Remodelling of supernumerary leaflet primordia leads to bicuspid aortic valve caused by loss of primary cilia
Language English Country Great Britain, England Media print
Document type Journal Article
Grant support
RG/12/15/29935
British Heart Foundation - United Kingdom
RG/19/2/34256
British Heart Foundation - United Kingdom
MC_PC_21044
MRC National Mouse Genetics Network
24-12330K
Czech Science Foundation
PubMed
40498626
PubMed Central
PMC12477680
DOI
10.1093/cvr/cvaf108
PII: 8160500
Knihovny.cz E-resources
- Keywords
- Aortic valve, Cilia, Ift88, bicuspid aortic valve, intercalated valve swelling, second heart field,
- MeSH
- Aortic Valve * abnormalities metabolism embryology pathology MeSH
- Bicuspid Aortic Valve Disease MeSH
- Cell Differentiation MeSH
- Cilia * metabolism pathology MeSH
- Neural Crest metabolism MeSH
- Endocardial Cushions metabolism embryology pathology MeSH
- Phenotype MeSH
- Disease Models, Animal MeSH
- Mice, Knockout MeSH
- Mice, Transgenic MeSH
- Tumor Suppressor Proteins MeSH
- Heart Valve Diseases * metabolism genetics pathology embryology MeSH
- Wnt1 Protein genetics metabolism MeSH
- Receptors, Notch metabolism MeSH
- Signal Transduction MeSH
- Gene Expression Regulation, Developmental MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Tumor Suppressor Proteins MeSH
- Wnt1 Protein MeSH
- Receptors, Notch MeSH
- Tg737Rpw protein, mouse MeSH Browser
AIMS: Bicuspid aortic valve (BAV), where two valve leaflets are found instead of the usual three, affects 1-2% of the general population and is associated with significant morbidity and mortality. Despite its frequency, the majority of cases remain unexplained. This is, at least in part, because there are two types of valve leaflet primordia: endocardial cushions and intercalated valve swellings (ICVS). Moreover, multiple progenitors make distinct contributions to the formation of these primordia. Genomic studies in mouse and human have suggested a correlation between BAV and malfunctional primary cilia. However, the precise requirement for cilia during early embryonic valvulogenesis remains unknown. METHODS AND RESULTS: Here, we disrupted primary cilia by deleting the ciliary gene Ift88 in the main progenitor cells forming the aortic valve using specific Cre drivers: Wnt1-Cre for neural crest cells, Isl1-Cre for second heart field (SHF) cells, Tie2-Cre for endocardial-derived cells, and Tnnt2-Cre for direct-differentiating SHF in the ICVS. Loss of Ift88, and thus primary cilia, from neural crest cells and endocardium did not impact aortic valve formation. However, primary cilia were essential in SHF cells for aortic valve leaflet formation, with over half of Ift88f/f;Isl1-Cre mutants presenting with BAV. As the valve leaflets were forming, 50% of the Ift88f/f;Isl1-Cre mutants had two small leaflets in the position of the usual posterior leaflet, meaning that at this stage, the aortic valve was quadricuspid, which then remodelled to BAV by E15.5. Mechanistic studies demonstrated premature differentiation of SHF cells as the ICVS formed, leading to the formation of a broadened ICVS that formed two posterior leaflet precursors. This abnormality in the formation of the ICVS was associated with disruption of Notch-Jag1 signalling pathway, with Jag1f/f;Isl1-Cre mutants presenting with a similar phenotype. CONCLUSION: These data show that primary cilia, via the Notch-Jag1 signalling pathway, regulate differentiation of SHF cells in the aortic valve primordia. Additionally, we identify a mechanistic link between the developmental basis of quadricuspid and bicuspid arterial valve leaflets.
