Changes in metabolite profiles in the cerebrospinal fluid and in human neuronal cells upon tick-borne encephalitis virus infection
Language English Country England, Great Britain Media electronic
Document type Journal Article
PubMed
40517242
PubMed Central
PMC12166563
DOI
10.1186/s12974-025-03478-4
PII: 10.1186/s12974-025-03478-4
Knihovny.cz E-resources
- Keywords
- Cerebrospinal fluid, Chemokines, Human motor neurons, Metabolomics, Neuroinflammation, Pro-inflammatory cytokines, Tick-borne encephalitis virus,
- MeSH
- Cytokines cerebrospinal fluid MeSH
- Adult MeSH
- Encephalitis, Tick-Borne * cerebrospinal fluid metabolism MeSH
- Cells, Cultured MeSH
- Middle Aged MeSH
- Humans MeSH
- Metabolome * physiology MeSH
- Metabolomics MeSH
- Young Adult MeSH
- Neurons * metabolism virology MeSH
- Aged MeSH
- Encephalitis Viruses, Tick-Borne * MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cytokines MeSH
BACKGROUND: Tick-borne encephalitis virus (TBEV) is a significant threat to human health. The virus causes potentially fatal disease of the central nervous system (CNS), for which no treatments are available. TBEV infected individuals display a wide spectrum of neuronal disease, the determinants of which are undefined. Changes to host metabolism and virus-induced immunity have been postulated to contribute to the neuronal damage observed in infected individuals. In this study, we evaluated the cytokine, chemokine, and metabolic alterations in the cerebrospinal fluid (CSF) of symptomatic patients infected with TBEV presenting with meningitis or encephalitis. Our aim was to investigate the host immune and metabolic responses associated with specific TBEV infectious outcomes. METHODS: CSF samples of patients with meningitis (n = 27) or encephalitis (n = 25) were obtained upon consent from individuals hospitalised with confirmed TBEV infection in Brno. CSF from uninfected control patients was also collected for comparison (n = 12). A multiplex bead-based system was used to measure the levels of pro-inflammatory cytokines and chemokines. Untargeted metabolomics followed by bioinformatics and integrative omics were used to profile the levels of metabolites in the CSF. Human motor neurons (hMNs) were differentiated from induced pluripotent stem cells (iPSCs) and infected with the highly pathogenic TBEV-Hypr strain to profile the role(s) of identified metabolites during the virus lifecycle. Virus infection was quantified via plaque assay. RESULTS: Significant differences in proinflammatory cytokines (IFN-α2, TSLP, IL-1α, IL-1β, GM-CSF, IL-12p40, IL-15, and IL-18) and chemokines (IL-8, CCL20, and CXCL11) were detected between neurological-TBEV and control patients. A total of 32 CSF metabolites differed in TBE patients with meningitis and encephalitis. CSF S-Adenosylmethionine (SAM), Fructose 1,6-bisphosphate (FBP1) and Phosphoenolpyruvic acid (PEP) levels were 2.4-fold (range ≥ 2.3-≥3.2) higher in encephalitis patients compared to the meningitis group. CSF urocanic acid levels were significantly lower in patients with encephalitis compared to those with meningitis (p = 0.012209). Follow-up analyses showed fluctuations in the levels of O-phosphoethanolamine, succinic acid, and L-proline in the encephalitis group, and pyruvic acid in the meningitis group. TBEV-infection of hMNs increased the production of SAM, FBP1 and PEP in a time-dependent manner. Depletion of the metabolites with characterised pharmacological inhibitors led to a concentration-dependent attenuation of virus growth, validating the identified changes as key mediators of TBEV infection. CONCLUSIONS: Our findings reveal that the neurological disease outcome of TBEV infection is associated with specific and dynamic metabolic signatures in the cerebrospinal fluid. We describe a new in vitro model for in-depth studies of TBEV-induced neuropathogenesis, in which the depletion of identified metabolites limits virus infection. Collectively, this reveals new biomarkers that can differentiate and predict TBEV-associated neurological disease. Additionally, we have identified novel therapeutic targets with the potential to significantly improve patient outcomes and deepen our understanding of TBEV pathogenesis.
