Tunable Nanostructuring for van der Waals Materials
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40522692
PubMed Central
PMC12224339
DOI
10.1021/acsnano.5c00546
Knihovny.cz E-zdroje
- Klíčová slova
- 2D materials, MXenes, femtosecond laser ablation, nanoparticles, perovskites, transition metal chalcogenides, van der Waals materials,
- Publikační typ
- časopisecké články MeSH
van der Waals (vdW) materials are becoming increasingly popular in scientific and industrial applications because of their unique mixture of record electronic, optical, and mechanical properties. However, nanostructuring of vdW materials is still in its infancy and strongly depends on the specific vdW crystal. As a result, the universal self-assembled technology of vdW materials nanostructuring opens vast technological prospects. This work demonstrates an express and universal synthesis method of vdW nanoparticles with well-defined geometry using femtosecond laser ablation and fragmentation. The disarming simplicity of the technique allows us to create nanoparticles from over 50 vdW precursor materials, covering transition metal chalcogenides, MXenes, and other vdW materials. Obtained nanoparticles manifest perfectly defined crystalline structures and diverse shapes, from nanospheres to nanocubes and nanotetrahedrons. Thus, our approach illustrates a generalizable route to vdW nanostructuring with broad tunability in size, shape, and material composition, adaptable to specific application requirements.
Aix Marseille University CNRS LP3 13288 Marseille France
Emerging Technologies Research Center XPANCEO Dubai Investment Park 1st Dubai United Arab Emirates
Institute of Quantum Optics Leibniz Universität Hannover 30167 Hannover Germany
Physics Department King's College London London WC2R 2LS U K
The University of Manchester National Graphene Institute Oxford Rd Manchester M13 9PL U K
Zobrazit více v PubMed
Wang Q. H., Kalantar-Zadeh K., Kis A., Coleman J. N., Strano M. S.. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012;7(11):699–712. doi: 10.1038/nnano.2012.193. PubMed DOI
Mueller T., Malic E.. Exciton Physics and Device Application of Two-Dimensional Transition Metal Dichalcogenide Semiconductors. Npj 2D Mater. Appl. 2018;2(1):1–12. doi: 10.1038/s41699-018-0074-2. DOI
Park H., Lee M., Wang X., Ali N., Watanabe K., Taniguchi T., Hwang E., Yoo W. J.. Anisotropic Charge Transport at the Metallic Edge Contact of ReS2 Field Effect Transistors. Commun. Mater. 2024;5(1):1–7. doi: 10.1038/s43246-024-00526-z. DOI
Liang S., Cheng B., Cui X., Miao F.. Van Der Waals Heterostructures for High-Performance Device Applications: Challenges and Opportunities. Adv. Mater. 2020;32(27):1903800. doi: 10.1002/adma.201903800. PubMed DOI
Burch K. S., Mandrus D., Park J.-G.. Magnetism in Two-Dimensional van Der Waals Materials. Nature. 2018;563(7729):47–52. doi: 10.1038/s41586-018-0631-z. PubMed DOI
Wang Q. H., Bedoya-Pinto A., Blei M., Dismukes A. H., Hamo A., Jenkins S., Koperski M., Liu Y., Sun Q.-C., Telford E. J., Kim H. H., Augustin M., Vool U., Yin J.-X., Li L. H., Falin A., Dean C. R., Casanova F., Evans R. F. L., Chshiev M., Mishchenko A., Petrovic C., He R., Zhao L., Tsen A. W., Gerardot B. D., Brotons-Gisbert M., Guguchia Z., Roy X., Tongay S., Wang Z., Hasan M. Z., Wrachtrup J., Yacoby A., Fert A., Parkin S., Novoselov K. S., Dai P., Balicas L., Santos E. J. G.. The Magnetic Genome of Two-Dimensional van Der Waals Materials. ACS Nano. 2022;16(5):6960–7079. doi: 10.1021/acsnano.1c09150. PubMed DOI PMC
Gish J. T., Lebedev D., Song T. W., Sangwan V. K., Hersam M. C.. Van Der Waals Opto-Spintronics. Nat. Electron. 2024:1–12. doi: 10.1038/s41928-024-01167-3. DOI
Geim A. K., Grigorieva I. V.. Van Der Waals Heterostructures. Nature. 2013;499(7459):419–425. doi: 10.1038/nature12385. PubMed DOI
Novoselov K. S., Mishchenko A., Carvalho A., Castro Neto A. H.. 2D Materials and van Der Waals Heterostructures. Science. 2016;353(6298):aac9439. doi: 10.1126/science.aac9439. PubMed DOI
Fu J.-H., Lu A.-Y., Madden N. J., Wu C. C., Chen Y.-C., Chiu M.-H., Hattar K., Krogstad J. A., Chou S. S., Li L.-J., Kong J., Tung V.. Additive Manufacturing Assisted van Der Waals Integration of 3D/3D Hierarchically Functional Nanostructures. Commun. Mater. 2020;1(1):1–10. doi: 10.1038/s43246-020-0041-2. DOI
Hu D., Yang X., Li C., Liu R., Yao Z., Hu H., Corder S. N. G., Chen J., Sun Z., Liu M., Dai Q.. Probing Optical Anisotropy of Nanometer-Thin van Der Waals Microcrystals by near-Field Imaging. Nat. Commun. 2017;8(1):1471. doi: 10.1038/s41467-017-01580-7. PubMed DOI PMC