See more in PubMed
Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A, Ware SM, Gelb BD, Russell MW. Genetic basis for congenital heart disease: revisited: a scientific statement from the American Heart Association. Circulation 2018;138:e653–e711. PubMed PMC
Shinohara K, Hamada H. Cilia in left–right symmetry breaking. Cold Spring Harb Perspect Biol 2017;9:a028282. PubMed PMC
Versacci P, Pugnaloni F, Digilio MC, Putotto C, Unolt M, Calcagni G, Baban A, Marino B. Some isolated cardiac malformations can be related to laterality defects. J Cardiovasc Dev Dis 2018;5:24. PubMed PMC
Mill P, Christensen ST, Pedersen LB. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat Rev Genet 2023;24:421–441. PubMed PMC
Hilgendorf KI, Myers BR, Reiter JF. Emerging mechanistic understanding of cilia function in cellular signalling. Nat Rev Mol Cell Biol 2024;25:555–573. PubMed PMC
Li Y, Klena NT, Gabriel GC, Liu X, Kim AJ, Lemke K, Chen Y, Chatterjee B, Devine W, Damerla RR, Chang C, Yagi H, San Agustin JT, Thahir M, Anderton S, Lawhead C, Vescovi A, Pratt H, Morgan J, Haynes L, Smith CL, Eppig JT, Reinholdt L, Francis R, Leatherbury L, Ganapathiraju MK, Tobita K, Pazour GJ, Lo CW. Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature 2015;521:520–524. PubMed PMC
Karp N, Grosse-Wortmann L, Bowdin S. Severe aortic stenosis, bicuspid aortic valve and atrial septal defect in a child with Joubert Syndrome and Related Disorders (JSRD)—a case report and review of congenital heart defects reported in the human ciliopathies. Eur J Med Genet 2012;55:605–610. PubMed
Watkins WS, Hernandez EJ, Wesolowski S, Bisgrove BW, Sunderland RT, Lin E, Lemmon G, Demarest BL, Miller TA, Bernstein D, Brueckner M, Chung WK, Gelb BD, Goldmuntz E, Newburger JW, Seidman CE, Shen Y, Yost HJ, Yandell M, Tristani-Firouzi M. PubMed PMC
Braun DA, Hildebrandt F. Ciliopathies. Cold Spring Harb Perspect Biol 2017;9:a028191. PubMed PMC
Fulmer D, Toomer K, Guo L, Moore K, Glover J, Moore R, Stairley R, Lobo G, Zuo X, Dang Y, Su Y, Fogelgren B, Gerard P, Chung D, Heydarpour M, Mukherjee R, Body SC, Norris RA, Lipschutz JH. Defects in the exocyst-cilia machinery cause bicuspid aortic valve disease and aortic stenosis. Circulation 2019;140:1331–1341. PubMed PMC
Toomer KA, Yu M, Fulmer D, Guo L, Moore KS, Moore R, Drayton K'D, Glover J, Peterson N, Ramos-Ortiz S, Drohan A, Catching BJ, Stairley R, Wessels A, Lipschutz JH, Delling FN, Jeunemaitre X, Dina C, Collins RL, Brand H, Talkowski ME, Del Monte F, Mukherjee R, Awgulewitsch A, Body S, Hardiman G, Hazard ES, da Silveira WA, Wang B, Leyne M, Durst R, Markwald RR, Le Scouarnec S, Hagege A, Le Tourneau T, Kohl P, Rog-Zielinska EA, Ellinor PT, Levine RA, Milan DJ, Schott J-J, Bouatia-Naji N, Slaugenhaupt SA, Norris RA. Primary cilia defects causing mitral valve prolapse. Sci Transl Med 2019;11:eaax0290. PubMed PMC
Burns TA, Deepe RN, Bullard J, Phelps AL, Toomer KA, Hiriart E, Norris RA, Haycraft CJ, Wessels A. A novel mouse model for cilia-associated cardiovascular anomalies with a high penetrance of total anomalous pulmonary venous return. Anat Rec 2019;302:136–145. PubMed PMC