Department of Biological Sciences and Computing Science University of Alberta Edmonton AB Canada
Queens' College University of Cambridge Cambridge CB3 9ET UK
See more in PubMed
Liebig K, Boelke M, Grund D, Schicht S, Springer A, Strube C, Chitimia-Dobler L, Dobler G, Jung K, Becker S. Tick populations from endemic and non-endemic areas in Germany show differential susceptibility to TBEV. Sci Rep. 2020;10(1):15478. PubMed PMC
Bogovic P, Strle F. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J Clin Cases. 2015;3(5):430–41. PubMed PMC
Gelpi E, Preusser M, Garzuly F, Holzmann H, Heinz FX, Budka H. Visualization of central European tick-borne encephalitis infection in fatal human cases. J Neuropathol Exp Neurol. 2005;64(6):506–12. PubMed
Bai Y, Xiao J, Moming A, Fu J, Wang J, Zhou M, Chen C, Shi J, Zhang J, Fan Z, et al. Identification and characterization of new Siberian subtype of tick-borne encephalitis virus isolates revealed genetic variations of the Chinese strains. Infect Genet Evol. 2024;124:105660. PubMed
Ohira M, Yoshii K, Aso Y, Nakajima H, Yamashita T, Takahashi-Iwata I, Maeda N, Shindo K, Suenaga T, Matsuura T, et al. First evidence of tick-borne encephalitis (TBE) outside of Hokkaido Island in Japan. Emerg Microbes Infect. 2023;12(2):2278898. PubMed PMC
Panciu AM, Cheran CA, Militaru ED, Riciu CD, Hristea A. Serosurvey of Tick-Borne encephalitis virus infection in Romania. Pathogens 2024, 13(3). PubMed PMC
Nagy A, Nagy O, Tarcsai K, Farkas A, Takacs M. First detection of tick-borne encephalitis virus RNA in clinical specimens of acutely ill patients in Hungary. Ticks Tick Borne Dis. 2018;9(3):485–9. PubMed
Cisak E, Wojcik-Fatla A, Zajac V, Sroka J, Buczek A, Dutkiewicz J. Prevalence of tick-borne encephalitis virus (TBEV) in samples of Raw milk taken randomly from cows, goats and sheep in Eastern Poland. Ann Agric Environ Med. 2010;17(2):283–6. PubMed
Holding M, Dowall S, Hewson R. Detection of tick-borne encephalitis virus in the UK. Lancet. 2020;395(10222):411. PubMed
Dekker M, Laverman GD, de Vries A, Reimerink J, Geeraedts F. Emergence of tick-borne encephalitis (TBE) in the Netherlands. Ticks Tick Borne Dis. 2019;10(1):176–9. PubMed
Fares W, Dachraoui K, Cherni S, Barhoumi W, Slimane TB, Younsi H, Zhioua E. Tick-borne encephalitis virus in Ixodes ricinus (Acari: Ixodidae) ticks, Tunisia. Ticks Tick-borne Dis. 2021;12(1):101606. PubMed
Kovalev SY, Mukhacheva TA. Reconsidering the classification of tick-borne encephalitis virus within the Siberian subtype gives new insights into its evolutionary history. Infect Genet Evol. 2017;55:159–65. PubMed
Gunther G, Haglund M, Lindquist L, Forsgren M, Skoldenberg B. Tick-bone encephalitis in Sweden in relation to aseptic meningo-encephalitis of other etiology: a prospective study of clinical course and outcome. J Neurol. 1997;244(4):230–8. PubMed
McMinn PC. The molecular basis of virulence of the encephalitogenic flaviviruses. J Gen Virol. 1997;78(Pt 11):2711–22. PubMed
Beer S, Brune N, Kesselring J. Detection of anterior Horn lesions by MRI in central European tick-borne encephalomyelitis. J Neurol. 1999;246(12):1169–71. PubMed
