Temperature-Driven Morphological and Microstructural Changes of Gold Nanoparticles Prepared by Aggregation from the Gas Phase
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40488020
PubMed Central
PMC12138619
DOI
10.1021/acsomega.5c02149
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The effect of annealing on the thin layers of gold and gold nanoparticles in air was studied by statistically relevant X-ray scattering methods. The nanoparticle behavior is found to depend on the substrate coverage and annealing temperature. During annealing up to 450 °C, the size of single-crystalline nanoparticles gradually increases through the process of Ostwald ripening, while the density of crystallographic defects decreases slightly. An abrupt change occurs above 450 °C, whereas no significant evolution is observed for the less covered sample; at the sample with more material, the nanoparticles coalesce, and their shape becomes more rounded by further annealing. Only after the spheroidization is completed do the sizes of crystallites follow the nanoparticle size growth. Comparison with the thin continuous gold layer shows that the healing of the crystallographic defects, i.e., microstrain and stacking faults, takes place at significantly lower temperatures if the material is evenly distributed on the silicon substrate surface. However, annealed nanoparticle layers provide a much narrower particle size distribution when compared to a dewetted gold thin layer. At around 800 °C, the alignment of the gold crystal structure toward the substrate is detected, and it changes from the random distribution of the atomic planes given by the random initial orientation of deposited nanoparticles. Another interesting phenomenon occurs for annealing above 1000 °C; for the nanoparticle layers, the smallest nanoparticles evaporate, leaving holes in the SiO2 surface layer.
Zobrazit více v PubMed
Webb J. A., Bardhan R.. Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale. 2014;6:2502–2530. doi: 10.1039/c3nr05112a. PubMed DOI
Kong F. Y., Zhang J. W., Li R. F., Wang Z. X., Wang W. J., Wang W.. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules. 2017;22:1445. doi: 10.3390/molecules22091445. PubMed DOI PMC
Cormode D. P., Naha P. C., Fayad Z. A.. Nanoparticle contrast agents for computed tomography: A focus on micelles. Contrast Media Mol. Imaging. 2014;9:37–52. doi: 10.1002/cmmi.1551. PubMed DOI PMC
Paithankar D., Hwang B. H., Munavalli G., Kauvar A., Lloyd J., Blomgren R., Faupel L., Meyer T., Mitragotri S.. Ultrasonic delivery of silica-gold nanoshells for photothermolysis of sebaceous glands in humans: Nanotechnology from the bench to clinic. J. Controlled Release. 2015;206:30–36. doi: 10.1016/j.jconrel.2015.03.004. PubMed DOI
Yockell-Lelièvre H., Lussier F., Masson J. F.. Influence of the Particle Shape and Density of Self-Assembled Gold Nanoparticle Sensors on LSPR and SERS. J. Phys. Chem. C. 2015;119:28577–28585. doi: 10.1021/acs.jpcc.5b09570. DOI
Ishida T., Murayama T., Taketoshi A., Haruta M.. Importance of Size and Contact Structure of Gold Nanoparticles for the Genesis of Unique Catalytic Processes. Chem. Rev. 2020;120:464–525. doi: 10.1021/acs.chemrev.9b00551. PubMed DOI
Yan M., Dai J., Qiu M.. Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles. J. Opt. (United Kingdom). 2014;16:025002. doi: 10.1088/2040-8978/16/2/025002. DOI
Dong J., Firestone G. E., Bochinski J. R., Clarke L. I., Gorga R. E.. In situ curing of liquid epoxy via gold-nanoparticle mediated photothermal heating. Nanotechnology. 2017;28:065601. doi: 10.1088/1361-6528/aa521b. PubMed DOI
