged to Bifidobacterium asteroides, B. choladohabitans, B. polysaccharolyticum, Lactobacillus apis, L. helsingborgensis, L. kullabergensis, and L. melliventris. These results underscore the strain-dependent nature of antimicrobial activity and highlight the importance of selecting probiotic strains with broad-spectrum pathogen inhibition to support honey bee health.
Department of Experimental Biology Faculty of Science Masaryk University 625 00 Brno Czech Republic
Department of Food Science Czech University of Life Sciences Prague 165 00 Prague Czech Republic
Zobrazit více v PubMed
Alberoni D., Gaggìa F., Baffoni L., Modesto M.M., Biavati B., Di Gioia D. Bifidobacterium Xylocopae sp. nov. and Bifidobacterium Aemilianum sp. nov., from the Carpenter Bee (Xylocopa Violacea) Digestive Tract. Syst. Appl. Microbiol. 2019;42:205–216. doi: 10.1016/j.syapm.2018.11.005. PubMed DOI
Chen J., Wang J., Zheng H. Characterization of Bifidobacterium Apousia sp. nov., Bifidobacterium Choladohabitans sp. nov., and Bifidobacterium Polysaccharolyticum sp. nov., Three Novel Species of the Genus Bifidobacterium from Honeybee Gut. Syst. Appl. Microbiol. 2021;44:126247. doi: 10.1016/j.syapm.2021.126247. PubMed DOI
Engel P., Kwong W.K., Moran N.A. Frischella Perrara gen. nov., sp. nov., a Gammaproteobacterium Isolated from the Gut of the Honeybee, Apis Mellifera. Int. J. Syst. Evol. Microbiol. 2013;63:3646–3651. doi: 10.1099/ijs.0.049569-0. PubMed DOI
Killer J., Dubná S., Sedláček I., Švec P. Lactobacillus Apis sp. nov., from the Stomach of Honeybees (Apis mellifera), Having an in vitro Inhibitory Effect on the Causative Agents of American and European Foulbrood. Int. J. Syst. Evol. Microbiol. 2014;64:152–157. doi: 10.1099/ijs.0.053033-0. PubMed DOI
Killer J., Kopečný J., Mrázek J., Havlík J., Koppová I., Benada O., Rada V., Kofroňová O. Bombiscardovia Coagulans gen. nov., sp. nov., a New Member of the Family Bifidobacteriaceae Isolated from the Digestive Tract of Bumblebees. Syst. Appl. Microbiol. 2010;33:359–366. doi: 10.1016/j.syapm.2010.08.002. PubMed DOI
Killer J., Votavová A., Valterová I., Vlková E., Rada V., Hroncová Z. Lactobacillus Bombi sp. nov., from the Digestive Tract of Laboratory-Reared Bumblebee Queens (Bombus Terrestris) Int. J. Syst. Evol. Microbiol. 2014;64:2611–2617. doi: 10.1099/ijs.0.063602-0. PubMed DOI
Kwong W.K., Moran N.A. Cultivation and Characterization of the Gut Symbionts of Honey Bees and Bumble Bees: Description of Snodgrassella Alvi gen. nov., sp. nov., a Member of the Family Neisseriaceae of the Betaproteobacteria, and Gilliamella Apicola gen. nov., sp. nov., a Member of Orbaceae Fam. nov., Orbales Ord. nov., a Sister Taxon to the Order “Enterobacteriales” of the Gammaproteobacteria. Int. J. Syst. Evol. Microbiol. 2013;63:2008–2018. doi: 10.1099/ijs.0.044875-0. PubMed DOI
Olofsson T.C., Alsterfjord M., Nilson B., Butler È., Vásquez A. Lactobacillus Apinorum sp. nov., Lactobacillus Mellifer sp. nov., Lactobacillus Mellis sp. nov., Lactobacillus Melliventris sp. nov., Lactobacillus Kimbladii sp. nov., Lactobacillus Helsingborgensis sp. nov. and Lactobacillus Kullabergensis sp. nov., Isolated from the Honey Stomach of the Honeybee Apis mellifera. Int. J. Syst. Evol. Microbiol. 2014;64:3109–3119. doi: 10.1099/ijs.0.059600-0. PubMed DOI PMC