Gelpi E, Preusser M, Laggner U, Garzuly F, Holzmann H, Heinz FX, Budka H. Inflammatory response in human tick-borne encephalitis: analysis of postmortem brain tissue. J Neurovirol. 2006;12(4):322–7. PubMed
Bogovic P, Stupica D, Rojko T, Lotric-Furlan S, Avsic-Zupanc T, Kastrin A, Lusa L, Strle F. The long-term outcome of tick-borne encephalitis in central Europe. Ticks Tick Borne Dis. 2018;9(2):369–78. PubMed
Donoso Mantke O, Escadafal C, Niedrig M, Pfeffer M. Working group for Tick-Borne encephalitis virus C: Tick-borne encephalitis in europe, 2007 to 2009. Euro Surveill 2011, 16(39). PubMed
Holzmann H. Diagnosis of tick-borne encephalitis. Vaccine. 2003;21(Suppl 1):S36–40. PubMed
Kaiser R. Tick-borne encephalitis. Infect Dis Clin North Am. 2008;22(3):561–75. x. PubMed
Kaiser R. Tick-borne encephalitis: clinical findings and prognosis in adults. Wien Med Wochenschr. 2012;162(11–12):239–43. PubMed
Kaiser R, Holzmann H. Laboratory findings in tick-borne encephalitis–correlation with clinical outcome. Infection. 2000;28(2):78–84. PubMed
Kohlmaier B, Schweintzger NA, Sagmeister MG, Svendova V, Kohlfurst DS, Sonnleitner A, Leitner M, Berghold A, Schmiedberger E, Fazekas F et al. Clinical characteristics of patients with Tick-Borne encephalitis (TBE): A European multicentre study from 2010 to 2017. Microorganisms 2021, 9(7). PubMed PMC
Fauser S, Stich O, Rauer S. Unusual case of tick borne encephalitis with isolated myeloradiculitis. J Neurol Neurosurg Psychiatry. 2007;78(8):909–10. PubMed PMC
Ellwanger JH, Chies JAB. Host immunogenetics in tick-borne encephalitis virus infection-The CCR5 crossroad. Ticks Tick Borne Dis. 2019;10(4):729–41. PubMed
Caini S, Szomor K, Ferenczi E, Szekelyne Gaspar A, Csohan A, Krisztalovics K, Molnar Z, Horvath J. Tick-borne encephalitis transmitted by unpasteurised cow milk in Western hungary, September to October 2011. Euro Surveill 2012, 17(12). PubMed
Dorko E, Hockicko J, Rimarova K, Busova A, Popadak P, Popadakova J, Schreter I. Milk outbreaks of tick-borne encephalitis in slovakia, 2012–2016. Cent Eur J Public Health. 2018;26(Suppl):S47–50. PubMed
Misic Majerus L, Dakovic Rode O, Ruzic Sabljic E. [Post-encephalitic syndrome in patients with tick-borne encephalitis]. Acta Med Croatica. 2009;63(4):269–78. PubMed
Czupryna P, Moniuszko A, Pancewicz SA, Grygorczuk S, Kondrusik M, Zajkowska J. Tick-borne encephalitis in Poland in years 1993-2008-epidemiology and clinical presentation. A retrospective study of 687 patients. Eur J Neurol. 2011;18(5):673–9. PubMed
Mickiene A, Laiskonis A, Gunther G, Vene S, Lundkvist A, Lindquist L. Tickborne encephalitis in an area of high endemicity in lithuania: disease severity and long-term prognosis. Clin Infect Dis. 2002;35(6):650–8. PubMed
Xiao N, Nie M, Pang H, Wang B, Hu J, Meng X, Li K, Ran X, Long Q, Deng H, et al. Integrated cytokine and metabolite analysis reveals immunometabolic reprogramming in COVID-19 patients with therapeutic implications. Nat Commun. 2021;12(1):1618. PubMed PMC
