Involvement of a variant secretory protein in virulence of emerging Cryptosporidium parvum subtypes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
40465693
PubMed Central
PMC12143685
DOI
10.1080/21505594.2025.2514077
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR/Cas9, Cryptosporidium, animal model, genomics, virulence,
- MeSH
- Cryptosporidium parvum * genetika patogenita klasifikace MeSH
- faktory virulence * genetika metabolismus MeSH
- genom protozoální MeSH
- kryptosporidióza * parazitologie MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- oocysty MeSH
- protozoální proteiny * genetika metabolismus MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- faktory virulence * MeSH
- protozoální proteiny * MeSH
Several divergent Cryptosporidium parvum subtypes have emerged in people in recent years, but their infectivity, pathogenicity, and genetic characteristics are unclear. In the present study, IFN-γ knockout C57BL/6 (GKO) mice were infected with the novel IIoA15G1 and IIpA11 subtypes of C. parvum and the common IIaA17G2R1 subtype. The genomes of these isolates were sequenced and compared with each other. Further gene tagging and deletion were performed on the most polymorphic virulence-associated cgd8_5420 gene encoding a hypothetical protein using the CRISPR/Cas9 technology. IIpA11 and IIoA15G1 were highly infectious in GKO mice, with an ID50 of 2.4 and 3.6 oocysts, respectively. The duration of oocyst shedding for IIpA11 (>58.0 ± 1.4 d) and IIoA15G1 (>57.5 ± 0.9 d) was significantly longer than for IIaA17G2R1 (5.5 ± 0.9 d; p < 0.001). One of the mice infected with IIpA11 died on day 33 post infection. The genomes of IIaA17G2R1, IIoA15G1, and IIpA11 had 203, 46839, and 47,122 single nucleotide polymorphisms, respectively, compared to C. parvum IOWA II. In contrast, only 3,361 nucleotide differences were found between IIoA15G1 and IIpA11, with several genes encoding invasion-associated mucin glycoproteins and cgd8_5420 encoding a secretory protein being highly polymorphic. The latter is mainly expressed in trophozoites, merozoites, and macrogametes. Deletion of this gene reduced the intensity of IIpA11 infection and increased the survival of infected mice. Therefore, the emerging IIoA15G1 and IIpA11 subtypes have divergent genomes compared to common IIa subtypes and are highly infectious and pathogenic in GKO mice. Several secretory proteins, including a variant protein encoded by the subtelomeric cgd8_5420 gene, are associated with differences in virulence between the two subtypes.
Zobrazit více v PubMed
Kotloff KL, Nataro JP, Blackwelder WC, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the global enteric multicenter study, GEMS): a prospective, case-control study. Lancet. 2013;382(9888):209–14. doi: 10.1016/s0140-6736(13)60844-2 PubMed DOI
Santin M. Cryptosporidium and Giardia in ruminants. Vet Clin North Am Food Anim Pract. 2020;36(1):223–238. doi: 10.1016/j.cvfa.2019.11.005 PubMed DOI
Checkley W, White AC, Jaganath D, et al. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for Cryptosporidium. Lancet Infect Dis. 2015;15(1):85–94. doi: 10.1016/s1473-3099(14)70772-8 PubMed DOI PMC
Feng Y, Ryan UM, Xiao L. Genetic diversity and population structure of Cryptosporidium. Trends Parasitol. 2018;34(11):997–1011. doi: 10.1016/j.pt.2018.07.009 PubMed DOI