Ermolaev G. A., Grudinin D. V., Stebunov Y. V., Voronin K. V., Kravets V. G., Duan J., Mazitov A. B., Tselikov G. I., Bylinkin A., Yakubovsky D. I., Novikov S. M., Baranov D. G., Nikitin A. Y., Kruglov I. A., Shegai T., Alonso-González P., Grigorenko A. N., Arsenin A. V., Novoselov K. S., Volkov V. S.. Giant Optical Anisotropy in Transition Metal Dichalcogenides for Next-Generation Photonics. Nat. Commun. 2021;12(1):854. doi: 10.1038/s41467-021-21139-x. PubMed DOI PMC
Mooshammer F., Chae S., Zhang S., Shao Y., Qiu S., Rajendran A., Sternbach A. J., Rizzo D. J., Zhu X., Schuck P. J., Hone J. C., Basov D. N.. In-Plane Anisotropy in Biaxial ReS2 Crystals Probed by Nano-Optical Imaging of Waveguide Modes. ACS Photonics. 2022;9(2):443–451. doi: 10.1021/acsphotonics.1c01841. DOI
Vyshnevyy A. A., Ermolaev G. A., Grudinin D. V., Voronin K. V., Kharichkin I., Mazitov A., Kruglov I. A., Yakubovsky D. I., Mishra P., Kirtaev R. V., Arsenin A. V., Novoselov K. S., Martin-Moreno L., Volkov V. S.. Van Der Waals Materials for Overcoming Fundamental Limitations in Photonic Integrated Circuitry. Nano Lett. 2023;23(17):8057–8064. doi: 10.1021/acs.nanolett.3c02051. PubMed DOI
Meng Y., Feng J., Han S., Xu Z., Mao W., Zhang T., Kim J. S., Roh I., Zhao Y., Kim D.-H., Yang Y., Lee J.-W., Yang L., Qiu C.-W., Bae S.-H.. Photonic van Der Waals Integration from 2D Materials to 3D Nanomembranes. Nat. Rev. Mater. 2023;8(8):498–517. doi: 10.1038/s41578-023-00558-w. DOI
Verre R., Baranov D. G., Munkhbat B., Cuadra J., Käll M., Shegai T.. Transition Metal Dichalcogenide Nanodisks as High-Index Dielectric Mie Nanoresonators. Nat. Nanotechnol. 2019;14(7):679–683. doi: 10.1038/s41565-019-0442-x. PubMed DOI
Flöry N., Ma P., Salamin Y., Emboras A., Taniguchi T., Watanabe K., Leuthold J., Novotny L.. Waveguide-Integrated van Der Waals Heterostructure Photodetector at Telecom Wavelengths with High Speed and High Responsivity. Nat. Nanotechnol. 2020;15(2):118–124. doi: 10.1038/s41565-019-0602-z. PubMed DOI PMC
Ling H., Khurgin J. B., Davoyan A. R.. Atomic-Void van Der Waals Channel Waveguides. Nano Lett. 2022;22(15):6254–6261. doi: 10.1021/acs.nanolett.2c01819. PubMed DOI
Bandurin D. A., Mönch E., Kapralov K., Phinney I. Y., Lindner K., Liu S., Edgar J. H., Dmitriev I. A., Jarillo-Herrero P., Svintsov D., Ganichev S. D.. Cyclotron Resonance Overtones and Near-Field Magnetoabsorption via Terahertz Bernstein Modes in Graphene. Nat. Phys. 2022;18(4):462–467. doi: 10.1038/s41567-021-01494-8. DOI
Anasori B., Lukatskaya M. R., Gogotsi Y.. 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat. Rev. Mater. 2017;2(2):1–17. doi: 10.1038/natrevmats.2016.98. DOI
Chaves A., Azadani J. G., Alsalman H., da Costa D. R., Frisenda R., Chaves A. J., Song S. H., Kim Y. D., He D., Zhou J., Castellanos-Gomez A., Peeters F. M., Liu Z., Hinkle C. L., Oh S.-H., Ye P. D., Koester S. J., Lee Y. H., Avouris P., Wang X., Low T.. Bandgap Engineering of Two-Dimensional Semiconductor Materials. Npj 2D Mater. Appl. 2020;4(1):1–21. doi: 10.1038/s41699-020-00162-4. DOI
Dean C. R., Young A. F., Meric I., Lee C., Wang L., Sorgenfrei S., Watanabe K., Taniguchi T., Kim P., Shepard K. L., Hone J.. Boron Nitride Substrates for High-Quality Graphene Electronics. Nat. Nanotechnol. 2010;5(10):722–726. doi: 10.1038/nnano.2010.172. PubMed DOI
Song O., Rhee D., Kim J., Jeon Y., Mazánek V., Söll A., Kwon Y. A., Cho J. H., Kim Y.-H., Sofer Z., Kang J.. All Inkjet-Printed Electronics Based on Electrochemically Exfoliated Two-Dimensional Metal, Semiconductor, and Dielectric. Npj 2D Mater. Appl. 2022;6(1):1–12. doi: 10.1038/s41699-022-00337-1. DOI
Shao Y., Wei L., Wu X., Jiang C., Yao Y., Peng B., Chen H., Huangfu J., Ying Y., Zhang C. J., Ping J.. Room-Temperature High-Precision Printing of Flexible Wireless Electronics Based on MXene Inks. Nat. Commun. 2022;13(1):3223. doi: 10.1038/s41467-022-30648-2. PubMed DOI PMC
Sun L., Yuan G., Gao L., Yang J., Chhowalla M., Gharahcheshmeh M. H., Gleason K. K., Choi Y. S., Hong B. H., Liu Z.. Chemical Vapour Deposition. Nat. Rev. Methods Primer. 2021;1(1):1–20. doi: 10.1038/s43586-020-00005-y. DOI
Kabashin A. V., Delaporte Ph., Pereira A., Grojo D., Torres R., Sarnet Th., Sentis M.. Nanofabrication with Pulsed Lasers. Nanoscale Res. Lett. 2010;5(3):454–463. doi: 10.1007/s11671-010-9543-z. PubMed DOI PMC
Castellanos-Gomez A., Barkelid M., Goossens A. M., Calado V. E., van der Zant H. S. J., Steele G. A.. Laser-Thinning of MoS 2: On Demand Generation of a Single-Layer Semiconductor. Nano Lett. 2012;12(6):3187–3192. doi: 10.1021/nl301164v. PubMed DOI
Mupparapu R., Steinert M., George A., Tang Z., Turchanin A., Pertsch T., Staude I.. Facile Resist-Free Nanopatterning of Monolayers of MoS 2 by Focused Ion-Beam Milling. Adv. Mater. Interfaces. 2020;7(19):2000858. doi: 10.1002/admi.202000858. DOI