Fraisier C, Papa A, Granjeaud S, Hintzen R, Martina B, Camoin L, Almeras L. Cerebrospinal fluid biomarker candidates associated with human WNV neuroinvasive disease. PLoS ONE. 2014;9(4):e93637. PubMed PMC
Carod-Artal FJ, Wichmann O, Farrar J, Gascon J. Neurological complications of dengue virus infection. Lancet Neurol. 2013;12(9):906–19. PubMed
Panyard DJ, Kim KM, Darst BF, Deming YK, Zhong X, Wu Y, Kang H, Carlsson CM, Johnson SC, Asthana S, et al. Cerebrospinal fluid metabolomics identifies 19 brain-related phenotype associations. Commun Biol. 2021;4(1):63. PubMed PMC
Chen SL, Liang JH, Chen DQ, Huang QY, Sun KJ, Zhong YX, Lin BJ, Kong JJ, Sun JD, Gong CF, et al. Cerebrospinal fluid metabolomic and proteomic characterization of neurologic post-acute sequelae of SARS-CoV-2 infection. Brain Behav Immun. 2024;115:209–22. PubMed
Öst M, Nylén K, Csajbok L, Öhrfelt AO, Tullberg M, Wikkelsö C, Nellgård P, Rosengren L, Blennow K, Nellgård B. Initial CSF total Tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology. 2006;67(9):1600–4. PubMed
Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE, Loginicheva E, Cervantes-Barragan L, Ma XC, Huang SCC, Griss T, et al. Itaconate links Inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 2016;24(1):158–66. PubMed PMC
Goonawardane N, Upstone L, Harris M, Jones IM. Identification of host factors differentially induced by clinically diverse strains of Tick-Borne encephalitis virus (96, e00818-22, 2022). J Virol 2022, 96(21). PubMed PMC
Pang ZQ, Chong J, Zhou GY, Morais DAD, Chang L, Barrette M, Gauthier C, Jacques PÉ, Li SZ, Xia JG. MetaboAnalyst 5.0: narrowing the gap between Raw spectra and functional insights. Nucleic Acids Res. 2021;49(W1):W388–96. PubMed PMC
Sato T, Imaizumi K, Watanabe H, Ishikawa M, Okano H. Generation of region-specific and high-purity neurons from human feeder-free iPSCs. Neurosci Lett. 2021;746:135676. PubMed
Imaizumi K, Sone T, Ibata K, Fujimori K, Yuzaki M, Akamatsu W, Okano H. Controlling the regional identity of hPSC-Derived neurons to uncover neuronal subtype specificity of neurological disease phenotypes. Stem Cell Rep. 2015;5(6):1010–22. PubMed PMC
Gunther G, Haglund M, Lindquist L, Forsgren M, Andersson J, Andersson B, Skoldenberg B. Tick-borne encephalitis is associated with low levels of interleukin-10 in cerebrospinal fluid. Infect Ecol Epidemiol 2011, 1. PubMed PMC
Formanova PP, Palus M, Salat J, Hönig V, Stefanik M, Svoboda P, Ruzek D. Changes in cytokine and chemokine profiles in mouse serum and brain, and in human neural cells, upon tick-borne encephalitis virus infection. J Neuroinflamm 2019, 16(1). PubMed PMC
Zajkowska J, Moniuszko-Malinowska A, Pancewicz SA, Muszynska-Mazur A, Kondrusik M, Grygorczuk S, Swierzbinska-Pijanowska R, Dunaj J, Czupryna P. Evaluation of CXCL10, CXCL11, CXCL12 and CXCL13 chemokines in serum and cerebrospinal fluid in patients with tick borne encephalitis (TBE). Adv Med Sci. 2011;56(2):311–7. PubMed
Grygorczuk S, Parczewski M, Moniuszko A, Swierzbinska R, Kondrusik M, Zajkowska J, Czupryna P, Dunaj J, Boron-Kaczmarska A, Pancewicz S. Increased concentration of interferon lambda-3, interferon beta and interleukin-10 in the cerebrospinal fluid of patients with tick-borne encephalitis. Cytokine. 2015;71(2):125–31. PubMed
