Mild-Temperature Synthesis of Gold Colloids with Unique Features Mediated by Polymers of Biomedical Interest
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40488100
PubMed Central
PMC12138685
DOI
10.1021/acsomega.5c01123
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Well-defined gold nanoparticles (AuNPs) are accessible via simple synthetic methods, and their surface chemistry stands as a key factor in determining applications in the biomedical field. While macromolecules featuring amino groups are already known to successfully mediate the formation of stable gold colloids in one-pot, two-reactant, no workup reactions in aqueous media, we herein report the discovery that, under mild reaction temperatures, polymers of outstanding biomedical interest not only can play the simultaneous role of reducing and capping agent but also lead to particulate systems with unique features. From a library of samples that included branched polyethylenimine (BPEI), poly-(l-lysine) (PLL), bovine serum albumin (BSA), poly-(2-methyl-2-oxazoline) (PMeOx), poly-(N-(2-hydroxypropyl) methacrylamide) (PHPMA), and amine-functionalized poly-(N-(2-hydroxypropyl)-methacrylamide-co-N-(3-aminopropyl)-methacrylamide) P-(HPMA-co-APMA), we found that PHPMA end-functionalized with nitrile motifs generate spherical and stable AuNPs@PHPMA of very small size (diameter of ∼2.4 nm), as underlined by imaging experiments. Cell viability experiments indicated exceptionally good biocompatibility up to very high numerical particle concentrations as compared to the other systems. The reduced size imparted to the AuNPs@PHPMA outstanding catalytic properties (no induction time and high reaction rate constant for the hydrogenation of p-nitrophenol) and antimicrobial activity (total antibacterial activity against Escherichia coli and dose-dependent antibacterial activity against Staphylococcus aureus). The introduction of primary amine groups (13.4 mol %) of higher nucleophilicity known to work better for AuNP synthesis makes these unique features disappear, as evidenced for P-(HPMA-co-APMA). The other systems yielded 6-28 nm particles whose properties reflected both the size of the metallic core and chemical nature and conformation of the capping agent. These findings point to novel applications of PHPMA polymers worthy of further development, especially in light of their excellent water solubility and biocompatibility.
Centro de Ciências Naturais e Humanas Universidade Federal do ABC Santo André 09280 560 Brazil
Institute of Macromolecular Chemistry Czech Academy of Sciences Prague 162 00 Czech Republic
Zobrazit více v PubMed
Achilleos D. S., Vamvakaki M.. End-Grafted Polymer Chains onto Inorganic Nano-Objects. Materials. 2010;3(3):1981. doi: 10.3390/ma3031981. DOI
Matyjaszewski, K. ; Gnanou, Y. ; Leibler, L. ; Matyjaszewski, K. ; Gnanou, Y. ; Leibler, L. . Macromolecular Engineering; Wiley-VCH; 2007. 1 6 10.1002/9783527631421.ch1 DOI
Newman J. D. S., Blanchard G. J.. Formation of Gold Nanoparticles Using Amine Reducing Agents. Langmuir. 2006;22(13):5882. doi: 10.1021/la060045z. PubMed DOI