Munkhbat B., Yankovich A. B., Baranov D. G., Verre R., Olsson E., Shegai T. O.. Transition Metal Dichalcogenide Metamaterials with Atomic Precision. Nat. Commun. 2020;11(1):4604. doi: 10.1038/s41467-020-18428-2. PubMed DOI PMC
Kabashin A. V., Meunier M.. Synthesis of Colloidal Nanoparticles during Femtosecond Laser Ablation of Gold in Water. J. Appl. Phys. 2003;94(12):7941–7943. doi: 10.1063/1.1626793. DOI
Belyaev I. B., Zelepukin I. V., Kotelnikova P. A., Tikhonowski G. V., Popov A. A., Kapitannikova A. Yu., Barman J., Kopylov A. N., Bratashov D. N., Prikhozhdenko E. S., Kabashin A. V., Deyev S. M., Zvyagin A. V.. Laser-Synthesized Germanium Nanoparticles as Biodegradable Material for Near-Infrared Photoacoustic Imaging and Cancer Phototherapy. Adv. Sci. 2024;11(20):2307060. doi: 10.1002/advs.202307060. PubMed DOI PMC
Semaltianos N. G., Logothetidis S., Perrie W., Romani S., Potter R. J., Sharp M., French P., Dearden G., Watkins K. G.. II–VI Semiconductor Nanoparticles Synthesized by Laser Ablation. Appl. Phys. A: Mater. Sci. Process. 2009;94(3):641–647. doi: 10.1007/s00339-008-4854-y. DOI
Sajti C. L., Sattari R., Chichkov B. N., Barcikowski S.. Gram Scale Synthesis of Pure Ceramic Nanoparticles by Laser Ablation in Liquid. J. Phys. Chem. C. 2010;114(6):2421–2427. doi: 10.1021/jp906960g. DOI
Nolte S., Momma C., Jacobs H., Tünnermann A., Chichkov B. N., Wellegehausen B., Welling H.. Ablation of Metals by Ultrashort Laser Pulses. J. Opt. Soc. Am. B. 1997;14(10):2716. doi: 10.1364/JOSAB.14.002716. DOI
Mafuné F., Kohno J., Takeda Y., Kondow T., Sawabe H.. Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution. J. Phys. Chem. B. 2000;104(39):9111–9117. doi: 10.1021/jp001336y. DOI
Rehbock C., Merk V., Gamrad L., Streubel R., Barcikowski S.. Size Control of Laser-Fabricated Surfactant-Free Gold Nanoparticles with Highly Diluted Electrolytes and Their Subsequent Bioconjugation. Phys. Chem. Chem. Phys. 2013;15(9):3057–3067. doi: 10.1039/C2CP42641B. PubMed DOI
Besner S., Kabashin A. V., Meunier M.. Two-Step Femtosecond Laser Ablation-Based Method for the Synthesis of Stable and Ultra-Pure Gold Nanoparticles in Water. Appl. Phys. A: Mater. Sci. Process. 2007;88(2):269–272. doi: 10.1007/s00339-007-4001-1. DOI
Zhang D., Gökce B., Barcikowski S.. Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chem. Rev. 2017;117(5):3990–4103. doi: 10.1021/acs.chemrev.6b00468. PubMed DOI
Sylvestre J.-P., Kabashin A. V., Sacher E., Meunier M., Luong J. H. T.. Stabilization and Size Control of Gold Nanoparticles during Laser Ablation in Aqueous Cyclodextrins. J. Am. Chem. Soc. 2004;126(23):7176–7177. doi: 10.1021/ja048678s. PubMed DOI
Amendola V., Meneghetti M.. Laser Ablation Synthesis in Solution and Size Manipulation of Noble Metal Nanoparticles. Phys. Chem. Chem. Phys. 2009;11(20):3805. doi: 10.1039/b900654k. PubMed DOI
Maximova K., Aristov A., Sentis M., Kabashin A. V.. Size-Controllable Synthesis of Bare Gold Nanoparticles by Femtosecond Laser Fragmentation in Water. Nanotechnology. 2015;26(6):065601. doi: 10.1088/0957-4484/26/6/065601. PubMed DOI
Sylvestre J.-P., Poulin S., Kabashin A. V., Sacher E., Meunier M., Luong J. H. T.. Surface Chemistry of Gold Nanoparticles Produced by Laser Ablation in Aqueous Media. J. Phys. Chem. B. 2004;108:16864–16869. doi: 10.1021/jp047134+. DOI
Bärsch N., Jakobi J., Weiler S., Barcikowski S.. Pure Colloidal Metal and Ceramic Nanoparticles from High-Power Picosecond Laser Ablation in Water and Acetone. Nanotechnology. 2009;20(44):445603. doi: 10.1088/0957-4484/20/44/445603. PubMed DOI
Streubel R., Barcikowski S., Gökce B.. Continuous Multigram Nanoparticle Synthesis by High-Power, High-Repetition-Rate Ultrafast Laser Ablation in Liquids. Opt. Lett. 2016;41(7):1486. doi: 10.1364/OL.41.001486. PubMed DOI
Tselikov G. I., Ermolaev G. A., Popov A. A., Tikhonowski G. V., Panova D. A., Taradin A. S., Vyshnevyy A. A., Syuy A. V., Klimentov S. M., Novikov S. M., Evlyukhin A. B., Kabashin A. V., Arsenin A. V., Novoselov K. S., Volkov V. S.. Transition Metal Dichalcogenide Nanospheres for High-Refractive-Index Nanophotonics and Biomedical Theranostics. Proc. Natl. Acad. Sci. U. S. A. 2022;119(39):e2208830119. doi: 10.1073/pnas.2208830119. PubMed DOI PMC
Kögler M., Ryabchikov Y. V., Uusitalo S., Popov A., Popov A., Tselikov G., Välimaa A., Al-Kattan A., Hiltunen J., Laitinen R., Neubauer P., Meglinski I., Kabashin A. V.. Bare Laser-synthesized Au-based Nanoparticles as Nondisturbing Surface-enhanced Raman Scattering Probes for Bacteria Identification. J. Biophotonics. 2018;11(7):e201700225. doi: 10.1002/jbio.201700225. PubMed DOI
