Temperature-Driven Morphological and Microstructural Changes of Gold Nanoparticles Prepared by Aggregation from the Gas Phase

. 2025 Jun 03 ; 10 (21) : 22052-22061. [epub] 20250520

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40488020

The effect of annealing on the thin layers of gold and gold nanoparticles in air was studied by statistically relevant X-ray scattering methods. The nanoparticle behavior is found to depend on the substrate coverage and annealing temperature. During annealing up to 450 °C, the size of single-crystalline nanoparticles gradually increases through the process of Ostwald ripening, while the density of crystallographic defects decreases slightly. An abrupt change occurs above 450 °C, whereas no significant evolution is observed for the less covered sample; at the sample with more material, the nanoparticles coalesce, and their shape becomes more rounded by further annealing. Only after the spheroidization is completed do the sizes of crystallites follow the nanoparticle size growth. Comparison with the thin continuous gold layer shows that the healing of the crystallographic defects, i.e., microstrain and stacking faults, takes place at significantly lower temperatures if the material is evenly distributed on the silicon substrate surface. However, annealed nanoparticle layers provide a much narrower particle size distribution when compared to a dewetted gold thin layer. At around 800 °C, the alignment of the gold crystal structure toward the substrate is detected, and it changes from the random distribution of the atomic planes given by the random initial orientation of deposited nanoparticles. Another interesting phenomenon occurs for annealing above 1000 °C; for the nanoparticle layers, the smallest nanoparticles evaporate, leaving holes in the SiO2 surface layer.

Zobrazit více v PubMed

Webb J. A., Bardhan R.. Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale. 2014;6:2502–2530. doi: 10.1039/c3nr05112a. PubMed DOI

Kong F. Y., Zhang J. W., Li R. F., Wang Z. X., Wang W. J., Wang W.. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules. 2017;22:1445. doi: 10.3390/molecules22091445. PubMed DOI PMC

Cormode D. P., Naha P. C., Fayad Z. A.. Nanoparticle contrast agents for computed tomography: A focus on micelles. Contrast Media Mol. Imaging. 2014;9:37–52. doi: 10.1002/cmmi.1551. PubMed DOI PMC

Paithankar D., Hwang B. H., Munavalli G., Kauvar A., Lloyd J., Blomgren R., Faupel L., Meyer T., Mitragotri S.. Ultrasonic delivery of silica-gold nanoshells for photothermolysis of sebaceous glands in humans: Nanotechnology from the bench to clinic. J. Controlled Release. 2015;206:30–36. doi: 10.1016/j.jconrel.2015.03.004. PubMed DOI

Yockell-Lelièvre H., Lussier F., Masson J. F.. Influence of the Particle Shape and Density of Self-Assembled Gold Nanoparticle Sensors on LSPR and SERS. J. Phys. Chem. C. 2015;119:28577–28585. doi: 10.1021/acs.jpcc.5b09570. DOI

Ishida T., Murayama T., Taketoshi A., Haruta M.. Importance of Size and Contact Structure of Gold Nanoparticles for the Genesis of Unique Catalytic Processes. Chem. Rev. 2020;120:464–525. doi: 10.1021/acs.chemrev.9b00551. PubMed DOI

Yan M., Dai J., Qiu M.. Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles. J. Opt. (United Kingdom). 2014;16:025002. doi: 10.1088/2040-8978/16/2/025002. DOI

Dong J., Firestone G. E., Bochinski J. R., Clarke L. I., Gorga R. E.. In situ curing of liquid epoxy via gold-nanoparticle mediated photothermal heating. Nanotechnology. 2017;28:065601. doi: 10.1088/1361-6528/aa521b. PubMed DOI

Krajčí, M. ; Kameoka, S. ; Tsai, A. P. . Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold. J. Chem. Phys. 2016, 145.10.1063/1.4961508. PubMed DOI

Park G. S., Min K. S., Kwon H., Yoon S., Park S., Kwon J. H., Lee S., Jo J., Kim M., Kim S. K.. Strain-Induced Modulation of Localized Surface Plasmon Resonance in Ultrathin Hexagonal Gold Nanoplates. Adv. Mater. 2021;33:1–9. doi: 10.1002/adma.202100653. PubMed DOI