Cama VA, Bern C, Roberts J, et al. Cryptosporidium species and subtypes and clinical manifestations in children, Peru. Emerg Infect Dis. 2008;14(10):1567–1574. doi: 10.3201/eid1410.071273 PubMed DOI PMC
Liu X, Zhou X, Zhong Z, et al. Occurrence of novel and rare subtype families of Cryptosporidium in bamboo rats (Rhizomys sinensis) in China. Vet Parasitol. 2015;207(1–2):144–148. doi: 10.1016/j.vetpar.2014.11.009 PubMed DOI
Wei Z, Liu Q, Zhao W, et al. Prevalence and diversity of Cryptosporidium spp. In bamboo rats (Rhizomys sinensis) in South Central China. Int J Parasitol Parasites Wildl. 2019;9:312–316. doi: 10.1016/j.ijppaw.2019.06.010 PubMed DOI PMC
Garcia RJ, Pita AB, Velathanthiri N, et al. Species and genotypes causing human cryptosporidiosis in New Zealand. Parasitol Res. 2020;119(7):2317–2326. doi: 10.1007/s00436-020-06729-w PubMed DOI
Sannella AR, Suputtamongkol Y, Wongsawat E, et al. A retrospective molecular study of Cryptosporidium species and genotypes in HIV-infected patients from Thailand. Parasit Vectors. 2019;12(1):91. doi: 10.1186/s13071-019-3348-4 PubMed DOI PMC
Insulander M, Silverlas C, Lebbad M, et al. Molecular epidemiology and clinical manifestations of human cryptosporidiosis in Sweden. Epidemiol Infect. 2013;141(5):1009–1020. doi: 10.1017/S0950268812001665 PubMed DOI PMC
Widmer G, Lee Y, Hunt P, et al. Comparative genome analysis of two Cryptosporidium parvum isolates with different host range. Infect Genet Evol. 2012;12(6):1213–1221. doi: 10.1016/j.meegid.2012.03.027 PubMed DOI PMC
Feng Y, Li N, Roellig DM, et al. Comparative genomic analysis of the IId subtype family of Cryptosporidium parvum. Int J Parasitol. 2017;47(5):281–290. doi: 10.1016/j.ijpara.2016.12.002 PubMed DOI PMC
Sonzogni-Desautels K, Mead JR, Ndao M. Mouse models for use in Cryptosporidium infection studies and quantification of parasite burden using flow cytometry, qPCR, and histopathology. Methods Mol Biol. 2020;2052:229–251. doi: 10.1007/978-1-4939-9748-0_14 PubMed DOI
Sayed FG, Hamza AI, Galal LA, et al. Virulence of geographically different Cryptosporidium parvum isolates in experimental animal model. Ann Parasitol. 2016;62(3):221–232. doi: 10.17420/ap6203.56 PubMed DOI
Audebert C, Bonardi F, Caboche S. Genetic basis for virulence differences of various Cryptosporidium parvum carcinogenic isolates. Sci Rep. 2020;10(1):7316. doi: 10.1038/s41598-020-64370-0 PubMed DOI PMC
Gaber M, Galal LAA, Hassan D, et al. Evidences of brain and lung invasion of a local water Cryptosporidium parvum isolate in comparison to Iowa strain: serological and immunohistochemical cytokine evaluation. Ann Parasitol. 2020;66(3):311–318. doi: 10.17420/ap6603.269 PubMed DOI
Li F, Zhao W, Zhang C, et al. Cryptosporidium species and C. parvum subtypes in farmed bamboo rats. Pathogens. 2020;9(12):12. doi: 10.3390/pathogens9121018 PubMed DOI PMC
Chen L, Hu S, Jiang W, et al. Cryptosporidium parvum and Cryptosporidium hominis subtypes in crab-eating macaques. Parasit Vectors. 2019;12(1):350. doi: 10.1186/s13071-019-3604-7 PubMed DOI PMC
Arrowood MJ, Sterling CR. Isolation of Cryptosporidium oocysts and sporozoites using discontinuous sucrose and isopycnic percoll gradients. J Parasitol. 1987;73(2):314–319. doi: 10.2307/3282084 PubMed DOI