Zelepukin I. V., Popov A. A., Shipunova V. O., Tikhonowski G. V., Mirkasymov A. B., Popova-Kuznetsova E. A., Klimentov S. M., Kabashin A. V., Deyev S. M.. Laser-Synthesized TiN Nanoparticles for Biomedical Applications: Evaluation of Safety, Biodistribution and Pharmacokinetics. Mater. Sci. Eng., C. 2021;120:111717. doi: 10.1016/j.msec.2020.111717. PubMed DOI
Zhang J., Chaker M., Ma D.. Pulsed Laser Ablation Based Synthesis of Colloidal Metal Nanoparticles for Catalytic Applications. J. Colloid Interface Sci. 2017;489:138–149. doi: 10.1016/j.jcis.2016.07.050. PubMed DOI
Farooq S., Vital C. V. P., Tikhonowski G., Popov A. A., Klimentov S. M., Malagon A.G. L., De Araujo R. E., Kabashin A. V., Rativa D.. Thermo-Optical Performance of Bare Laser-Synthesized TiN Nanofluids for Direct Absorption Solar Collector Applications. Sol. Energy Mater. Sol. Cells. 2023;252:112203. doi: 10.1016/j.solmat.2023.112203. DOI
Popov A. A., Tselikov G., Dumas N., Berard C., Metwally K., Jones N., Al-Kattan A., Larrat B., Braguer D., Mensah S., Da Silva A., Estève M.-A., Kabashin A. V.. Laser- Synthesized TiN Nanoparticles as Promising Plasmonic Alternative for Biomedical Applications. Sci. Rep. 2019;9(1):1194. doi: 10.1038/s41598-018-37519-1. PubMed DOI PMC
Kabashin A. V., Meunier M., Kingston C., Luong J. H. T.. Fabrication and Characterization of Gold Nanoparticles by Femtosecond Laser Ablation in an Aqueous Solution of Cyclodextrins. J. Phys. Chem. B. 2003;107(19):4527–4531. doi: 10.1021/jp034345q. DOI
Intartaglia R., Bagga K., Scotto M., Diaspro A., Brandi F.. Luminescent Silicon Nanoparticles Prepared by Ultra Short Pulsed Laser Ablation in Liquid for Imaging Applications. Opt. Mater. Express. 2012;2(5):510. doi: 10.1364/OME.2.000510. DOI
Ibrahimkutty S., Wagener P., Menzel A., Plech A., Barcikowski S.. Nanoparticle Formation in a Cavitation Bubble after Pulsed Laser Ablation in Liquid Studied with High Time Resolution Small Angle X-Ray Scattering. Appl. Phys. Lett. 2012;101(10):103104. doi: 10.1063/1.4750250. DOI
Al-Kattan A., Tselikov G., Metwally K., Popov A. A., Mensah S., Kabashin A. V.. Laser Ablation-Assisted Synthesis of Plasmonic Si@Au Core-Satellite Nanocomposites for Biomedical Applications. Nanomaterials. 2021;11(3):592. doi: 10.3390/nano11030592. PubMed DOI PMC
Jung H. J., Choi M. Y.. Specific Solvent Produces Specific Phase Ni Nanoparticles: A Pulsed Laser Ablation in Solvents. J. Phys. Chem. C. 2014;118(26):14647–14654. doi: 10.1021/jp503009a. DOI
Blandin P., Maximova K. A., Gongalsky M. B., Sanchez-Royo J. F., Chirvony V. S., Sentis M., Timoshenko V. Yu., Kabashin A. V.. Femtosecond Laser Fragmentation from Water-Dispersed Microcolloids: Toward Fast Controllable Growth of Ultrapure Si-Based Nanomaterials for Biological Applications. J. Mater. Chem. B. 2013;1(19):2489. doi: 10.1039/c3tb20285b. PubMed DOI
Coviello V., Forrer D., Amendola V.. Recent Developments in Plasmonic Alloy Nanoparticles: Synthesis, Modelling, Properties and Applications. ChemPhysChem. 2022;23(21):e202200136. doi: 10.1002/cphc.202200136. PubMed DOI PMC
Shih C.-Y., Streubel R., Heberle J., Letzel A., Shugaev M. V., Wu C., Schmidt M., Gökce B., Barcikowski S., Zhigilei L. V.. Two Mechanisms of Nanoparticle Generation in Picosecond Laser Ablation in Liquids: The Origin of the Bimodal Size Distribution. Nanoscale. 2018;10(15):6900–6910. doi: 10.1039/C7NR08614H. PubMed DOI PMC
Chichkov B.. Laser Printing: Trends and Perspectives. Appl. Phys. A: Mater. Sci. Process. 2022;128(11):1015. doi: 10.1007/s00339-022-06158-9. PubMed DOI PMC
Novikov I. S., Gubaev K., Podryabinkin E. V., Shapeev A. V.. The MLIP Package: Moment Tensor Potentials with MPI and Active Learning. Mach. Learn. Sci. Technol. 2021;2(2):025002. doi: 10.1088/2632-2153/abc9fe. DOI
Shapeev A. V.. Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials. Multiscale Model. Simul. 2016;14(3):1153–1173. doi: 10.1137/15M1054183. DOI
Popov A., Tikhonowski G., Shakhov P., Popova-Kuznetsova E., Tselikov G., Romanov R., Markeev A., Klimentov S., Kabashin A.. Synthesis of Titanium Nitride Nanoparticles by Pulsed Laser Ablation in Different Aqueous and Organic Solutions. Nanomaterials. 2022;12(10):1672. doi: 10.3390/nano12101672. PubMed DOI PMC
Amendola V., Meneghetti M.. What Controls the Composition and the Structure of Nanomaterials Generated by Laser Ablation in Liquid Solution? Phys. Chem. Chem. Phys. 2013;15(9):3027–3046. doi: 10.1039/C2CP42895D. PubMed DOI