Subramaniam C., Tom R. T., Pradeep T.. On the Formation of Protected Gold Nanoparticles from AuCl 4- By the Reduction Using Aromatic Amines. J. Nanopart. Res. 2005;7(2–3):209. doi: 10.1007/s11051-005-0315-0. DOI
Harada M., Kizaki S.. Formation Mechanism of Gold Nanoparticles Synthesized by Photoreduction in Aqueous Ethanol Solutions of Polymers Using in Situ Quick Scanning X-Ray Absorption Fine Structure and Small-Angle X-Ray Scattering. Cryst. Growth Des. 2016;16(3):1200. doi: 10.1021/acs.cgd.5b01168. DOI
Scaravelli R. C. B., Dazzi R. L., Giacomelli F. C., Machado G., Giacomelli C., Schmidt V.. Direct Synthesis of Coated Gold Nanoparticles Mediated by Polymers with Amino Groups. J. Colloid Interface Sci. 2013;397:114. doi: 10.1016/j.jcis.2013.01.058. PubMed DOI
Mondo G. B., da Silva Ribeiro C. A., Schlüter L. G., Bellettini I. C., Pavlova E., Giacomelli F. C.. One-Pot Bottom-up Synthesis of Gold Nanoparticles Mediated by Nitrogen-Containing Polymers: The Role of Chain Features and Environmental Conditions. Colloids Surf. A Physicochem Eng. Asp. 2024;703:135116. doi: 10.1016/j.colsurfa.2024.135116. DOI
Tan N. P. B., Lee C. H., Chen L., Ho K. M., Lu Y., Ballauff M., Li P.. Facile Synthesis of Gold/Polymer Nanocomposite Particles Using Polymeric Amine-Based Particles as Dual Reductants and Templates. Polymer (Guildf) 2015;76:271. doi: 10.1016/j.polymer.2015.09.015. DOI
Mountrichas G., Pispas S., Kamitsos E. I.. Effect of Temperature on the Direct Synthesis of Gold Nanoparticles Mediated by Poly(Dimethylaminoethyl Methacrylate) Homopolymer. J. Phys. Chem. C. 2014;118(39):22754. doi: 10.1021/jp505725v. DOI
Ramírez-Ayala M. F., Herrera-González A. M., Trejo-Carbajal N., Guerrero A. L., Vargas-Ramírez M., García-Serrano J.. One-Step Synthesis and Stabilization of Au, Ag and Au-Ag Nanoparticles with an Ion-Exchange Polymer Contained Amide and Carboxylic Acid Functional Groups. Colloids Surf. A Physicochem Eng. Asp. 2022;647:129069. doi: 10.1016/j.colsurfa.2022.129069. DOI
Lorson T., Lübtow M. M., Wegener E., Haider M. S., Borova S., Nahm D., Jordan R., Sokolski-Papkov M., Kabanov A. V., Luxenhofer R.. Poly(2-Oxazoline)s Based Biomaterials: A Comprehensive and Critical Update. Biomaterials. 2018;178:204. doi: 10.1016/j.biomaterials.2018.05.022. PubMed DOI
Sedlacek O., Monnery B. D., Hoogenboom R.. Synthesis of Defined High Molar Mass Poly(2-Methyl-2-Oxazoline) Polym. Chem. 2019;10(11):1286. doi: 10.1039/C9PY00013E. PubMed DOI
Konradi R., Pidhatika B., Mühlebach A., Textor M.. Poly-2-Methyl-2-Oxazoline: A Peptide-like Polymer for Protein-Repellent Surfaces. Langmuir. 2008;24(3):613. doi: 10.1021/la702917z. PubMed DOI
Tucker B. S., Sumerlin B. S.. Poly(N-(2-Hydroxypropyl) Methacrylamide)-Based Nanotherapeutics. Polymer Chemistry. 2014;5:1566. doi: 10.1039/C3PY01279D. PubMed DOI PMC
Bobde Y., Biswas S., Ghosh B.. Current Trends in the Development of HPMA-Based Block Copolymeric Nanoparticles for Their Application in Drug Delivery. Eur. Polym. J. 2020;139:110018. doi: 10.1016/j.eurpolymj.2020.110018. DOI
Ulbrich K., Šubr V., Strohalm J., Plocová D., Jelínková M., Říhová B.. Polymeric Drugs Based on Conjugates of Synthetic and Natural Macromolecules. I. Synthesis and Physico-Chemical Characterisation. In. J. Controlled Release. 2000;64:63. doi: 10.1016/S0168-3659(99)00141-8. PubMed DOI