Michael BD, Griffiths MJ, Granerod J, Brown D, Keir G, Wnek M, Cox DJ, Vidyasagar R, Borrow R, Parkes LM, Solomon T. The Interleukin-1 balance during encephalitis is associated with clinical severity, Blood-Brain barrier permeability, neuroimaging changes, and disease outcome. J Infect Dis. 2016;213(10):1651–60. PubMed PMC
Li F, Wang Y, Yu L, Cao S, Wang K, Yuan J, Wang C, Wang K, Cui M, Fu ZF. Viral infection of the central nervous system and neuroinflammation precede Blood-Brain barrier disruption during Japanese encephalitis virus infection. J Virol. 2015;89(10):5602–14. PubMed PMC
Constant O, Barthelemy J, Nagy A, Salinas S, Simonin Y. West nile virus neuroinfection in humans: peripheral biomarkers of neuroinflammation and neuronal damage. Viruses 2022, 14(4). PubMed PMC
Norris GT, Ames JM, Ziegler SF, Oberst A. Oligodendrocyte-derived IL-33 functions as a microglial survival factor during neuroinvasive flavivirus infection. Plos Pathog 2023, 19(11). PubMed PMC
Chen Q, Gouilly J, Ferrat YJ, Espino A, Glaziou Q, Cartron G, El Costa H, Al-Daccak R, Jabrane-Ferrat N. Metabolic reprogramming by Zika virus provokes inflammation in human placenta. Nat Commun. 2020;11(1):2967. PubMed PMC
Mingo-Casas P, Blazquez AB, Gomez de Cedron M, San-Felix A, Molina S, Escribano-Romero E, Calvo-Pinilla E, Jimenez de Oya N, Ramirez de Molina A, Saiz JC, et al. Glycolytic shift during West nile virus infection provides new therapeutic opportunities. J Neuroinflammation. 2023;20(1):217. PubMed PMC
Li C, Deng YQ, Wang S, Ma F, Aliyari R, Huang XY, Zhang NN, Watanabe M, Dong HL, Liu P, et al. 25-Hydroxycholesterol protects host against Zika virus infection and its associated microcephaly in a mouse model. Immunity. 2017;46(3):446–56. PubMed PMC
Liang R, Li Y, Li J, Zhang S, Gao Y, Tan F, Feng Y, Chen Y, Wang F, Jiang T, Kang X. Metabolomic profiling of cerebrospinal fluid reveals metabolite biomarkers in Tick-Borne encephalitis patient. J Med Virol. 2024;96(11):e70082. PubMed PMC
Xing Z, Tu BP. Mechanisms and rationales of SAM homeostasis. Trends Biochem Sci. 2025;50(3):242–54. PubMed PMC
Han R, Liang J, Zhou B. Glucose metabolic dysfunction in neurodegenerative Diseases-New mechanistic insights and the potential of hypoxia as a prospective therapy targeting metabolic reprogramming. Int J Mol Sci 2021, 22(11). PubMed PMC
Sun L, Yang X, Yuan Z, Wang H. Metabolic reprogramming in immune response and tissue inflammation. Arterioscler Thromb Vasc Biol. 2020;40(9):1990–2001. PubMed PMC
Strom K, Morales-Alamo D, Ottosson F, Edlund A, Hjort L, Jorgensen SW, Almgren P, Zhou Y, Martin-Rincon M, Ekman C, et al. N(1)-methylnicotinamide is a signalling molecule produced in skeletal muscle coordinating energy metabolism. Sci Rep. 2018;8(1):3016. PubMed PMC
Hart PH, Norval M. The multiple roles of urocanic acid in health and disease. J Invest Dermatol. 2021;141(3):496–502. PubMed