Chernikov A. S., Tselikov G. I., Gubin M. Yu., Shesterikov A. V., Khorkov K. S., Syuy A. V., Ermolaev G. A., Kazantsev I. S., Romanov R. I., Markeev A. M., Popov A. A., Tikhonowski G. V., Kapitanova O. O., Kochuev D. A., Leksin A. Yu., Tselikov D. I., Arsenin A. V., Kabashin A. V., Volkov V. S., Prokhorov A. V.. Tunable Optical Properties of Transition Metal Dichalcogenide Nanoparticles Synthesized by Femtosecond Laser Ablation and Fragmentation. J. Mater. Chem. C. 2023;11(10):3493–3503. doi: 10.1039/D2TC05235K. DOI
Fromme T., Reichenberger S., Tibbetts K. M., Barcikowski S.. Laser Synthesis of Nanoparticles in Organic Solvents–Products, Reactions, and Perspectives. Beilstein J. Nanotechnol. 2024;15:638–663. doi: 10.3762/bjnano.15.54. PubMed DOI PMC
Jendrzej S., Gökce B., Epple M., Barcikowski S.. How Size Determines the Value of Gold: Economic Aspects of Wet Chemical and Laser-Based Metal Colloid Synthesis. ChemPhysChem. 2017;18(9):1012–1019. doi: 10.1002/cphc.201601139. PubMed DOI
Monga D., Sharma S., Shetti N. P., Basu S., Reddy K. R., Aminabhavi T. M.. Advances in Transition Metal Dichalcogenide-Based Two-Dimensional Nanomaterials. Mater. Today Chem. 2021;19:100399. doi: 10.1016/j.mtchem.2020.100399. DOI
Sharma S., Basu S.. Highly Reusable Visible Light Active Hierarchical Porous WO3/SiO2Monolith in Centimeter Length Scale for Enhanced Photocatalytic Degradation of Toxic Pollutants. Sep. Purif. Technol. 2020;231:115916. doi: 10.1016/j.seppur.2019.115916. DOI
Fujishima A., Honda K.. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 1972;238(5358):37–38. doi: 10.1038/238037a0. PubMed DOI
Mehta A., Mishra A., Basu S., Shetti N. P., Reddy K. R., Saleh T. A., Aminabhavi T. M.. Band Gap Tuning and Surface Modification of Carbon Dots for Sustainable Environmental Remediation and Photocatalytic Hydrogen Production–A Review. J. Environ. Manage. 2019;250:109486. doi: 10.1016/j.jenvman.2019.109486. PubMed DOI
Monga D., Ilager D., Shetti N. P., Basu S., Aminabhavi T. M.. 2D/2d Heterojunction of MoS2/g-C3N4 Nanoflowers for Enhanced Visible-Light-Driven Photocatalytic and Electrochemical Degradation of Organic Pollutants. J. Environ. Manage. 2020;274:111208. doi: 10.1016/j.jenvman.2020.111208. PubMed DOI
Ermolaev G. A., Stebunov Y. V., Vyshnevyy A. A., Tatarkin D. E., Yakubovsky D. I., Novikov S. M., Baranov D. G., Shegai T., Nikitin A. Y., Arsenin A. V., Volkov V. S.. Broadband Optical Properties of Monolayer and Bulk MoS2. Npj 2D Mater. Appl. 2020;4(1):21. doi: 10.1038/s41699-020-0155-x. DOI
Li Y., Wang H., Xie L., Liang Y., Hong G., Dai H.. MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2011;133(19):7296–7299. doi: 10.1021/ja201269b. PubMed DOI
Ismail, A. F. ; Goh, P. S. ; Hasbullah, H. ; Aziz, F. . Advanced Materials for Wastewater Treatment and Desalination: Fundamentals to Applications; CRC Press: Boca Raton, 2022. 10.1201/9781003167327. DOI
Kalantar-Zadeh K., Ou J. Z.. Biosensors Based on Two-Dimensional MoS2. ACS Sens. 2016;1(1):5–16. doi: 10.1021/acssensors.5b00142. DOI
Kim H. J., Lee J. H.. Highly Sensitive and Selective Gas Sensors Using P-Type Oxide Semiconductors: Overview. Sens. Actuators B Chem. 2014;192:607–627. doi: 10.1016/j.snb.2013.11.005. DOI
Joshi N., Hayasaka T., Liu Y., Liu H., Oliveira O. N., Lin L.. A Review on Chemiresistive Room Temperature Gas Sensors Based on Metal Oxide Nanostructures, Graphene and 2D Transition Metal Dichalcogenides. Microchim. Acta. 2018;185(4):213. doi: 10.1007/s00604-018-2750-5. PubMed DOI
Presutti D., Agarwal T., Zarepour A., Celikkin N., Hooshmand S., Nayak C., Ghomi M., Zarrabi A., Costantini M., Behera B., Maiti T. K.. Transition Metal Dichalcogenides (TMDC)-Based Nanozymes for Biosensing and Therapeutic Applications. Materials. 2022;15(1):337. doi: 10.3390/ma15010337. PubMed DOI PMC
Goswami P., Gupta G.. Recent Progress of Flexible NO2 and NH3 Gas Sensors Based on Transition Metal Dichalcogenides for Room Temperature Sensing. Mater. Today Chem. 2022;23:100726. doi: 10.1016/j.mtchem.2021.100726. DOI
Liu X., Shuai H. L., Liu Y. J., Huang K. J.. An Electrochemical Biosensor for DNA Detection Based on Tungsten Disulfide/Multi-Walled Carbon Nanotube Composites and Hybridization Chain Reaction Amplification. Sens. Actuators B Chem. 2016;235:603–613. doi: 10.1016/j.snb.2016.05.132. DOI
Huang K. J., Liu Y. J., Cao J. T., Wang H. B.. An Aptamer Electrochemical Assay for Sensitive Detection of Immunoglobulin e Based on Tungsten Disulfide-Graphene Composites and Gold Nanoparticles. RSC Adv. 2014;4(69):36742–36748. doi: 10.1039/C4RA06133K. DOI
Huang K. J., Shuai H. L., Zhang J. Z.. Ultrasensitive Sensing Platform for Platelet-Derived Growth Factor BB Detection Based on Layered Molybdenum Selenide-Graphene Composites and Exonuclease III Assisted Signal Amplification. Biosens. Bioelectron. 2016;77:69–75. doi: 10.1016/j.bios.2015.09.026. PubMed DOI