Ishitake K., Satoh K., Kamigaito M., Okamoto Y.. Stereogradient Polymers Formed by Controlled/Living Radical Polymerization of Bulky Methacrylate Monomers. Angew. Chem. 2009;121(11):2025. doi: 10.1002/ange.200805168. PubMed DOI
Ribeiro C. A. S., Panico K., Handajevsky T. J., da Silva F. D., Bellettini I. C., Pavlova E., Giacomelli F. C.. Polyethylenimine as a Versatile Simultaneous Reducing and Stabilizing Agent Enabling One-Pot Synthesis of Transition-Metal Nanoparticles: Fundamental Aspects and Practical Implications. Langmuir. 2023;39(48):17353. doi: 10.1021/acs.langmuir.3c02538. PubMed DOI
Ribeiro C. A. S., Albuquerque L. J. C., de Castro C. E., Batista B. L., de Souza A. L. M., Albuquerque B. L., Zilse M. S., Bellettini I. C., Giacomelli F. C.. One-Pot Synthesis of Sugar-Decorated Gold Nanoparticles with Reduced Cytotoxicity and Enhanced Cellular Uptake. Colloids Surf. A Physicochem Eng. Asp. 2019;580:123690. doi: 10.1016/j.colsurfa.2019.123690. DOI
Etrych T., Jelínková M., Říhová B., Ulbrich K.. New HPMA Copolymers Containing Doxorubicin Bound via PH-Sensitive Linkage: Synthesis and Preliminary in Vitro and in Vivo Biological Properties. J. Controlled Release. 2001;73(1):89. doi: 10.1016/S0168-3659(01)00281-4. PubMed DOI
Štěpánek, P. Data Analysis in Dynamic Light Scattering. In Dynamic Light Scattering; 2023. 10.1093/oso/9780198539421.003.0004. DOI
Zeta Potential in Colloid Science; 1981. 10.1016/c2013-0-07389-6. DOI
Hackley V. A., Premachandran R. S., Malghan S. G., Schiller S. B.. A Standard Reference Material for the Measurement of Particle Mobility by Electrophoretic Light Scattering. Colloids Surf. A Physicochem Eng. Asp. 1995;98(3):209. doi: 10.1016/0927-7757(95)03085-R. DOI
Bulet P., Dimarcq J. L., Hetru C., Lagueux M., Charlet M., Hegy G., Van Dorsselaer A., Hoffmann J. A.. A Novel Inducible Antibacterial Peptide of Drosophila Carries an O-Glycosylated Substitution. J. Biol. Chem. 1993;268(20):14893. doi: 10.1016/S0021-9258(18)82417-6. PubMed DOI
Mavani A., Ray D., Aswal V. K., Bhattacharyya J.. Understanding the Molecular Interaction of BSA Protein with Antibiotic Sulfa Molecule(s) for Novel Drug Development. J. Mol. Struct. 2023;1287:135697. doi: 10.1016/j.molstruc.2023.135697. DOI
Borzova V. A., Markossian K. A., Kleymenov S. Y., Kurganov B. I.. A Change in the Aggregation Pathway of Bovine Serum Albumin in the Presence of Arginine and Its Derivatives. Sci. Rep. 2017;7(1):3984. doi: 10.1038/s41598-017-04409-x. PubMed DOI PMC
Park I. H., Choi E. J.. Characterization of Branched Polyethyleneimine by Laser Light Scattering and Viscometry. Polymer (Guildf) 1996;37(2):313–319. doi: 10.1016/0032-3861(96)81104-9. DOI
Jin X., Leclercq L., Sisavath N., Cottet H.. Investigating the Influence of Phosphate Ions on Poly(L-Lysine) Conformations by Taylor Dispersion Analysis. Macromolecules. 2014;47(15):5320. doi: 10.1021/ma501058v. DOI
