A Method for Determination of Transport Efficiency in Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Tissue Analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40517309
PubMed Central
PMC12224154
DOI
10.1021/acs.analchem.5c01306
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Recent studies have demonstrated the applicability of the "single particle" mode in laser ablation-inductively coupled plasma-mass spectrometry to map and size particles simultaneously. The transport efficiency (TE) is an important parameter in this configuration and affects the detection of individual nanoparticles, reliability of nanoparticle characterization, and related applications. This study introduces a novel method for the precise determination of TE, based on counting upconversion nanoparticles from gels characterized by fluorescent microscopy. The method was found to be most suitable for the 2940-nm laser ablation system, achieving virtually quantitative nanoparticle desorption, with TE primarily governed by ablation cell design and aerosol transport efficiency. With the 213-nm laser, attention had to be paid to incomplete desorption and possible nanoparticle redeposition at low laser fluences to avoid variability in TE measurements. Finally, use of the 193-nm laser-induced nanoparticle disintegration, resulting in elevated baseline noise and lower sensitivity, which prevented the use of this approach for the determination of TE. This study highlights the versatility of the proposed method, while also identifying its limitations, in terms of wavelength and fluence.
Department of Chemistry Faculty of Science Masaryk University 625 00 Brno Czech Republic
Institute of Analytical Chemistry of the Czech Academy of Sciences 602 00 Brno Czech Republic
Zobrazit více v PubMed
Smith D. D., Browner R. F.. Measurement of Aerosol Transport Efficiency in Atomic Spectrometry. Anal. Chem. 1982;54:533–537. doi: 10.1021/ac00240a041. DOI
Pace H. E., Rogers N. J., Jarolimek C., Coleman V. A., Higgins C. P., Ranville J. F.. Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2011;83(24):9361–9369. doi: 10.1021/ac201952t. PubMed DOI PMC
Geiss O., Bianchi I., Bucher G., Verleysen E., Brassinne F., Mast J., Loeschner K., Givelet L., Cubadda F., Ferraris F.. et al. Determination of the Transport Efficiency in spICP-MS Analysis Using Conventional Sample Introduction Systems: An Interlaboratory Comparison Study. Nanomaterials. 2022;12(4):725. doi: 10.3390/nano12040725. PubMed DOI PMC
Montoro Bustos A. R., Murphy K. E., Winchester M. R.. Evaluation of the Potential of Single Particle ICP-MS for the Accurate Measurement of the Number Concentration of AuNPs of Different Sizes and Coatings. Anal. Chem. 2022;94(7):3091–3102. doi: 10.1021/acs.analchem.1c04140. PubMed DOI PMC
Cuello-Nuñez S., Abad-Álvaro I., Bartczak D., Del Castillo Busto M. E., Ramsay D. A., Pellegrino F., Goenaga-Infante H.. The accurate determination of number concentration of inorganic nanoparticles using spICP-MS with the dynamic mass flow approach. J. Anal. At. Spectrom. 2020;35(9):1832–1839. doi: 10.1039/C9JA00415G. DOI
Bleiner D., Günther D.. Theoretical description and experimental observation of aerosol transport processes in laser ablation inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2001;16(5):449–456. doi: 10.1039/B009729M. DOI
Niemax K.. Laser ablation–reflections on a very complex technique for solid sampling. Fresenius J. Anal. Chem. 2001;370:332–340. doi: 10.1007/s002160100796. PubMed DOI
Limbeck A., Galler P., Bonta M., Bauer G., Nischkauer W., Vanhaecke F.. Recent Advances in Quantitative LA-ICP-MS Analysis: Challenges and Solutions in the Life Sciences and Environmental Chemistry. Anal. Bioanal. Chem. 2015;407(22):6593–6617. doi: 10.1007/s00216-015-8858-0. PubMed DOI PMC
Niehaus R., Sperling M., Karst U.. Study on aerosol characteristics and fractionation effects of organic standard materials for bioimaging by means of LA-ICP-MS. J. Anal. At. Spectrom. 2015;30(10):2056–2065. doi: 10.1039/C5JA00221D. DOI
Arrowsmith P., Hughes S. K.. Entrainment and Transport of Laser Ablated Plumes for Subsequent Elemental Analysis. Appl. Spectrosc. 1988;42:1231–1239. doi: 10.1366/0003702884430100. DOI
