The linker protein ApcI regulates light harvesting under red light in Synechocystis sp. PCC 6803
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
DE-SC0020606
U.S. Department of Energy
DE-SC0010847
laboratory of W.F.B.
Office of Basic Energy Sciences
LUAUS24149
Ministry of Education, Youth and Sports of CR
LM2018123
CzeCOS program
CZ.02.1.01/0.0/0.0/16 026/0008413
OP RDE
PubMed
40479507
DOI
10.1093/plcell/koaf144
PII: 8157966
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny * metabolismus genetika MeSH
- červené světlo MeSH
- fotosyntéza účinky záření MeSH
- fykobilizomy metabolismus MeSH
- světlo * MeSH
- světlosběrné proteinové komplexy * metabolismus MeSH
- Synechocystis * metabolismus účinky záření genetika MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- fykobilizomy MeSH
- světlosběrné proteinové komplexy * MeSH
Phycobilisomes (PBSs) are versatile cyanobacterial antenna complexes that harvest light energy to drive photosynthesis. They can adapt to various light conditions; for example, dismantling under high light to prevent photo-oxidation and arranging in rows under low light to increase light harvesting efficiency. Light quality also influences PBS structure and function, as observed under far-red light exposure. Here, we describe a PBS linker protein, ApcI (previously hypothetical protein Sll1911), expressed specifically under red light (620 nm) or upon chemically induced reduction of the plastoquinone pool. We characterized ApcI in Synechocystis sp. PCC 6803 using mutant analyses, PBS binding experiments, and protein interaction studies. Deletion of apcI conferred high light tolerance on Synechocystis sp. PCC 6803 compared to the wild-type strain, leading to reduced energy transfer from PBSs to the photosystems under high light. Binding experiments revealed that ApcI replaces the linker protein ApcG at the membrane-facing side of the PBS core via a paralogous C-terminal motif. Additionally, the N-terminal region of ApcI interacts with photosystem II. Our findings highlight the importance of PBS remodeling for adaptation to different light conditions. The characterization of ApcI provides insight into the mechanisms by which cyanobacteria optimize light harvesting in response to varying light conditions.
Department of Biochemistry and Molecular Biology Michigan State University East Lansing MI 48824 USA
Department of Chemistry Michigan State University East Lansing MI 48824 1322 USA
MSU DOE Plant Research Laboratory Michigan State University East Lansing MI 48824 USA
Citace poskytuje Crossref.org