Veith G. M., Lupini A. R., Rashkeev S., Pennycook S. J., Mullins D. R., Schwartz V., Bridges C. A., Dudney N. J.. Thermal stability and catalytic activity of gold nanoparticles supported on silica. J. Catal. 2009;262:92–101. doi: 10.1016/j.jcat.2008.12.005. DOI

Chu H. W., Unnikrishnan B., Anand A., Mao J. Y., Huang C. C.. Nanoparticle-based laser desorption/ionization mass spectrometric analysis of drugs and metabolites. J. Food Drug Anal. 2018;26:1215–1228. doi: 10.1016/j.jfda.2018.07.001. PubMed DOI PMC

Vines J. B., Yoon J. H., Ryu N. E., Lim D. J., Park H.. Gold nanoparticles for photothermal cancer therapy. Front. Chem. 2019;7:1–16. doi: 10.3389/fchem.2019.00167. PubMed DOI PMC

Goudeli E., Pratsinis S. E.. Crystallinity dynamics of gold nanoparticles during sintering or coalescence. AIChE J. 2016;62:589–598. doi: 10.1002/aic.15125. DOI

Zhu H., Averback R. S.. Sintering processes of two nanoparticles: A study by molecular dynamics simulations. Philos. Mag. Lett. 1996;73:27–33. doi: 10.1080/095008396181073. DOI

Grammatikopoulos P., Sowwan M., Kioseoglou J.. Computational Modeling of Nanoparticle Coalescence. Adv. Theory Simul. 2019;2:1–26. doi: 10.1002/adts.201900013. DOI

José-Yacamán M., Gutierrez-Wing C., Miki M., Yang D. Q., Piyakis K. N., Sacher E.. Surface diffusion and coalescence of mobile metal nanoparticles. J. Phys. Chem. B. 2005;109:9703–9711. doi: 10.1021/jp0509459. PubMed DOI

Young N. P., Huis M. A. v., Zandbergen H. W., Xu H., Kirkland A. I.. Variable temperature investigation of the atomic structure of gold nanoparticles. J. Phys. Conf. Ser. 2010;241:012095. doi: 10.1088/1742-6596/241/1/012095. DOI

Wang Y. Q., Liang W. S., Geng C. Y.. Shape evolution of gold nanoparticles. J. Nanoparticle Res. 2010;12:655–661. doi: 10.1007/s11051-009-9612-3. DOI

Haberland H., Karrais M., Mall M.. A new type of cluster ion source. Molecules. 1991;415:413–415. doi: 10.1007/BF01544025. DOI

Oxford Applied Research Ltd, http://www.oaresearch.co.uk.

Ilavsky J., Jemian P. R.. Irena: tool suite for modeling and analysis of small-angle scattering. J. Appl. Crystallogr. 2009;42:347–353. doi: 10.1107/S0021889809002222. DOI

Matěj Z., Kužel R., Nichtová L.. XRD total pattern fitting applied to study of microstructure of TiO2 films. Powder Diffr. 2010;25:125–131. doi: 10.1154/1.3392371. DOI

Velterop L., Delhez R., De Keijser T. H., Mittemeijer E. J., Reefman D.. X-ray diffraction analysis of stacking and twin faults in f.c.c. metals: A revision and allowance for texture and non-uniform fault probabilities. J. Appl. Crystallogr. 2000;33:296–306. doi: 10.1107/S0021889800000133. DOI

Scardi P., Leoni M.. Fourier modelling of the anisotropic line broadening of X-ray diffraction profiles due to line and plane lattice defects. J. Appl. Crystallogr. 1999;32:671–682. doi: 10.1107/S002188989900374X. DOI

Kiss L. B., Söderlund J., Niklasson G. A., Granqvist C. G.. The real origin of lognormal size distributi ons of nanoparticles in vapor growth processes. Nanostructured Mater. 1999;12:327–332. doi: 10.1016/S0965-9773(99)00128-2. DOI

Wang C., Wang H., Huang T., Xue X., Qiu F., Jiang Q.. Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation. Sci. Rep. 2015;5:1–11. doi: 10.1038/srep10213. PubMed DOI PMC

Pamato M. G., Wood I. G., Dobson D. P., Hunt S. A., Vočadlo L.. The thermal expansion of gold: point defect concentrations and pre-melting in a face-centred cubic metal. J. Appl. Crystallogr. 2018;51:470–480. doi: 10.1107/S1600576718002248. PubMed DOI PMC