Olofsson T.C., Modesto M., Pascarelli S. Bifidobacterium Mellis sp. nov., Isolated from the Honey Stomach of the Honey Bee Apis mellifera. Int. J. Syst. Evol. Microbiol. 2023;73:3. doi: 10.1099/ijsem.0.005766. PubMed DOI
Kešnerová L., Mars R.A.T., Ellegaard K.M., Troilo M., Sauer U., Engel P. Disentangling Metabolic Functions of Bacteria in the Honey Bee Gut. PLoS Biol. 2017;15:e2003467. doi: 10.1371/journal.pbio.2003467. PubMed DOI PMC
Motta E.V.S., Gage A., Smith T.E., Blake K.J., Kwong W.K., Riddington I.M., Moran N.A. Host-Microbiome Metabolism of a Plant Toxin in Bees. Elife. 2022;11:e82595. doi: 10.7554/eLife.82595. PubMed DOI PMC
Zheng H., Perreau J., Elijah Powell J., Han B., Zhang Z., Kwong W.K., Tringe S.G., Moran N.A. Division of Labor in Honey Bee Gut Microbiota for Plant Polysaccharide Digestion. Proc. Natl. Acad. Sci. USA. 2019;116:25909–25916. doi: 10.1073/pnas.1916224116. PubMed DOI PMC
Leska A., Nowak A., Miśkiewicz K., Rosicka-Kaczmarek J. Binding and Detoxification of Insecticides by Potentially Probiotic Lactic Acid Bacteria Isolated from Honeybee (Apis mellifera L.) Environment—An In Vitro Study. Cells. 2022;11:3743. doi: 10.3390/cells11233743. PubMed DOI PMC
Liu P., Niu J., Zhu Y., Li Z., Ye L., Cao H., Shi T., Yu L. Apilactobacillus kunkeei Alleviated Toxicity of Acetamiprid in Honeybee. Insects. 2022;13:1167. doi: 10.3390/insects13121167. PubMed DOI PMC
Nowak A., Szczuka D., Górczyńska A., Motyl I., Kręgiel D. Characterization of Apis Mellifera Gastrointestinal Microbiota and Lactic Acid Bacteria for Honeybee Protection-A Review. Cells. 2021;10:701. doi: 10.3390/cells10030701. PubMed DOI PMC
Smriti, Rana A., Singh G., Gupta G. Prospects of Probiotics in Beekeeping: A Review for Sustainable Approach to Boost Honeybee Health. Arch. Microbiol. 2024;206:205. doi: 10.1007/s00203-024-03926-4. PubMed DOI
Garrido P.M., Porrini M.P., Alberoni D., Baffoni L., Scott D., Mifsud D., Eguaras M.J., Di Gioia D. Beneficial Bacteria and Plant Extracts Promote Honey Bee Health and Reduce Nosema Ceranae Infection. Probiotics Antimicrob. Proteins. 2024;16:259–274. doi: 10.1007/s12602-022-10025-7. PubMed DOI PMC
Janashia I., Alaux C. Specific Immune Stimulation by Endogenous Bacteria in Honey Bees (Hymenoptera: Apidae) J. Econ. Entomol. 2016;109:1474–1477. doi: 10.1093/jee/tow065. PubMed DOI
Ye M., Li X., Yang F., Zhou B. Beneficial Bacteria as Biocontrol Agents for American Foulbrood Disease in Honey Bees (Apis mellifera) J. Insect Sci. 2023;23:6. doi: 10.1093/jisesa/iead013. PubMed DOI PMC
Zheng H., Powell J.E., Steele M.I., Dietrich C., Moran N.A. Honeybee Gut Microbiota Promotes Host Weight Gain via Bacterial Metabolism and Hormonal Signaling. Proc. Natl. Acad. Sci. USA. 2017;114:4775–4780. doi: 10.1073/pnas.1701819114. PubMed DOI PMC
Alberoni D., Baffoni L., Gaggìa F., Ryan P.M., Murphy K. Impact of Beneficial Bacteria Supplementation on the Gut Microbiota, Colony Development and Productivity of Apis mellifera L. Benef. Microbes. 2018;9:269–278. doi: 10.3920/BM2017.0061. PubMed DOI