Alves M, Xiao L, Sulaiman I, et al. Subgenotype analysis of Cryptosporidium isolates from humans, cattle, and zoo ruminants in Portugal. J Clin Microbiol. 2003;41(6):2744–2747. doi: 10.1128/JCM.41.6.2744-2747.2003 PubMed DOI PMC
Xiao L, Morgan UM, Limor J, et al. Genetic diversity within Cryptosporidium parvum and related Cryptosporidium species. Appl Environ Microbiol. 1999;65(8):3386–3391. doi: 10.1128/AEM.65.8.3386-3391.1999 PubMed DOI PMC
Ikarashi M, Fukuda Y, Honma H, et al. First description of heterogeneity in 18S rRNA genes in the haploid genome of Cryptosporidium andersoni kawatabi type. Vet Parasitol. 2013;196(1–2):220–224. doi: 10.1016/j.vetpar.2012.12.053 PubMed DOI
Li N, Neumann NF, Ruecker N, et al. Development and evaluation of three real-time PCR assays for genotyping and source tracking Cryptosporidium spp. In water. Appl Environ Microbiol. 2015;81(17):5845–5854. doi: 10.1128/aem.01699-15 PubMed DOI PMC
DuPont HL, Chappell CL, Sterling CR, et al. The infectivity of Cryptosporidium parvum in healthy volunteers. N Engl J Med. 1995;332(13):855–859. doi: 10.1056/NEJM199503303321304 PubMed DOI
Guo Y, Tang K, Rowe LA, et al. Comparative genomic analysis reveals occurrence of genetic recombination in virulent Cryptosporidium hominis subtypes and telomeric gene duplications in Cryptosporidium parvum. BMC Genomics. 2015;16(1):320. doi: 10.1186/s12864-015-1517-1 PubMed DOI PMC
Vinayak S, Pawlowic MC, Sateriale A, et al. Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum. Nature. 2015;523(7561):477–480. doi: 10.1038/nature14651 PubMed DOI PMC
English ED, Guérin A, Tandel J, et al. Live imaging of the Cryptosporidium parvum life cycle reveals direct development of male and female gametes from type I meronts. PLOS Biol. 2022;20(4):e3001604. doi: 10.1371/journal.pbio.3001604 PubMed DOI PMC
Jumani RS, Bessoff K, Love MS, et al. A novel piperazine-based drug lead for cryptosporidiosis from the medicines for malaria venture open-access malaria box. Antimicrob Agents Chemother. 2018;62(4):4. doi: 10.1128/aac.01505-17 PubMed DOI PMC
Manjunatha UH, Vinayak S, Zambriski JA, et al. A Cryptosporidium PI(4)K inhibitor is a drug candidate for cryptosporidiosis. Nature. 2017;546(7658):376–380. doi: 10.1038/nature22337 PubMed DOI PMC
Finch GR, Daniels CW, Black EK, et al. Dose response of Cryptosporidium parvum in outbred neonatal CD-1 mice. Appl Environ Microbiol. 1993;59(11):3661–3665. doi: 10.1128/aem.59.11.3661-3665.1993 PubMed DOI PMC
Tolboom JJ. The infectivity of Cryptosporidium parvum in healthy volunteers. J Pediatr Gastroenterol Nutr. 1996;23(2):201–202. doi: 10.1002/j.1536-4801.1996.tb00332.x PubMed DOI
Abdou AG, Harba NM, Afifi AF, et al. Assessment of Cryptosporidium parvum infection in immunocompetent and immunocompromised mice and its role in triggering intestinal dysplasia. Int J Infect Dis. 2013;17(8):e593–600. doi: 10.1016/j.ijid.2012.11.023 PubMed DOI
Chatterjee A, Banerjee S, Steffen M, et al. Evidence for mucin-like glycoproteins that tether sporozoites of Cryptosporidium parvum to the inner surface of the oocyst wall. Eukaryot Cell. 2010;9(1):84–96. doi: 10.1128/ec.00288-09 PubMed DOI PMC
O’Connor RM, Burns PB, Ha-Ngoc T, et al. Polymorphic mucin antigens CpMuc4 and CpMuc5 are integral to Cryptosporidium parvum infection in vitro. Eukaryot Cell. 2009;8(4):461–469. doi: 10.1128/ec.00305-08 PubMed DOI PMC