Toomer KA, Fulmer D, Guo L, Drohan A, Peterson N, Swanson P, Brooks B, Mukherjee R, Body S, Lipschutz JH, Wessels A, Norris RA. A role for primary cilia in aortic valve development and disease. Dev Dyn 2017;246:625–634. PubMed PMC
Pazour GJ, Baker SA, Deane JA, Cole DG, Dickert BL, Rosenbaum JL, Witman GB, Besharse JC. The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J Cell Biol 2002;157:103. PubMed PMC
Clement CA, Kristensen SG, Møllgård K, Pazour GJ, Yoder BK, Larsen LA, Christensen ST. The primary cilium coordinates early cardiogenesis and hedgehog signaling in cardiomyocyte differentiation. J Cell Sci 2009;122:3070–3082. PubMed PMC
Lehman JM, Michaud EJ, Schoeb TR, Aydin-Son Y, Miller M, Yoder BK. The Oak Ridge Polycystic Kidney mouse: modeling ciliopathies of mice and men. Dev Dyn 2008;237:1960–1971. PubMed PMC
Willaredt MA, Gorgas K, Gardner HAR, Tucker KL. Multiple essential roles for primary cilia in heart development. Cilia 2012;1:23. PubMed PMC
Eley L, Alqahtani AMS, Macgrogan D, Richardson RV, Murphy L, Salguero-Jimenez A, Sintes Rodriguez San Pedro M, Tiurma S, McCutcheon L, Gilmore A, de La Pompa JL, Chaudhry B, Henderson DJ. A novel source of arterial valve cells linked to bicuspid aortic valve without raphe in mice. eLife 2018:7:e34110. PubMed PMC
Mifflin JJ, Dupuis LE, Alcala NE, Russell LG, Kern CB. Intercalated cushion cells within the cardiac outflow tract are derived from the myocardial troponin T Type 2 (Tnnt2) Cre lineage. Dev Dyn 2018;247:1005–1017. PubMed PMC
Haycraft CJ, Zhang Q, Song B, Jackson WS, Detloff PJ, Serra R, Yoder BK. Intraflagellar transport is essential for endochondral bone formation. Development 2007;134:307–316. PubMed
Kiernan AE, Xu J, Gridley T. The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear. PLoS Genet 2006;2:e4. PubMed PMC
Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP. Modification of gene activity in mouse embryos PubMed
Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 2001;230:230–242. PubMed
Jiao K, Kulessa H, Tompkins K, Zhou Y, Batts L, Baldwin HS, Hogan BLM. An essential role of Bmp4 in the atrioventricular septation of the mouse heart. Genes Dev 2003;17:2362–2367. PubMed PMC
Verzi MP, McCulley DJ, De Val S, Dodou E, Black BL. The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev Biol 2005;287:134–145. PubMed
Yang L, Cai CL, Lin L, Qyang Y, Chung C, Monteiro RM, Mummery CL, Fishman GI, Cogen A, Evans S. Isl1Cre reveals a common Bmp pathway in heart and limb development. Development 2006;133:1575. PubMed PMC
Muzumdar MD, Tasic B, Miyamichi K, Li N, Luo L. A global double-fluorescent cre reporter mouse. Genesis (United States) 2007;45:593–605. PubMed
Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 2001;1:1–8. PubMed PMC
Phillips HM, Mahendran P, Singh E, Anderson RH, Chaudhry B, Henderson DJ. Neural crest cells are required for correct positioning of the developing outflow cushions and pattern the arterial valve leaflets. Cardiovasc Res 2013;99:452–460. PubMed PMC