Anderson K.E., Ricigliano V.A., Mott B.M., Copeland D.C., Floyd A.S., Maes P. The Queen’s Gut Refines with Age: Longevity Phenotypes in a Social Insect Model. Microbiome. 2018;6:108. doi: 10.1186/s40168-018-0489-1. PubMed DOI PMC
Wang H., Lei L., Chen W., Chi X., Han K., Wang Y., Ma L., Liu Z., Xu B. The Comparison of Antioxidant Performance, Immune Performance, IIS Activity and Gut Microbiota Composition between Queen and Worker Bees Revealed the Mechanism of Different Lifespan of Female Casts in the Honeybee. Insects. 2022;13:772. doi: 10.3390/insects13090772. PubMed DOI PMC
Janashia I., Choiset Y., Jozefiak D., Déniel F., Coton E., Moosavi-Movahedi A.A., Chanishvili N., Haertlé T. Beneficial Protective Role of Endogenous Lactic Acid Bacteria against Mycotic Contamination of Honeybee Beebread. Probiotics Antimicrob. Proteins. 2018;10:638–646. doi: 10.1007/s12602-017-9379-2. PubMed DOI
Daisley B.A., Pitek A.P., Chmiel J.A., Gibbons S., Chernyshova A.M., Al K.F., Faragalla K.M., Burton J.P., Thompson G.J., Reid G. Lactobacillus spp. Attenuate Antibiotic-Induced Immune and Microbiota Dysregulation in Honey Bees. Commun. Biol. 2020;3:534. doi: 10.1038/s42003-020-01259-8. PubMed DOI PMC
Powell J.E., Carver Z., Leonard S.P., Moran N.A. Field-Realistic Tylosin Exposure Impacts Honey Bee Microbiota and Pathogen Susceptibility, Which Is Ameliorated by Native Gut Probiotics. Microbiol. Spectr. 2021;9:e0010321. doi: 10.1128/Spectrum.00103-21. PubMed DOI PMC
Wu J., Lang H., Mu X., Zhang Z., Su Q., Hu X., Zheng H. Honey Bee Genetics Shape the Strain-Level Structure of Gut Microbiota in Social Transmission. Microbiome. 2021;9:225. doi: 10.1186/s40168-021-01174-y. PubMed DOI PMC
Zhang Z., Mu X., Cao Q., Shi Y., Hu X., Zheng H. Honeybee Gut Lactobacillus Modulates Host Learning and Memory Behaviors via Regulating Tryptophan Metabolism. Nat. Commun. 2022;13:2037. doi: 10.1038/s41467-022-29760-0. PubMed DOI PMC
Vernier C.L., Nguyen L.A., Gernat T., Ahmed A.C., Chen Z., Robinson G.E. Gut Microbiota Contribute to Variations in Honey Bee Foraging Intensity. ISME J. 2024;18:wrae030. doi: 10.1093/ismejo/wrae030. PubMed DOI PMC
Forsgren E., Olofsson T.C., Vásquez A., Fries I. Novel Lactic Acid Bacteria Inhibiting Paenibacillus Larvae in Honey Bee Larvae Novel Lactic Acid Bacteria Inhibiting Paenibacillus Larvae in Honey Bee Larvae. Apidologie. 2010;41:99–108. doi: 10.1051/apido/2009065. DOI
Iorizzo M., Ganassi S., Albanese G., Letizia F., Testa B., Tedino C., Petrarca S., Mutinelli F., Mazzeo A., De Cristofaro A. Antimicrobial Activity from Putative Probiotic Lactic Acid Bacteria for the Biological Control of American and European Foulbrood Diseases. Vet. Sci. 2022;9:236. doi: 10.3390/vetsci9050236. PubMed DOI PMC
Lang H., Duan H., Wang J., Zhang W., Guo J., Zhang X., Hu X., Zheng H. Specific Strains of Honeybee Gut Lactobacillus Stimulate Host Immune System to Protect against Pathogenic Hafnia Alvei. Microbiol. Spectr. 2022;23:e0189621. doi: 10.1128/spectrum.01896-21. PubMed DOI PMC