Krajčí, M. ; Kameoka, S. ; Tsai, A. P. . Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold. J. Chem. Phys. 2016, 145.10.1063/1.4961508. PubMed DOI
Park G. S., Min K. S., Kwon H., Yoon S., Park S., Kwon J. H., Lee S., Jo J., Kim M., Kim S. K.. Strain-Induced Modulation of Localized Surface Plasmon Resonance in Ultrathin Hexagonal Gold Nanoplates. Adv. Mater. 2021;33:1–9. doi: 10.1002/adma.202100653. PubMed DOI
Veith G. M., Lupini A. R., Rashkeev S., Pennycook S. J., Mullins D. R., Schwartz V., Bridges C. A., Dudney N. J.. Thermal stability and catalytic activity of gold nanoparticles supported on silica. J. Catal. 2009;262:92–101. doi: 10.1016/j.jcat.2008.12.005. DOI
Chu H. W., Unnikrishnan B., Anand A., Mao J. Y., Huang C. C.. Nanoparticle-based laser desorption/ionization mass spectrometric analysis of drugs and metabolites. J. Food Drug Anal. 2018;26:1215–1228. doi: 10.1016/j.jfda.2018.07.001. PubMed DOI PMC
Vines J. B., Yoon J. H., Ryu N. E., Lim D. J., Park H.. Gold nanoparticles for photothermal cancer therapy. Front. Chem. 2019;7:1–16. doi: 10.3389/fchem.2019.00167. PubMed DOI PMC
Goudeli E., Pratsinis S. E.. Crystallinity dynamics of gold nanoparticles during sintering or coalescence. AIChE J. 2016;62:589–598. doi: 10.1002/aic.15125. DOI
Zhu H., Averback R. S.. Sintering processes of two nanoparticles: A study by molecular dynamics simulations. Philos. Mag. Lett. 1996;73:27–33. doi: 10.1080/095008396181073. DOI
Grammatikopoulos P., Sowwan M., Kioseoglou J.. Computational Modeling of Nanoparticle Coalescence. Adv. Theory Simul. 2019;2:1–26. doi: 10.1002/adts.201900013. DOI
José-Yacamán M., Gutierrez-Wing C., Miki M., Yang D. Q., Piyakis K. N., Sacher E.. Surface diffusion and coalescence of mobile metal nanoparticles. J. Phys. Chem. B. 2005;109:9703–9711. doi: 10.1021/jp0509459. PubMed DOI
Young N. P., Huis M. A. v., Zandbergen H. W., Xu H., Kirkland A. I.. Variable temperature investigation of the atomic structure of gold nanoparticles. J. Phys. Conf. Ser. 2010;241:012095. doi: 10.1088/1742-6596/241/1/012095. DOI
Wang Y. Q., Liang W. S., Geng C. Y.. Shape evolution of gold nanoparticles. J. Nanoparticle Res. 2010;12:655–661. doi: 10.1007/s11051-009-9612-3. DOI
Haberland H., Karrais M., Mall M.. A new type of cluster ion source. Molecules. 1991;415:413–415. doi: 10.1007/BF01544025. DOI
Oxford Applied Research Ltd, http://www.oaresearch.co.uk.
Ilavsky J., Jemian P. R.. Irena: tool suite for modeling and analysis of small-angle scattering. J. Appl. Crystallogr. 2009;42:347–353. doi: 10.1107/S0021889809002222. DOI
Matěj Z., Kužel R., Nichtová L.. XRD total pattern fitting applied to study of microstructure of TiO2 films. Powder Diffr. 2010;25:125–131. doi: 10.1154/1.3392371. DOI
Velterop L., Delhez R., De Keijser T. H., Mittemeijer E. J., Reefman D.. X-ray diffraction analysis of stacking and twin faults in f.c.c. metals: A revision and allowance for texture and non-uniform fault probabilities. J. Appl. Crystallogr. 2000;33:296–306. doi: 10.1107/S0021889800000133. DOI
Scardi P., Leoni M.. Fourier modelling of the anisotropic line broadening of X-ray diffraction profiles due to line and plane lattice defects. J. Appl. Crystallogr. 1999;32:671–682. doi: 10.1107/S002188989900374X. DOI
Kiss L. B., Söderlund J., Niklasson G. A., Granqvist C. G.. The real origin of lognormal size distributi ons of nanoparticles in vapor growth processes. Nanostructured Mater. 1999;12:327–332. doi: 10.1016/S0965-9773(99)00128-2. DOI
Wang C., Wang H., Huang T., Xue X., Qiu F., Jiang Q.. Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation. Sci. Rep. 2015;5:1–11. doi: 10.1038/srep10213. PubMed DOI PMC