Strong WB, Gut J, Nelson RG, et al. Cloning and sequence analysis of a highly polymorphic Cryptosporidium parvum gene encoding a 60-kilodalton glycoprotein and characterization of its 15- and 45-kilodalton zoite surface antigen products. Infect Immun. 2000;68(7):4117–4134. doi: 10.1128/iai.68.7.4117-4134.2000 PubMed DOI PMC
Winter G, Gooley AA, Williams KL, et al. Characterization of a major sporozoite surface glycoprotein of Cryptosporidum parvum. Funct Integr Genomics. 2000;1(3):207–217. doi: 10.1007/s101420000028 PubMed DOI
Cevallos AM, Zhang X, Waldor MK, et al. Molecular cloning and expression of a gene encoding Cryptosporidium parvum glycoproteins gp40 and gp15. Infect Immun. 2000;68(7):4108–4116. doi: 10.1128/iai.68.7.4108-4116.2000 PubMed DOI PMC
Priest JW, Kwon JP, Arrowood MJ, et al. Cloning of the immunodominant 17-kDa antigen from Cryptosporidium parvum. Mol Biochem Parasitol. 2000;106(2):261–271. doi: 10.1016/s0166-6851(99)00223-6 PubMed DOI
Bouzid M, Hunter PR, McDonald V, et al. A new heterogeneous family of telomerically encoded Cryptosporidium proteins. Evol Appl. 2013;6(2):207–217. doi: 10.1111/j.1752-4571.2012.00277.x PubMed DOI PMC
Funkhouser-Jones LJ, Ravindran S, Sibley LD, et al. Defining stage-specific activity of potent new inhibitors of Cryptosporidium parvum growth in vitro. MBio. 2020;11(2):2. doi: 10.1128/mBio.00052-20 PubMed DOI PMC
Griffiths JK, Theodos C, Paris M, et al. The gamma interferon gene knockout mouse: a highly sensitive model for evaluation of therapeutic agents against Cryptosporidium parvum. J Clin Microbiol. 1998;36(9):2503–2508. doi: 10.1128/JCM.36.9.2503-2508.1998 PubMed DOI PMC
Jakobi V, Petry F. Humoral immune response in IL-12 and IFN-gamma deficient mice after infection with Cryptosporidium parvum. Parasite Immunol. 2008;30(3):151–161. doi: 10.1111/j.1365-3024.2007.01013.x PubMed DOI
Tessema TS, Schwamb B, Lochner M, et al. Dynamics of gut mucosal and systemic Th1/Th2 cytokine responses in interferon-gamma and interleukin-12p40 knock out mice during primary and challenge Cryptosporidium parvum infection. Immunobiology. 2009;214(6):454–466. doi: 10.1016/j.imbio.2008.11.015 PubMed DOI
Campbell LD, Stewart JN, Mead JR. Susceptibility to Cryptosporidium parvum infections in cytokine- and chemokine-receptor knockout mice. J Parasitol. 2002;88(5):1014–1016. doi: 10.1645/0022-3395(2002)088[1014:STCPII]2.0.CO;2 PubMed DOI
Pereira SJ, Ramirez NE, Xiao L, et al. Pathogenesis of human and bovine Cryptosporidium parvum in gnotobiotic pigs. J Infect Dis. 2002;186(5):715–718. doi: 10.1086/342296 PubMed DOI
Zambriski JA, Nydam DV, Wilcox ZJ, et al. Cryptosporidium parvum: determination of ID₅₀ and the dose-response relationship in experimentally challenged dairy calves. Vet Parasitol. 2013;197(1–2):104–112. doi: 10.1016/j.vetpar.2013.04.022 PubMed DOI PMC
Korpe PS, Haque R, Gilchrist C, et al. Natural history of cryptosporidiosis in a longitudinal study of slum-dwelling Bangladeshi children: association with severe malnutrition. PLOS Negl Trop Dis. 2016;10(5):e0004564. doi: 10.1371/journal.pntd.0004564 PubMed DOI PMC
BioProject
PRJNA1173948, PRJNA1173943, PRJNA1173945
SRA
SRR31044660, SRR31034905, SRR31035168
GENBANK
JBIQPL000000000, JBIQPK000000000, JBIPKD000000000