Fares M, Cochet-Bernoin M, Gonzalez G, Montero-Menei CN, Blanchet O, Benchoua A, Boissart C, Lecollinet S, Richardson J, Haddad N, Coulpier M. Pathological modeling of TBEV infection reveals differential innate immune responses in human neurons and astrocytes that correlate with their susceptibility to infection. J Neuroinflammation. 2020;17(1):76. PubMed PMC
Sances S, Bruijn LI, Chandran S, Eggan K, Ho R, Klim JR, Livesey MR, Lowry E, Macklis JD, Rushton D, et al. Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nat Neurosci. 2016;19(4):542–53. PubMed PMC
Coloma J, Jain R, Rajashankar KR, Garcia-Sastre A, Aggarwal AK. Structures of NS5 methyltransferase from Zika virus. Cell Rep. 2016;16(12):3097–102. PubMed PMC
Long WK, Fronko GE, Lindemeyer RG, Wu B, Henderson EE. Effects of S-adenosylhomocysteine and analogs on Epstein-Barr virus-induced transformation, expression of the Epstein-Barr virus capsid antigen, and methylation of Epstein-Barr virus DNA. J Virol. 1987;61(1):221–4. PubMed PMC
Bing Y, Zhu S, Yu G, Li T, Liu W, Li C, Wang Y, Qi H, Guo T, Yuan Y, et al. Glucocorticoid-induced S-adenosylmethionine enhances the interferon signaling pathway by restoring STAT1 protein methylation in hepatitis B virus-infected cells. J Biol Chem. 2014;289(47):32639–55. PubMed PMC
Fontaine KA, Sanchez EL, Camarda R, Lagunoff M. Dengue virus induces and requires Glycolysis for optimal replication. J Virol. 2015;89(4):2358–66. PubMed PMC
Ke S, Weiss ST, Liu YY. Dissecting the role of the human Microbiome in COVID-19 via metagenome-assembled genomes. Nat Commun. 2022;13(1):5235. PubMed PMC
Kloska SM, Palczynski K, Marciniak T, Talaska T, Wysocki BJ, Davis P, Wysocki TA. Integrating glycolysis, citric acid cycle, Pentose phosphate pathway, and fatty acid beta-oxidation into a single computational model (13, 14484, 2023). Sci Rep 2023, 13(1). PubMed PMC
Liu G-M, Zhang Y-M. Targeting FBPase is an emerging novel approach for cancer therapy. Cancer Cell Int. 2018;18(1):36. PubMed PMC
Klunk WE, Debnath ML, McClure RJ, Pettegrew JW. Inactivity of phosphoethanolamine, an endogenous GABA analog decreased in alzheimer’s disease, at GABA binding sites. Life Sci. 1995;56(26):2377–83. PubMed
Sanchez-Garcia FJ, Perez-Hernandez CA, Rodriguez-Murillo M, Moreno-Altamirano MMB. The role of Tricarboxylic acid cycle metabolites in viral infections. Front Cell Infect Microbiol. 2021;11:725043. PubMed PMC
Ansone L, Rovite V, Briviba M, Jagare L, Pelcmane L, Borisova D, Thews A, Leiminger R, Klovins J. Longitudinal NMR-Based metabolomics study reveals how hospitalized COVID-19 patients recover: evidence of dyslipidemia and energy metabolism dysregulation. Int J Mol Sci 2024, 25(3). PubMed PMC
Mattar JM, Majchrzak M, Iannucci J, Bartman S, Robinson JK, Grammas P. Sex differences in metabolic indices and chronic neuroinflammation in response to prolonged High-Fat diet in ApoE4 Knock-In mice. Int J Mol Sci 2022, 23(7). PubMed PMC
Guneykaya D, Ivanov A, Hernandez DP, Haage V, Wojtas B, Meyer N, Maricos M, Jordan P, Buonfiglioli A, Gielniewski B, et al. Transcriptional and translational differences of microglia from male and female brains. Cell Rep. 2018;24(10):2773–e27832776. PubMed