Truong A.T., Kang J.E., Yoo M.S., Nguyen T.T., Youn S.Y., Yoon S.S., Cho Y.S. Probiotic Candidates for Controlling Paenibacillus Larvae, a Causative Agent of American Foulbrood Disease in Honey Bee. BMC Microbiol. 2023;23:150. doi: 10.1186/s12866-023-02902-0. PubMed DOI PMC
Wu M., Sugimura Y., Takaya N., Takamatsu D., Kobayashi M., Taylor D.M., Yoshiyama M. Characterization of Bifidobacteria in the Digestive Tract of the Japanese Honeybee, Apis Cerana Japonica. J. Invertebr. Pathol. 2013;112:88–93. doi: 10.1016/j.jip.2012.09.005. PubMed DOI
Zeid A.A.A., Khattaby A.M., El-Khair I.A.A., Gouda H.I.A. Detection Bioactive Metabolites of Fructobacillus Fructosus strain HI-1 Isolated from Honey Bee’s Digestive Tract Against Paenibacillus Larvae. Probiotics Antimicrob. Proteins. 2022;14:476–485. doi: 10.1007/s12602-021-09812-5. PubMed DOI
Arredondo D., Castelli L., Porrini M.P., Garrido P.M., Eguaras M.J., Zunino P., Antúnez K. Lactobacillus Kunkeei Strains Decreased the Infection by Honey Bee Pathogens Paenibacillus Larvae and Nosema Ceranae. Benef. Microbes. 2018;9:279–290. doi: 10.3920/BM2017.0075. PubMed DOI
Baffoni L., Gaggìa F., Alberoni D., Cabbri R., Nanetti A., Biavati B., Di Gioia D. Effect of Dietary Supplementation of Bifidobacterium and Lactobacillus Strains in Apis Mellifera L. Against Nosema ceranae. Benef. Microbes. 2016;7:45–51. doi: 10.3920/BM2015.0085. PubMed DOI
Iorizzo M., Lombardi S.J., Ganassi S., Testa B., Ianiro M., Letizia F., Succi M., Tremonte P., Vergalito F., Cozzolino A., et al. Antagonistic Activity against Ascosphaera apis and Functional Properties of Lactobacillus kunkeei Strains. Antibiotics. 2020;9:262. doi: 10.3390/antibiotics9050262. PubMed DOI PMC
Tejerina M.R., Cabana M.J., Benitez-Ahrendts M.R. Strains of Lactobacillus spp. Reduce Chalkbrood in Apis mellifera. J. Invertebr. Pathol. 2021;178:107521. doi: 10.1016/j.jip.2020.107521. PubMed DOI
Brar G., Ngor L., McFrederick Q.S., Torson A.S., Rajamohan A., Rinehart J., Singh P., Bowsher J.H. High Abundance of Lactobacilli in the Gut Microbiome of Honey Bees During Winter. Sci. Rep. 2025;15:7409. doi: 10.1038/s41598-025-90763-0. PubMed DOI PMC
Reid G., Gadir A.A., Dhir R. Probiotics: Reiterating What They Are and What They Are Not. Front. Microbiol. 2019;10:424. doi: 10.3389/fmicb.2019.00424. PubMed DOI PMC
Endo A., Salminen S. Honeybees and beehives are rich sources for fructophilic lactic acid bacteria. Syst. Appl. Microbiol. 2013;36:444–448. doi: 10.1016/j.syapm.2013.06.002. PubMed DOI
Vásquez A., Olofsson T.C., Forsgren E., Fries I., Paxton R.J., Flaberg E., Szekely L., Odham G. Symbionts as major modulators of insect health: Lactic acid bacteria and honeybees. PLoS ONE. 2012;7:e33188. doi: 10.1371/annotation/3ac2b867-c013-4504-9e06-bebf3fa039d1. PubMed DOI PMC
Killer J., Kopečný J., Mrázek J., Rada V., Dubná S., Marounek M. Bifidobacteria in the Digestive Tract of Bumblebees. Anaerobe. 2010;16:165–170. doi: 10.1016/j.anaerobe.2009.07.007. PubMed DOI
Matiašovic J., Bzdil J., Papežíková I., Čejková D., Vasina E., Bizos J., Navrátil S., Šedivá M., Klaudiny J., Pikula J. Genomic Analysis of Paenibacillus larvae Isolates from the Czech Republic and the Neighbouring Regions of Slovakia. Res. Vet. Sci. 2023;158:34–40. doi: 10.1016/j.rvsc.2023.03.007. PubMed DOI