Jariwala D., Howell S. L., Chen K. S., Kang J., Sangwan V. K., Filippone S. A., Turrisi R., Marks T. J., Lauhon L. J., Hersam M. C.. Hybrid, Gate-Tunable, van Der Waals p-n Heterojunctions from Pentacene and MoS2. Nano Lett. 2016;16(1):497–503. doi: 10.1021/acs.nanolett.5b04141. PubMed DOI
Jiang H., Ren D., Wang H., Hu Y., Guo S., Yuan H., Hu P., Zhang L., Li C.. 2D Monolayer MoS2-Carbon Interoverlapped Superstructure: Engineering Ideal Atomic Interface for Lithium Ion Storage. Adv. Mater. 2015;27(24):3687–3695. doi: 10.1002/adma.201501059. PubMed DOI
Zhao C., Kong J., Yao X., Tang X., Dong Y., Phua S. L., Lu X.. Thin MoS2 Nanoflakes Encapsulated in Carbon Nanofibers as High-Performance Anodes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces. 2014;6(9):6392–6398. doi: 10.1021/am4058088. PubMed DOI
Kumar N., Mishra D., Kumar A., Dash B., Mishra R. K., Song J., Jin S. H.. Enhanced Electrochemical Performance of Supercapacitors via Two-Dimensional Indium Sulfide Heterostructure on Carbon Nanotubes. Appl. Sci. Switz. 2023;13(6):3678. doi: 10.3390/app13063678. DOI
Park S. K., Yu S. H., Woo S., Quan B., Lee D. C., Kim M. K., Sung Y. E., Piao Y.. A Simple L-Cysteine-Assisted Method for the Growth of MoS2 Nanosheets on Carbon Nanotubes for High-Performance Lithium Ion Batteries. J. Chem. Soc., Dalton Trans. 2013;42(7):2399–2405. doi: 10.1039/C2DT32137H. PubMed DOI
Wang Z., Wu H., Burr G. W., Hwang C. S., Wang K. L., Xia Q., Yang J. J.. Resistive Switching Materials for Information Processing. Nat. Rev. Mater. 2020;5(3):173–195. doi: 10.1038/s41578-019-0159-3. DOI
Tang J., Yuan F., Shen X., Wang Z., Rao M., He Y., Sun Y., Li X., Zhang W., Li Y., Gao B., Qian H., Bi G., Song S., Yang J. J., Wu H.. Bridging Biological and Artificial Neural Networks with Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges. Adv. Mater. 2019;31(49):1902761. doi: 10.1002/adma.201902761. PubMed DOI
Song M. K., Kang J. H., Zhang X., Ji W., Ascoli A., Messaris I., Demirkol A. S., Dong B., Aggarwal S., Wan W., Hong S. M., Cardwell S. G., Boybat I., Seo J. S., Lee J. S., Lanza M., Yeon H., Onen M., Li J., Yildiz B., del Alamo J. A., Kim S., Choi S., Milano G., Ricciardi C., Alff L., Chai Y., Wang Z., Bhaskaran H., Hersam M. C., Strukov D., Wong H. S. P., Valov I., Gao B., Wu H., Tetzlaff R., Sebastian A., Lu W., Chua L., Yang J. J., Kim J.. Recent Advances and Future Prospects for Memristive Materials, Devices, and Systems. ACS Nano. 2023;17(13):11994–12039. doi: 10.1021/acsnano.3c03505. PubMed DOI
Liu P., Luo H., Yin X., Wang X., He X., Zhu J., Xue H., Mao W., Pu Y.. A Memristor Based on Two-Dimensional MoSe2/MoS2 heterojunction for Synaptic Device Application. Appl. Phys. Lett. 2022;121(23):233501. doi: 10.1063/5.0127880. DOI
Zhang X., Qiao H., Nian X., Huang Y., Pang X.. Resistive Switching Memory Behaviours of MoSe2 Nano-Islands Array. J. Mater. Sci. Mater. Electron. 2016;27(7):7609–7613. doi: 10.1007/s10854-016-4744-6. DOI
Yan Y., Sun B., Ma D.. Resistive Switching Memory Characteristics of Single MoSe2 Nanorods. Chem. Phys. Lett. 2015;638:103–107. doi: 10.1016/j.cplett.2015.08.035. DOI
Li P., Sun B., Zhang X., Zhou G., Xia Y., Gan L., Zhang Y., Zhao Y.. Effect of Temperature on the Magnetism and Memristive Memory Behavior of MoSe2 Nanosheets. Mater. Lett. 2017;202:13–16. doi: 10.1016/j.matlet.2017.05.087. DOI
Jamilpanah L., Khademi I., Shoa e Gharehbagh J., Aziz Mohseni S., Mohseni S. M.. Promising Memristive Behavior in MoS2–MoO2–MoO3 Scalable Composite Thin Films. J. Alloys Compd. 2020;835:155291. doi: 10.1016/j.jallcom.2020.155291. DOI
Kaur R., Singh K. P., Tripathi S. K.. Electrical, Linear and Non-Linear Optical Properties of MoSe2/PVA Nanocomposites as Charge Trapping Elements for Memory Device Applications. J. Alloys Compd. 2022;905:164103. doi: 10.1016/j.jallcom.2022.164103. DOI
Kaur R., Singh K. P., Tripathi S. K.. Study of Linear and Non-Linear Optical Responses of MoSe2–PMMA Nanocomposites. J. Mater. Sci. Mater. Electron. 2020;31(22):19974–19988. doi: 10.1007/s10854-020-04520-2. DOI
Li Y., Cao J., Chen J., Xu Q., Liu X., Qiu J., Chen Y., Wang H., Wang M.. Guar Gum-WTe2 Nanohybrid-Based Biomemristor Synapse With Short- and Long-Term Plasticity. IEEE Electron Device Lett. 2023;44(12):2047–2050. doi: 10.1109/LED.2023.3323980. DOI
Pereira M. E., Martins R., Fortunato E., Barquinha P., Kiazadeh A.. Recent Progress in Optoelectronic Memristors for Neuromorphic and In-Memory Computation. Neuromorphic Comput. Eng. 2023;3(2):022002. doi: 10.1088/2634-4386/acd4e2. DOI