Gubarev A. S., Lezov A. A., Podsevalnikova A. N., Mikusheva N. G., Fetin P. A., Zorin I. M., Aseyev V. O., Sedlacek O., Hoogenboom R., Tsvetkov N. V.. Conformational Parameters and Hydrodynamic Behavior of Poly(2-Methyl-2-Oxazoline) in a Broad Molar Mass Range. Polymers (Basel) 2023;15(3):623. doi: 10.3390/polym15030623. PubMed DOI PMC
Haiss W., Thanh N. T. K., Aveyard J., Fernig D. G.. Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra. Anal. Chem. 2007;79(11):4215. doi: 10.1021/ac0702084. PubMed DOI
Amendola V., Meneghetti M.. Size Evaluation of Gold Nanoparticles by UV-Vis Spectroscopy. J. Phys. Chem. C. 2009;113(11):4277. doi: 10.1021/jp8082425. DOI
Klepac D., Kostková H., Petrova S., Chytil P., Etrych T., Kereïche S., Raška I., Weitz D. A., Filippov S. K.. Interaction of Spin-Labeled HPMA-Based Nanoparticles with Human Blood Plasma Proteins-the Introduction of Protein-Corona-Free Polymer Nanomedicine. Nanoscale. 2018;10(13):6194. doi: 10.1039/C7NR09355A. PubMed DOI
Zhao J., Burke N. A. D., Stöver H. D. H.. Preparation and Study of Multi-Responsive Polyampholyte Copolymers of: N -(3-Aminopropyl)Methacrylamide Hydrochloride and Acrylic Acid. RSC Adv. 2016;6(47):41522. doi: 10.1039/C6RA06516C. DOI
Polte J., Ahner T. T., Delissen F., Sokolov S., Emmerling F., Thünemann A. F., Kraehnert R.. Mechanism of Gold Nanoparticle Formation in the Classical Citrate Synthesis Method Derived from Coupled in Situ XANES and SAXS Evaluation. J. Am. Chem. Soc. 2010;132(4):1296. doi: 10.1021/ja906506j. PubMed DOI
Thanh N. T. K., Maclean N., Mahiddine S.. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chem. Rev. 2014:7610. doi: 10.1021/cr400544s. PubMed DOI
Shimmin R. G., Schoch A. B., Braun P. V.. Polymer Size and Concentration Effects on the Size of Gold Nanoparticles Capped by Polymeric Thiols. Langmuir. 2004;20(13):5613. doi: 10.1021/la036365p. PubMed DOI
Ramón R. S., Marion N., Nolan S. P.. Gold Activation of Nitriles: Catalytic Hydration to Amides. Chem. - Eur. J. 2009;15(35):8695. doi: 10.1002/chem.200901231. PubMed DOI
Hiller W., Dell’Amico D. B.. Gold(III) Complexes with Nitriles Containing Aromatic Nuclei: Crystal and Molecular Structure of Trichloro(p-Toluonitrile)Gold(III) J. Chem. Soc., Dalton Trans. 1987;6:1329. doi: 10.1039/dt9870001329. DOI
Hazarika M., Kalita G. D., Pramanik S., Borah D., Das P.. Bio-Functionalized Anisotropic Gold Nanoparticles as Efficient Catalyst for Nitrile Hydration and Hydrogenation of Nitrophenol. Current Research in Green and Sustainable Chemistry. 2020;3:100018. doi: 10.1016/j.crgsc.2020.100018. DOI
Kumar S., Sharma S., Das P.. Supported Gold Nanoparticles-Catalyzed Microwave-Assisted Hydration of Nitriles to Amides under Base-Free Conditions. Adv. Synth Catal. 2016;358(18):2889. doi: 10.1002/adsc.201600199. DOI
Slavov D., Tomaszewska E., Grobelny J., Karashanova D., Peshev Z., Bliznakova I., Dikovska A.. Advanced Properties of Gold Nanoparticles Obtained by Using Long-Chain Secondary Amine for Phase Transfer from Water to Chloroform. Colloids Surf. A Physicochem Eng. Asp. 2024;698:134635. doi: 10.1016/j.colsurfa.2024.134635. DOI
Maity P., Takano S., Yamazoe S., Wakabayashi T., Tsukuda T.. Binding Motif of Terminal Alkynes on Gold Clusters. J. Am. Chem. Soc. 2013;135(25):9450. doi: 10.1021/ja401798z. PubMed DOI