Thebeau J.M., Liebe D., Masood F., Kozii I.V., Klein C.D., Zabrodski M.W., Moshynskyy I., Sobchishin L., Wilson G., Guarna M.M., et al. Article Investigation of Melissococcus Plutonius Isolates from 3 Outbreaks of European Foulbrood Disease in Commercial Beekeeping Operations in Western Canada. Can. Vet. J. 2022;63:935–942. PubMed PMC
Burritt N.L., Foss N.J., Neeno-Eckwall E.C., Church J.O., Hilger A.M., Hildebrand J.A., Warshauer D.M., Perna N.T., Burritt J.B. Sepsis and Hemocyte Loss in Honey Bees (Apis Mellifera) Infected with Serratia Marcescens Strain Sicaria. PLoS ONE. 2016;11:e0167752. doi: 10.1371/journal.pone.0167752. PubMed DOI PMC
Forster R.J., Teather R.M., Gong J., Deng S.J. 16S rDNA Analysis of Butyrivibrio Fibrisolvens: Phylogenetic Position and Relation to Butyrate-Producing Anaerobic Bacteria from the Rumen of White-Tailed Deer. Lett. Appl. Microbiol. 1996;23:218–222. doi: 10.1111/j.1472-765X.1996.tb00069.x. PubMed DOI
Galkiewicz J.P., Kellogg C.A. Cross-Kingdom Amplification Using Bacteria-Specific Primers: Complications for Studies of Coral Microbial Ecology. Appl Environ Microbiol. 2008;74:7828–7831. doi: 10.1128/AEM.01303-08. PubMed DOI PMC
Killer J., Mekadim C., Pechar R., Bunešová V., Mrázek J., Vlková E. Gene Encoding the CTP Synthetase as an Appropriate Molecular Tool for Identification and Phylogenetic Study of the Family Bifidobacteriaceae. Microbiologyopen. 2018;7:e00579. doi: 10.1002/mbo3.579. PubMed DOI PMC
Cheng L., Kiewiet M.B.G., Logtenberg M.J., Groeneveld A., Nauta A., Schols H.A., Walvoort M.T.C., Harmsen H.J.M., de Vos P. Effects of Different Human Milk Oligosaccharides on Growth of Bifidobacteria in Monoculture and Co-Culture with Faecalibacterium Prausnitzii. Front. Microbiol. 2020;11:569700. doi: 10.3389/fmicb.2020.569700. PubMed DOI PMC
Killer J., Havlík J., Bunešová V., Vlková E., Benada O. Pseudoscardovia radai sp. nov., A Representative of the Family Bifidobacteriaceae Isolated from the Digestive Tract of a Wild Pig (Sus Scrofa Scrofa) Int. J. Syst. Evol. Microbiol. 2014;64:2932–2938. doi: 10.1099/ijs.0.063230-0. PubMed DOI
Chun J., Oren A., Ventosa A., Christensen H., Arahal D.R., da Costa M.S., Rooney A.P., Yi H., Xu X.W., De Meyer S., et al. Proposed Minimal Standards for the Use of Genome Data for the Taxonomy of Prokaryotes. Int. J. Syst. Evol. Microbiol. 2018;68:461–466. doi: 10.1099/ijsem.0.002516. PubMed DOI
Ellegaard K.M., Tamarit D., Javelind E., Olofsson T.C., Andersson S.G.E., Vásquez A. Extensive Intra-Phylotype Diversity in Lactobacilli and Bifidobacteria from the Honeybee Gut. BMC Genom. 2015;16:284. doi: 10.1186/s12864-015-1476-6. PubMed DOI PMC
Heyndrickx M., Vandemeulebroecke K., Hoste B. Reclassification of Paenibacillus (Formerly Bacillus) Pulvifaciens (Nakamura 1984) Ash et al. 1994, a Later Subjective Synonym of Paenibacillus (Formerly Bacillus) larvae (White 1906) Ash et al. 1994, as a Subspecies of P. Larvae, with Emended Descriptions of P. Larvae as P. Larvae subs P. Larvae and P. Larvae subsp. Pulvifaciens. Int. J. Syst. Bacteriol. 1996;46:270–279. doi: 10.1099/00207713-46-1-270. PubMed DOI