Garza-Lopez E, Vue Z, Katti P, Neikirk K, Biete M, Lam J, Beasley HK, Marshall AG, Rodman TA, Christensen TA, Salisbury JL, Vang L, Mungai M, AshShareef S, Murray SA, Shao J, Streeter J, Glancy B, Pereira RO, Abel ED, Hinton A Jr. Protocols for generating surfaces and measuring 3d organelle morphology using amira. Cells 2022;11:65. PubMed PMC
Van Der Heiden K, Groenendijk BCW, Hierck BP, Hogers B, Koerten HK, Mommaas AM, Gittenberger-de Groot AC, Poelmann RE. Monocilia on chicken embryonic endocardium in low shear stress areas. Dev Dyn 2006;235:19–28. PubMed
Levay AK, Peacock JD, Lu Y, Koch M, Hinton RB, Kadler KE, Lincoln J. Scleraxis is required for cell lineage differentiation and extracellular matrix remodeling during murine heart valve formation in vivo. Circ Res 2008;103:948–956. PubMed PMC
Tian H, Feng J, Li J, Ho T-V, Yuan Y, Liu Y, Brindopke F, Figueiredo JC, Magee W, Sanchez-Lara PA, Chai Y. Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate. Hum Mol Genet 2017;26:860–872. PubMed PMC
Black BL. Transcriptional pathways in second heart field development. Semin Cell Dev Biol 2007;18:67–76. PubMed PMC
Engleka KA, Manderfield LJ, Brust RD, Li L, Cohen A, Dymecki SM, Epstein JA. Islet1 derivatives in the heart are of both neural crest and second heart field origin. Circ Res 2012;110:922–926. PubMed PMC
Wheway G, Nazlamova L, Hancock JT. Signaling through the primary cilium. Front Cell Dev Biol 2018;6:8. PubMed PMC
Niehrs C, Da Silva F, Seidl C. Cilia as Wnt signaling organelles. Trends Cell Biol 2025;35:24–32. PubMed
High FA, Jain R, Stoller JZ, Antonucci NB, Lu MM, Loomes KM, Kaestner KH, Pear WS, Epstein JA. Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development. J Clin Invest 2009;119:1986–1996. PubMed PMC
Luna-Zurita L, Flores-Garza BG, Grivas D, De La Pompa JL. A cooperative response to endocardial NOTCH signaling stimulation regulates transcriptional activity during cardiac valve development and disease running title: NOTCH in cardiac valve transcriptional activity. Circ Res 2023;133:1022–1039. PubMed PMC
MacGrogan D, Luxán G, de la Pompa JL. Genetic and functional genomics approaches targeting the Notch pathway in cardiac development and congenital heart disease. Brief Funct Genomics 2014;13:15–27. PubMed
Henderson DJ, Eley L, Chaudhry B. New concepts in the development and malformation of the arterial valves. J Cardiovasc Dev Dis 2020;7:38. PubMed PMC
Soto-Navarrete MT, López-Unzu MÁ, Durán AC, Fernández B. Embryonic development of bicuspid aortic valves. Prog Cardiovasc Dis 2020;63:407–418. PubMed
Hurwitz LE, Roberts WC. Quadricuspid semilunar valve. Am J Cardiol 1973;31:623–626. PubMed
Fernández B, Fernández MC, Durán AC, López D, Martire A, Sans-Coma V. Anatomy and formation of congenital bicuspid and quadricuspid pulmonary valves in Syrian hamsters. Anat Rec 1998;250:70–79. PubMed
Nomura-Kitabayashi A, Phoon CKL, Kishigami S, Rosenthal J, Yamauchi Y, Abe K, Yamamura K-I, Samtani R, Lo CW, Mishina Y. Outflow tract cushions perform a critical valve-like function in the early embryonic heart requiring BMPRIA-mediated signaling in cardiac neural crest. Am J Physiol Heart Circ Physiol 2009;297:1617–1628. PubMed PMC