Pamato M. G., Wood I. G., Dobson D. P., Hunt S. A., Vočadlo L.. The thermal expansion of gold: point defect concentrations and pre-melting in a face-centred cubic metal. J. Appl. Crystallogr. 2018;51:470–480. doi: 10.1107/S1600576718002248. PubMed DOI PMC
Qi W. H., Wang M. P.. Size and shape dependent lattice parameters of metallic nanoparticles. J. Nanoparticle Res. 2005;7:51–57. doi: 10.1007/s11051-004-7771-9. DOI
Schell N., Jensen T., Petersen J. H., Andreasen K. P., Bøttiger J., Chevallier J.. The nanostructure evolution during and after magnetron deposition of Au films. Thin Solid Films. 2003;441:96–103. doi: 10.1016/S0040-6090(03)00928-3. DOI
Wu C. H., Aruguete D. M., Reynolds W. T., Murayama M.. The role of twin boundary and surface energies in periodically twinned ⟨1 1 1⟩ nanowires. Acta Mater. 2014;75:180–187. doi: 10.1016/j.actamat.2014.04.048. DOI
Barnard A. S.. A thermodynamic model for the shape and stability of twinned nanostructures. J. Phys. Chem. B. 2006;110:24498–24504. doi: 10.1021/jp065762g. PubMed DOI
Barnard A. S.. Direct Comparison of Kinetic and Thermodynamic Influences on Gold Nanomorphology. Acc. Chem. Res. 2012;45:1688–1697. doi: 10.1021/ar3000184. PubMed DOI
Wu X. Z., Wang R., Wang S. F., Wei Q. Y.. Ab initio calculations of generalized-stacking-fault energy surfaces and surface energies for FCC metals. Appl. Surf. Sci. 2010;256:6345–6349. doi: 10.1016/j.apsusc.2010.04.014. DOI
He G., Rong Y., Xu Z.. Self-energy and interaction energy of stacking fault in fcc metals calculated by embedded-atom method. Sci. China, Ser. E Technol. Sci. 2000;43:146–153. doi: 10.1007/BF02916884. DOI
Popok V. N., Kylián O.. Gas-Phase Synthesis of Functional Nanomaterials. Appl. Nano. 2020;1:25–58. doi: 10.3390/applnano1010004. DOI
Kosinova A., Kovalenko O., Klinger L., Rabkin E.. Mechanisms of solid-state dewetting of thin Au films in different annealing atmospheres. Acta Mater. 2015;83:91–101. doi: 10.1016/j.actamat.2014.09.049. DOI
Grammatikopoulos P., Toulkeridou E., Nordlund K., Sowwan M.. Simple analytical model of nanocluster coalescence for porous thin film design. Model. Simul. Mater. Sci. Eng. 2015;23:015008. doi: 10.1088/0965-0393/23/1/015008. DOI
Ingham B., Lim T. H., Dotzler C. J., Henning A., Toney M. F., Tilley R. D.. How nanoparticles coalesce: An in situ study of Au nanoparticle aggregation and grain growth. Chem. Mater. 2011;23:3312–3317. doi: 10.1021/cm200354d. DOI
Kracker M., Wisniewski W., Rüssel C.. Textures of Au, Pt and Pd/PdO nanoparticles thermally dewetted from thin metal layers on fused silica. RSC Adv. 2014;4:48135–48143. doi: 10.1039/C4RA07296K. DOI
Ilkiv I., Kotlyar K., Amel’chuk D., Lebedev S., Cirlin G., Bouravleuv A.. Thermal penetration of gold nanoparticles into silicon dioxide. Acta Phys. Polym. A. 2017;132:366–368. doi: 10.12693/APhysPolA.132.366. DOI
Oras S., Vlassov S., Vigonski S., Polyakov B., Antsov M., Zadin V., Lõhmus R., Mougin K.. The effect of heat treatment on the morphology and mobility of Au nanoparticles. Beilstein J. Nanotechnol. 2020;11:61–67. doi: 10.3762/bjnano.11.6. PubMed DOI PMC
Wang X., Jia Y., Yao Q., Wang F., Ma J., Hu X.. The calculation of the surface energy of high-index surfaces in metals at zero temperature. Surf. Sci. 2004;551:179–188. doi: 10.1016/j.susc.2003.12.034. DOI
Prymak O., Grasmik V., Loza K., Heggen M., Epple M.. Temperature-Induced Stress Relaxation in Alloyed Silver-Gold Nanoparticles (7–8 nm) by in Situ X-ray Powder Diffraction. Cryst. Growth Des. 2020;20:107–115. doi: 10.1021/acs.cgd.9b00728. DOI