Zhai Y., Yang X., Wang F., Li Z., Ding G., Qiu Z., Wang Y., Zhou Y., Han S. T.. Infrared-Sensitive Memory Based on Direct-Grown MoS2–Upconversion-Nanoparticle Heterostructure. Adv. Mater. 2018;30(49):e1803563. doi: 10.1002/adma.201803563. PubMed DOI
Tian Y., Zhang S., Tan W.. Improved Optical and Electrical Switching in Bi2S3 Nested Nano-Networks with Broad Trap Distribution. Appl. Nanosci. Switz. 2022;12(7):2023–2030. doi: 10.1007/s13204-022-02466-x. DOI
Chen M., Ki S. J., Liang X.. Bi2Se3-Based Memristive Devices for Neuromorphic Processing of Analogue Video Signals. ACS Appl. Electron. Mater. 2023;5(7):3830–3842. doi: 10.1021/acsaelm.3c00544. DOI
Konstantinova E. A., Minnekhanov A. A., Trusov G. V., Kytin V. G.. Titania-Based Nanoheterostructured Microspheres for Prolonged Visible-Light-Driven Photocatalysis. Nanotechnology. 2020;31(34):345207. doi: 10.1088/1361-6528/ab91f1. PubMed DOI
Xia J., Ge Y., Zhao D., Di J., Ji M., Yin S., Li H., Chen R.. Microwave-Assisted Synthesis of Few-Layered MoS2/BiOBr Hollow Microspheres with Superior Visible-Light-Response Photocatalytic Activity for Ciprofloxacin Removal. CrystEngComm. 2015;17(19):3645–3651. doi: 10.1039/C5CE00347D. DOI
Zou X., Zhang J., Zhao X., Zhang Z.. MoS2/RGO Composites for Photocatalytic Degradation of Ranitidine and Elimination of NDMA Formation Potential under Visible Light. Chem. Eng. J. 2020;383:123084. doi: 10.1016/j.cej.2019.123084. DOI
Li Q., Zhang N., Yang Y., Wang G., Ng D. H. L.. High Efficiency Photocatalysis for Pollutant Degradation with MoS 2/C3N4 Heterostructures. Langmuir. 2014;30(29):8965–8972. doi: 10.1021/la502033t. PubMed DOI
Chen H., Liu T., Su Z., Shang L., Wei G.. 2D Transition Metal Dichalcogenide Nanosheets for Photo/Thermo-Based Tumor Imaging and Therapy. Nanoscale Horiz. 2018;3(2):74–89. doi: 10.1039/C7NH00158D. PubMed DOI
Cheng L., Liu J., Gu X., Gong H., Shi X., Liu T., Wang C., Wang X., Liu G., Xing H., Bu W., Sun B., Liu Z.. PEGylated WS 2 Nanosheets as a Multifunctional Theranostic Agent for in Vivo Dual-Modal CT/Photoacoustic Imaging Guided Photothermal Therapy. Adv. Mater. 2014;26(12):1886–1893. doi: 10.1002/adma.201304497. PubMed DOI
An D., Fu J., Zhang B., Xie N., Nie G., Ågren H., Qiu M., Zhang H.. NIR-II Responsive Inorganic 2D Nanomaterials for Cancer Photothermal Therapy: Recent Advances and Future Challenges. Adv. Funct. Mater. 2021;31(32):2101625. doi: 10.1002/adfm.202101625. DOI
Xu D., Li Z., Li L., Wang J.. Insights into the Photothermal Conversion of 2D MXene Nanomaterials: Synthesis, Mechanism, and Applications. Adv. Funct. Mater. 2020;30(47):2000712. doi: 10.1002/adfm.202000712. DOI
Zhao Y., Chen B.-Q., Kankala R. K., Wang S.-B., Chen A.-Z.. Recent Advances in Combination of Copper Chalcogenide-Based Photothermal and Reactive Oxygen Species-Related Therapies. ACS Biomater. Sci. Eng. 2020;6(9):4799–4815. doi: 10.1021/acsbiomaterials.0c00830. PubMed DOI
Liu G., Zou J., Tang Q., Yang X., Zhang Y., Zhang Q., Huang W., Chen P., Shao J., Dong X.. Surface Modified Ti 3 C 2 MXene Nanosheets for Tumor Targeting Photothermal/Photodynamic/Chemo Synergistic Therapy. ACS Appl. Mater. Interfaces. 2017;9(46):40077–40086. doi: 10.1021/acsami.7b13421. PubMed DOI
Zhang H., Zeng X., Li Z.. Copper-Chalcogenide-Based Multimodal Nanotheranostics. ACS Appl. Bio Mater. 2020;3(10):6529–6537. doi: 10.1021/acsabm.0c00937. PubMed DOI
Song X., Huang Q., Yang Y., Ma L., Liu W., Ou C., Chen Q., Zhao T., Xiao Z., Wang M., Jiang Y., Yang Y., Zhang J., Nan Y., Wu W., Ai K.. Efficient Therapy of Inflammatory Bowel Disease (IBD) with Highly Specific and Durable Targeted Ta 2 C Modified with Chondroitin Sulfate (TACS) Adv. Mater. 2023;35(36):2301585. doi: 10.1002/adma.202301585. PubMed DOI
Shao J., Zhang J., Jiang C., Lin J., Huang P.. Biodegradable Titanium Nitride MXene Quantum Dots for Cancer Phototheranostics in NIR-I/II Biowindows. Chem. Eng. J. 2020;400:126009. doi: 10.1016/j.cej.2020.126009. DOI
Han X., Huang J., Lin H., Wang Z., Li P., Chen Y.. 2D Ultrathin MXene-Based Drug-Delivery Nanoplatform for Synergistic Photothermal Ablation and Chemotherapy of Cancer. Adv. Healthc. Mater. 2018;7(9):1701394. doi: 10.1002/adhm.201701394. PubMed DOI
Valencia C., Valencia C. H., Zuluaga F., Valencia M. E., Mina J. H., Grande-Tovar C. D.. Synthesis and Application of Scaffolds of Chitosan-Graphene Oxide by the Freeze-Drying Method for Tissue Regeneration. Molecules. 2018;23(10):2651. doi: 10.3390/molecules23102651. PubMed DOI PMC
Silva M., Pinho I. S., Covas J. A., Alves N. M., Paiva M. C.. 3D Printing of Graphene-Based Polymeric Nanocomposites for Biomedical Applications. Funct. Compos. Mater. 2021;2(1):8. doi: 10.1186/s42252-021-00020-6. DOI