Qi W. H., Wang M. P.. Size and shape dependent lattice parameters of metallic nanoparticles. J. Nanoparticle Res. 2005;7:51–57. doi: 10.1007/s11051-004-7771-9. DOI

Schell N., Jensen T., Petersen J. H., Andreasen K. P., Bøttiger J., Chevallier J.. The nanostructure evolution during and after magnetron deposition of Au films. Thin Solid Films. 2003;441:96–103. doi: 10.1016/S0040-6090(03)00928-3. DOI

Wu C. H., Aruguete D. M., Reynolds W. T., Murayama M.. The role of twin boundary and surface energies in periodically twinned ⟨1 1 1⟩ nanowires. Acta Mater. 2014;75:180–187. doi: 10.1016/j.actamat.2014.04.048. DOI

Barnard A. S.. A thermodynamic model for the shape and stability of twinned nanostructures. J. Phys. Chem. B. 2006;110:24498–24504. doi: 10.1021/jp065762g. PubMed DOI

Barnard A. S.. Direct Comparison of Kinetic and Thermodynamic Influences on Gold Nanomorphology. Acc. Chem. Res. 2012;45:1688–1697. doi: 10.1021/ar3000184. PubMed DOI

Wu X. Z., Wang R., Wang S. F., Wei Q. Y.. Ab initio calculations of generalized-stacking-fault energy surfaces and surface energies for FCC metals. Appl. Surf. Sci. 2010;256:6345–6349. doi: 10.1016/j.apsusc.2010.04.014. DOI

He G., Rong Y., Xu Z.. Self-energy and interaction energy of stacking fault in fcc metals calculated by embedded-atom method. Sci. China, Ser. E Technol. Sci. 2000;43:146–153. doi: 10.1007/BF02916884. DOI

Popok V. N., Kylián O.. Gas-Phase Synthesis of Functional Nanomaterials. Appl. Nano. 2020;1:25–58. doi: 10.3390/applnano1010004. DOI

Kosinova A., Kovalenko O., Klinger L., Rabkin E.. Mechanisms of solid-state dewetting of thin Au films in different annealing atmospheres. Acta Mater. 2015;83:91–101. doi: 10.1016/j.actamat.2014.09.049. DOI

Grammatikopoulos P., Toulkeridou E., Nordlund K., Sowwan M.. Simple analytical model of nanocluster coalescence for porous thin film design. Model. Simul. Mater. Sci. Eng. 2015;23:015008. doi: 10.1088/0965-0393/23/1/015008. DOI

Ingham B., Lim T. H., Dotzler C. J., Henning A., Toney M. F., Tilley R. D.. How nanoparticles coalesce: An in situ study of Au nanoparticle aggregation and grain growth. Chem. Mater. 2011;23:3312–3317. doi: 10.1021/cm200354d. DOI

Kracker M., Wisniewski W., Rüssel C.. Textures of Au, Pt and Pd/PdO nanoparticles thermally dewetted from thin metal layers on fused silica. RSC Adv. 2014;4:48135–48143. doi: 10.1039/C4RA07296K. DOI

Ilkiv I., Kotlyar K., Amel’chuk D., Lebedev S., Cirlin G., Bouravleuv A.. Thermal penetration of gold nanoparticles into silicon dioxide. Acta Phys. Polym. A. 2017;132:366–368. doi: 10.12693/APhysPolA.132.366. DOI

Oras S., Vlassov S., Vigonski S., Polyakov B., Antsov M., Zadin V., Lõhmus R., Mougin K.. The effect of heat treatment on the morphology and mobility of Au nanoparticles. Beilstein J. Nanotechnol. 2020;11:61–67. doi: 10.3762/bjnano.11.6. PubMed DOI PMC

Wang X., Jia Y., Yao Q., Wang F., Ma J., Hu X.. The calculation of the surface energy of high-index surfaces in metals at zero temperature. Surf. Sci. 2004;551:179–188. doi: 10.1016/j.susc.2003.12.034. DOI

Prymak O., Grasmik V., Loza K., Heggen M., Epple M.. Temperature-Induced Stress Relaxation in Alloyed Silver-Gold Nanoparticles (7–8 nm) by in Situ X-ray Powder Diffraction. Cryst. Growth Des. 2020;20:107–115. doi: 10.1021/acs.cgd.9b00728. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...