Nakamura E, Makita Y, Okamoto T, Nagaya K, Hayashi T, Sugimoto M, Manabe H, Taketazu G, Kajino H, Fujieda K. 5.78 Mb terminal deletion of chromosome 15q in a girl, evaluation of NR2F2 as candidate gene for congenital heart defects. Eur J Med Genet 2011;54:354–356. PubMed
Nakamura Y, Taniguchi I, Saiki M, Morimoto K, Yamaga T. Quadricuspid aortic valve associated with aortic stenosis and regurgitation. Jpn J Thorac Cardiovasc Surg 2001;49:714–716. PubMed
Yuan SM. Quadricuspid aortic valve: a comprehensive review. Braz J Cardiovasc Surg 2016;31:454–460. PubMed PMC
Ingham PW. Hedgehog signaling. Curr Top Dev Biol 2022;149:1–58. PubMed
Smoak IW, Byrd NA, Abu-Issa R, Goddeeris MM, Anderson R, Morris J, Yamamura K, Klingensmith J, Meyers EN. Sonic hedgehog is required for cardiac outflow tract and neural crest cell development. Dev Biol 2005;283:357–372. PubMed
Alfieri CM, Cheek J, Chakraborty S, Yutzey KE. Wnt signaling in heart valve development and osteogenic gene induction. Dev Biol 2010;338:127–135. PubMed PMC
Pala R, Alomari N, Nauli SM. Primary cilium-dependent signaling mechanisms. Int J Mol Sci 2017;18:2272. PubMed PMC
Yanardag S, Pugacheva EN. Primary cilium is involved in stem cell differentiation and renewal through the regulation of multiple signaling pathways. Cells 2021;10:1428. PubMed PMC
Ezratty EJ, Pasolli HA, Fuchs E. A presenilin-2–ARF4 trafficking axis modulates Notch signaling during epidermal differentiation. J Cell Biol 2016;214:89–101. PubMed PMC
Kong JH, Yang L, Dessaud E, Chuang K, Moore DM, Rohatgi R, Briscoe J, Novitch BG. Notch activity modulates the responsiveness of neural progenitors to sonic hedgehog signaling. Dev Cell 2015;33:373–387. PubMed PMC
MacGrogan D, D’Amato G, Travisano S, Martinez-Poveda B, Luxán G, del Monte-Nieto G, Papoutsi T, Sbroggio M, Bou V, Gomez-del Arco P, Gómez MJ, Zhou B, Redondo JM, Jiménez-Borreguero LJ, de la Pompa JL. Sequential ligand-dependent notch signaling activation regulates valve primordium formation and morphogenesis. Circ Res 2016;118:1480–1497. PubMed
Rochais F, Kelly RG, Rammah M, Théveniau-Ruissy M, Sturny R. PPARγ and NOTCH regulate regional identity in the murine cardiac outflow tract. Circ Res 2022;131:842–858. PubMed
Seya D, Ihara D, Shirai M, Kawamura T, Watanabe Y, Nakagawa O. A role of Hey2 transcription factor for right ventricle development through regulation of Tbx2-Mycn pathway during cardiac morphogenesis. Dev Growth Differ 2021;63:82–92. PubMed
Van Dam TJP, Kennedy J, van der Lee R, de Vrieze E, Wunderlich KA, Rix S, Dougherty GW, Lambacher NJ, Li C, Jensen VL, Leroux MR, Hjeij R, Horn N, Texier Y, Wissinger Y, van Reeuwijk J, Wheway G, Knapp B, Scheel JF, Franco B, Mans DA, van Wijk E, Képès F, Slaats GG, Toedt G, Kremer H, Omran H, Szymanska K, Koutroumpas K, Ueffing M, Nguyen T-MT, Letteboer SJF, Oud MM, van Beersum SEC, Schmidts M, Beales PL, Lu Q, Giles RH, Szklarczyk R, Russell RB, Gibson TJ, Johnson CA, Blacque OE, Wolfrum U, Boldt K, Roepman R, Hernandez-Hernandez V, Huynen MA. CiliaCarta: an integrated and validated compendium of ciliary genes. PLoS One 2019;14:e0216705. PubMed PMC
Calvo SE, Clauser KR, Mootha VK. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res 2016;44:D1251–D1257. PubMed PMC