Zotev P. G., Wang Y., Andres-Penares D., Severs-Millard T., Randerson S., Hu X., Sortino L., Louca C., Brotons-Gisbert M., Huq T., Vezzoli S., Sapienza R., Krauss T. F., Gerardot B. D., Tartakovskii A. I.. Van Der Waals Materials for Applications in Nanophotonics. Laser Photonics Rev. 2023;17(8):2200957. doi: 10.1002/lpor.202200957. DOI
Jobayr M. R., Salman E. M. T.. Investigation of the Thermoelectric Properties of One-Layer Transition Metal Dichalcogenides. Chin. J. Phys. 2021;74:270–278. doi: 10.1016/j.cjph.2021.07.041. DOI
Lee W. Y., Kang M. S., Choi J. W., Kim S. H., Park N. W., Kim G. S., Kim Y. H., Lee S. K.. Alternatingly Stacked Low- and High-Resistance PtSe2/PtSe2 Homostructures Boost Thermoelectric Power Factors. Adv. Electron. Mater. 2023;9(8):2300170. doi: 10.1002/aelm.202300170. DOI
Qin D., Yan P., Ding G., Ge X., Song H., Gao G.. Monolayer PdSe2: A Promising Two-Dimensional Thermoelectric Material. Sci. Rep. 2018;8(1):2764. doi: 10.1038/s41598-018-20918-9. PubMed DOI PMC
Zhang J., Liu H. J., Cheng L., Wei J., Liang J. H., Fan D. D., Shi J., Tang X. F., Zhang Q. J.. Phosphorene Nanoribbon as a Promising Candidate for Thermoelectric Applications. Sci. Rep. 2014;4(1):6452. doi: 10.1038/srep06452. PubMed DOI PMC
Ghosh K., Singisetti U.. Thermoelectric Transport Coefficients in Mono-Layer MoS2 and WSe2: Role of Substrate, Interface Phonons, Plasmon, and Dynamic Screening. J. Appl. Phys. 2015;118(13):135711. doi: 10.1063/1.4932140. DOI
Tarachand, Okram G. S., De B. K., Dam S., Hussain S., Sathe V., Deshpande U., Lakhani A., Kuo Y. K.. Enhanced Thermoelectric Performance of Novel Reaction Condition-Induced Bi2S3-Bi Nanocomposites. ACS Appl. Mater. Interfaces. 2020;12(33):37248–37257. doi: 10.1021/acsami.0c10774. PubMed DOI
Zhang Y. X., Zhu Y. K., Song D. S., Feng J., Ge Z. H.. Excellent Thermoelectric Performance Achieved in Bi2Te3/Bi2S3@Bi Nanocomposites. Chem. Commun. 2021;57(20):2555–2558. doi: 10.1039/D1CC00119A. PubMed DOI
Zhou Y., Li N., Xin Y., Cao X., Ji S., Jin P.. Cs x WO 3 Nanoparticle-Based Organic Polymer Transparent Foils: Low Haze, High near Infrared-Shielding Ability and Excellent Photochromic Stability. J. Mater. Chem. C. 2017;5(25):6251–6258. doi: 10.1039/C7TC01616F. DOI
Park Y., Kang H., Jeong W., Son H., Ha D.-H.. Electrophoretic Deposition of Aged and Charge Controlled Colloidal Copper Sulfide Nanoparticles. Nanomaterials. 2021;11(1):133. doi: 10.3390/nano11010133. PubMed DOI PMC
Sansoni S., Anoè F. M., Meneghetti M.. Simple and Sustainable Synthesis of Perovskite-Based Optoelectronic Material: CsPbBr3 Nanocrystals via Laser Ablation in Alcohol. Nanoscale Adv. 2022;4(23):5009–5014. doi: 10.1039/D2NA00596D. PubMed DOI PMC
Ren X., Zhang F., Zhang X.. Synthesis of Black Phosphorus Quantum Dots with High Quantum Yield by Pulsed Laser Ablation for Cell Bioimaging. Chem.–Asian J. 2018;13(14):1842–1846. doi: 10.1002/asia.201800482. PubMed DOI
Zhao M., Wu J., Wei Y., Chen J.. Preparation of Antimonene by Laser Irradiation in Different Solvents for Optical Limiting. Opt. Mater. 2020;109:110132. doi: 10.1016/j.optmat.2020.110132. DOI
Molle A., Yuhara J., Yamada-Takamura Y., Sofer Z.. Synthesis of Xenes: Physical and Chemical Methods. Chem. Soc. Rev. 2025;54(4):1845–1869. doi: 10.1039/D4CS00999A. PubMed DOI PMC
Xenes: 2D Synthetic Materials beyond Graphene; Molle, A. ; Grazianetti, C. , Eds.; Woodhead Publishing series in Electronic and Optical Materials; Woodhead Publishing: Cambridge, MA, 2022.
Bulmahn J. C., Tikhonowski G., Popov A. A., Kuzmin A., Klimentov S. M., Kabashin A. V., Prasad P. N.. Laser-Ablative Synthesis of Stable Aqueous Solutions of Elemental Bismuth Nanoparticles for Multimodal Theranostic Applications. Nanomaterials. 2020;10(8):1463. doi: 10.3390/nano10081463. PubMed DOI PMC
Hahn A.. Influences on Nanoparticle Production during Pulsed Laser Ablation. J. Laser MicroNanoengineering. 2008;3(2):73–77. doi: 10.2961/jlmn.2008.02.0003. DOI
Plimpton S.. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995;117(1):1–19. doi: 10.1006/jcph.1995.1039. DOI
Evans D. J., Holian B. L.. The Nose–Hoover Thermostat. J. Chem. Phys. 1985;83(8):4069–4074. doi: 10.1063/1.449071. DOI
Kresse G., Joubert D.. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B. 1999;59(3):1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Perdew J. P., Burke K., Ernzerhof M.. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77(18):3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Blöchl P. E.. Projector Augmented-Wave Method. Phys. Rev. B. 1994;50(24):17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Grimme S., Antony J., Ehrlich S., Krieg H.. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010;132(15):154104. doi: 10.1063/1.3382344. PubMed DOI