Fijan S. Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature. Int. J. Environ. Res. Public Health. 2014;11:4745–4767. doi: 10.3390/ijerph110504745. PubMed DOI PMC
Hejazi A., Falkiner F.R. Serratia marcescens. J. Med. Microbiol. 1997;46:903–912. doi: 10.1099/00222615-46-11-903. PubMed DOI
Raymann K., Coon K.L., Shaffer Z., Salisbury S., Moran N.A. Pathogenicity of Serratia marcescens Strains in Honey Bees. mBio. 2018;9:e01649-18. doi: 10.1128/mBio.02855-18. Erratum in mBio 2019, 10, e02855-18. PubMed DOI PMC
Ansari M.J., Al-Ghamdi A., Nuru A., Ahmed A.M., Ayaad T.H., Al-Qarni A., Alattal Y., Al-Waili N. Survey and Molecular Detection of Melissococcus plutonius, the Causative Agent of European Foulbrood in Honeybees in Saudi Arabia. Saudi J. Biol. Sci. 2017;24:1327–1335. doi: 10.1016/j.sjbs.2016.10.012. PubMed DOI PMC
Daisley B.A., Pitek A.P., Chmiel J.A., Al K.F., Chernyshova A.M., Faragalla K.M., Burton J.P., Thompson G.J., Reid G. Novel Probiotic Approach to Counter Paenibacillus larvae Infection in Honey Bees. ISME J. 2020;14:476–491. doi: 10.1038/s41396-019-0541-6. PubMed DOI PMC
Butler È., Alsterfjord M., Olofsson T.C., Karlsson C., Malmström J., Vásquez A. Proteins of Novel Lactic Acid Bacteria from Apis mellifera mellifera: An Insight into the Production of Known Extra-Cellular Proteins during Microbial Stress. BMC Microbiol. 2013;13:235. doi: 10.1186/1471-2180-13-235. PubMed DOI PMC
Masood F., Thebeau J.M., Cloet A., Kozii I.V., Zabrodski M.W., Biganski S., Wood S.C. Evaluating approved and alternative treatments against an oxytetracycline-resistant bacterium responsible for European foulbrood disease in honey bees. Sci. Rep. 2022;12:5906. doi: 10.1038/s41598-022-09796-4. PubMed DOI PMC
Daisley B.A., Pitek A.P., Mallory E., Chernyshova A.M., Allen-Vercoe E., Reid G., Thompson G.J. Disentangling the microbial ecological factors impacting honey bee susceptibility to Paenibacillus larvae infection. Trends Microbiol. 2023;31:521–534. doi: 10.1016/j.tim.2022.11.012. PubMed DOI
Iorizzo M., Testa B., Lombardi S.J., Ganassi S., Ianiro M., Letizia F., De Cristofaro A. Antimicrobial activity against Paenibacillus larvae and functional properties of Lactiplantibacillus plantarum strains: Potential benefits for honeybee health. Antibiotics. 2020;9:442. doi: 10.3390/antibiotics9080442. PubMed DOI PMC
Borges D., Guzman-Novoa E., Goodwin P.H. Effects of prebiotics and probiotics on honey bees (Apis mellifera) infected with the microsporidian parasite Nosema ceranae. Microorganisms. 2021;9:481. doi: 10.3390/microorganisms9030481. PubMed DOI PMC
Mallory E., Freeze G., Daisley B.A., Allen-Vercoe E. Revisiting the role of pathogen diversity and microbial interactions in honeybee susceptibility and treatment of Melissococcus plutonius infection. Front. Vet. Sci. 2024;11:1495010. doi: 10.3389/fvets.2024.1495010. PubMed DOI PMC
Toutiaee S., Mojgani N., Harzandi N., Moharrami M., Mokhberosafa L. In vitro probiotic and safety attributes of Bacillus spp. isolated from beebread, honey samples and digestive tract of honeybees Apis mellifera. Lett. Appl. Microbiol. 2022;74:656–665. doi: 10.1111/lam.13650. PubMed DOI