Kennedy D. C., McKay C. S., Tay L. l., Rouleau Y., Pezacki J. P.. Carbon-Bonded Silver Nanoparticles: Alkyne-Functionalized Ligands for SERS Imaging of Mammalian Cells. Chem. Commun. 2011;47(11):3156. doi: 10.1039/c0cc05331g. PubMed DOI
Wunder S., Lu Y., Albrecht M., Ballauff M.. Catalytic Activity of Faceted Gold Nanoparticles Studied by a Model Reaction: Evidence for Substrate-Induced Surface Restructuring. ACS Catal. 2011;1(8):908. doi: 10.1021/cs200208a. DOI
Sharma G., Mei Y., Lu Y., Ballauff M., Irrgang T., Proch S., Kempe R.. Spherical Polyelectrolyte Brushes as Carriers for Platinum Nanoparticles in Heterogeneous Hydrogenation Reactions. J. Catal. 2007;246(1):10. doi: 10.1016/j.jcat.2006.11.016. DOI
Shen W., Qu Y., Pei X., Li S., You S., Wang J., Zhang Z., Zhou J.. Catalytic Reduction of 4-Nitrophenol Using Gold Nanoparticles Biosynthesized by Cell-Free Extracts of Aspergillus Sp. WL-Au. J. Hazard Mater. 2017;321:299–306. doi: 10.1016/j.jhazmat.2016.07.051. PubMed DOI
Nigra M. M., Ha J. M., Katz A.. Identification of Site Requirements for Reduction of 4-Nitrophenol Using Gold Nanoparticle Catalysts. Catal. Sci. Technol. 2013;3(11):2976. doi: 10.1039/c3cy00298e. DOI
Zeng J., Zhang Q., Chen J., Xia Y.. A Comparison Study of the Catalytic Properties of Au-Based Nanocages, Nanoboxes, and Nanoparticles. Nano Lett. 2010;10(1):30. doi: 10.1021/nl903062e. PubMed DOI
Baygazieva E. K., Yesmurzayeva N. N., Tatykhanova G. S., Mun G. A., Khutoryanskiy V. V., Kudaibergenov S. E.. Polymer Protected Gold Nanoparticles: Synthesis, Characterization and Application in Catalysis. International Journal of Biology and Chemistry. 2014;7(1):14–23. doi: 10.26577/2218-7979-2014-7-1-14-23. DOI
Lee E., Jeon H., Lee M., Ryu J., Kang C., Kim S., Jung J., Kwon Y.. Molecular Origin of AuNPs-Induced Cytotoxicity and Mechanistic Study. Sci. Rep. 2019;9(1):2494. doi: 10.1038/s41598-019-39579-3. PubMed DOI PMC
Soenen S. J., Manshian B., Montenegro J. M., Amin F., Meermann B., Thiron T., Cornelissen M., Vanhaecke F., Doak S., Parak W. J., De Smedt S., Braeckmans K.. Cytotoxic Effects of Gold Nanoparticles: A Multiparametric Study. ACS Nano. 2012;6(7):5767. doi: 10.1021/nn301714n. PubMed DOI
Fratoddi I., Venditti I., Cametti C., Russo M. V.. The Puzzle of Toxicity of Gold Nanoparticles. The Case-Study of HeLa Cells. Toxicol Res. (Camb) 2015;4(4):796. doi: 10.1039/C4TX00168K. DOI
Awashra M., Młynarz P.. The Toxicity of Nanoparticles and Their Interaction with Cells: An in Vitro Metabolomic Perspective. Nanoscale Advances. 2023;5:2674. doi: 10.1039/D2NA00534D. PubMed DOI PMC
Von Harpe A., Petersen H., Li Y., Kissel T.. Characterization of Commercially Available and Synthesized Polyethylenimines for Gene Delivery. J. Controlled Release. 2000;69(2):309–322. doi: 10.1016/S0168-3659(00)00317-5. PubMed DOI
Zhu H., Liu R., Shang Y., Sun L.. Polylysine Complexes and Their Biomedical Applications. Engineered Regeneration. 2023;4(1):20–27. doi: 10.1016/j.engreg.2022.11.001. DOI
Slavin Y. N., Asnis J., Häfeli U. O., Bach H.. Metal Nanoparticles: Understanding the Mechanisms behind Antibacterial Activity. Journal of Nanobiotechnology. 2017 doi: 10.1186/s12951-017-0308-z. PubMed DOI PMC