Huang Y., Shibata Y., Morita M.. Micro laser ablation-inductively coupled plasma mass spectrometry. 1. Instrumentation and performance of micro laser ablation system. Anal. Chem. 1993;65(21):2999–3003. doi: 10.1021/ac00069a011. DOI
Pisonero J., Fliegel D., Günther D.. High efficiency aerosol dispersion cell for laser ablation-ICP-MS. J. Anal. At. Spectrom. 2006;21(9):922–931. doi: 10.1039/B603867K. DOI
Garcia C. C., Lindner H., Niemax K.. Transport Efficiency in Femtosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry Applying Ablation Cells with Short and Long Washout Times. Spectrochim. Acta, Part B: At. Spectrosc. 2007;62(1):13–19. doi: 10.1016/j.sab.2006.11.005. DOI
Garcia C. C., Wälle M., Lindner H., Koch J., Niemax K., Günther D.. Femtosecond laser ablation inductively coupled plasma mass spectrometry: Transport efficiencies of aerosols released under argon atmosphere and the importance of the focus position. Spectrochim. Acta, Part B: At. Spectrosc. 2008;63(2):271–276. doi: 10.1016/j.sab.2007.11.017. DOI
Koch J., Günther D.. Review of the State-of-the-Art of Laser Ablation ICP-MS for Elemental Micro- and Nanoanalysis. Appl. Spectrosc. 2011;65(5):155–162. doi: 10.1366/11-06255. PubMed DOI
Benešová I., Dlabková K., Zelenák F., Vaculovič T., Kanický V., Preisler J.. Direct Analysis of Gold Nanoparticles from Dried Droplets Using Substrate-Assisted Laser Desorption Single Particle-ICPMS. Anal. Chem. 2016;88(5):2576–2582. doi: 10.1021/acs.analchem.5b02421. PubMed DOI
Metarapi D., Šala M., Vogel-Mikuš K., Šelih V. S., van Elteren J. T.. Nanoparticle Analysis in Biomaterials Using Laser Ablation-Single Particle-Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2019;91(9):6200–6205. doi: 10.1021/acs.analchem.9b00853. PubMed DOI PMC
Yamashita S., Yoshikuni Y., Obayashi H., Suzuki T., Green D., Hirata T.. Simultaneous Determination of Size and Position of Silver and Gold Nanoparticles in Onion Cells Using Laser Ablation-ICP-MS. Anal. Chem. 2019;91(7):4544–4551. doi: 10.1021/acs.analchem.8b05632. PubMed DOI
Stiborek M., Jindřichová L., Meliorisová S., Bednařík A., Prysiazhnyi V., Kroupa J., Houška P., Adamová B., Navrátilová J., Kanický V., Preisler J.. Infrared Laser Desorption of Intact Nanoparticles for Digital Tissue Imaging. Anal. Chem. 2022;94(51):18114–18120. doi: 10.1021/acs.analchem.2c05216. PubMed DOI
Seiffert S. B., Elinkmann M., Niehaves E., Vennemann A., Mozhayeva D., Kröger S., Wiemann M., Karst U.. Calibration Strategy to Size and Localize Multi-Shaped Nanoparticles in Tissue Sections Using LA-SpICP MS. Anal. Chem. 2023;95(15):6383–6390. doi: 10.1021/acs.analchem.3c00022. PubMed DOI
Li Q., Wang Z., Mo J., Zhang G., Chen Y., Huang C.. Imaging gold nanoparticles in mouse liver by laser ablation inductively coupled plasma mass spectrometry. Sci. Rep. 2017;7(1):1–9. doi: 10.1038/s41598-017-03275-x. PubMed DOI PMC
Kronlachner L., Gajarska Z., Becker P., Günther D., Limbeck A.. An efficient and stable sample preparation and calibration strategy for nanoparticle analysis using laser ablation single particle-ICP-MS. J. Anal. At. Spectrom. 2025;40(2):467–477. doi: 10.1039/D4JA00385C. DOI
Hlaváček A., Křivánková J., Brožková H., Weisová J., Pizúrová N., Foret F.. Absolute Counting Method with Multiplexing Capability for Estimating the Number Concentration of Nanoparticles Using Anisotropically Collapsed Gels. Anal. Chem. 2022;94(41):14340–14348. doi: 10.1021/acs.analchem.2c02989. PubMed DOI
Ulianov A., Müntener O., Schaltegger U.. The ICPMS Signal as a Poisson Process: A Review of Basic Concepts. J. Anal. At. Spectrom. 2015;30:1297–1321. doi: 10.1039/C4JA00319E. DOI
Brunnbauer L., Kronlachner L., Foisner E., Limbeck A.. Novel Calibration Approach for Particle Size Analysis of Microplastics by Laser Ablation Single Particle-ICP-MS. J. Anal. At. Spectrom. 2025;40:753–761. doi: 10.1039/D4JA00351A. PubMed DOI PMC
Guillong M., Horn I., Günther D.. A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd:YAG laser for laser ablation ICP-MS. J. Anal. At. Spectrom. 2003;18(10):1224–1230. doi: 10.1039/B305434A. DOI