Tunable Nanostructuring for van der Waals Materials

. 2025 Jul 01 ; 19 (25) : 22820-22836. [epub] 20250616

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40522692

van der Waals (vdW) materials are becoming increasingly popular in scientific and industrial applications because of their unique mixture of record electronic, optical, and mechanical properties. However, nanostructuring of vdW materials is still in its infancy and strongly depends on the specific vdW crystal. As a result, the universal self-assembled technology of vdW materials nanostructuring opens vast technological prospects. This work demonstrates an express and universal synthesis method of vdW nanoparticles with well-defined geometry using femtosecond laser ablation and fragmentation. The disarming simplicity of the technique allows us to create nanoparticles from over 50 vdW precursor materials, covering transition metal chalcogenides, MXenes, and other vdW materials. Obtained nanoparticles manifest perfectly defined crystalline structures and diverse shapes, from nanospheres to nanocubes and nanotetrahedrons. Thus, our approach illustrates a generalizable route to vdW nanostructuring with broad tunability in size, shape, and material composition, adaptable to specific application requirements.

Zobrazit více v PubMed

Wang Q. H., Kalantar-Zadeh K., Kis A., Coleman J. N., Strano M. S.. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012;7(11):699–712. doi: 10.1038/nnano.2012.193. PubMed DOI

Mueller T., Malic E.. Exciton Physics and Device Application of Two-Dimensional Transition Metal Dichalcogenide Semiconductors. Npj 2D Mater. Appl. 2018;2(1):1–12. doi: 10.1038/s41699-018-0074-2. DOI

Park H., Lee M., Wang X., Ali N., Watanabe K., Taniguchi T., Hwang E., Yoo W. J.. Anisotropic Charge Transport at the Metallic Edge Contact of ReS2 Field Effect Transistors. Commun. Mater. 2024;5(1):1–7. doi: 10.1038/s43246-024-00526-z. DOI

Liang S., Cheng B., Cui X., Miao F.. Van Der Waals Heterostructures for High-Performance Device Applications: Challenges and Opportunities. Adv. Mater. 2020;32(27):1903800. doi: 10.1002/adma.201903800. PubMed DOI

Burch K. S., Mandrus D., Park J.-G.. Magnetism in Two-Dimensional van Der Waals Materials. Nature. 2018;563(7729):47–52. doi: 10.1038/s41586-018-0631-z. PubMed DOI

Wang Q. H., Bedoya-Pinto A., Blei M., Dismukes A. H., Hamo A., Jenkins S., Koperski M., Liu Y., Sun Q.-C., Telford E. J., Kim H. H., Augustin M., Vool U., Yin J.-X., Li L. H., Falin A., Dean C. R., Casanova F., Evans R. F. L., Chshiev M., Mishchenko A., Petrovic C., He R., Zhao L., Tsen A. W., Gerardot B. D., Brotons-Gisbert M., Guguchia Z., Roy X., Tongay S., Wang Z., Hasan M. Z., Wrachtrup J., Yacoby A., Fert A., Parkin S., Novoselov K. S., Dai P., Balicas L., Santos E. J. G.. The Magnetic Genome of Two-Dimensional van Der Waals Materials. ACS Nano. 2022;16(5):6960–7079. doi: 10.1021/acsnano.1c09150. PubMed DOI PMC

Gish J. T., Lebedev D., Song T. W., Sangwan V. K., Hersam M. C.. Van Der Waals Opto-Spintronics. Nat. Electron. 2024:1–12. doi: 10.1038/s41928-024-01167-3. DOI

Geim A. K., Grigorieva I. V.. Van Der Waals Heterostructures. Nature. 2013;499(7459):419–425. doi: 10.1038/nature12385. PubMed DOI

Novoselov K. S., Mishchenko A., Carvalho A., Castro Neto A. H.. 2D Materials and van Der Waals Heterostructures. Science. 2016;353(6298):aac9439. doi: 10.1126/science.aac9439. PubMed DOI

Fu J.-H., Lu A.-Y., Madden N. J., Wu C. C., Chen Y.-C., Chiu M.-H., Hattar K., Krogstad J. A., Chou S. S., Li L.-J., Kong J., Tung V.. Additive Manufacturing Assisted van Der Waals Integration of 3D/3D Hierarchically Functional Nanostructures. Commun. Mater. 2020;1(1):1–10. doi: 10.1038/s43246-020-0041-2. DOI

Hu D., Yang X., Li C., Liu R., Yao Z., Hu H., Corder S. N. G., Chen J., Sun Z., Liu M., Dai Q.. Probing Optical Anisotropy of Nanometer-Thin van Der Waals Microcrystals by near-Field Imaging. Nat. Commun. 2017;8(1):1471. doi: 10.1038/s41467-017-01580-7. PubMed DOI PMC

Ermolaev G. A., Grudinin D. V., Stebunov Y. V., Voronin K. V., Kravets V. G., Duan J., Mazitov A. B., Tselikov G. I., Bylinkin A., Yakubovsky D. I., Novikov S. M., Baranov D. G., Nikitin A. Y., Kruglov I. A., Shegai T., Alonso-González P., Grigorenko A. N., Arsenin A. V., Novoselov K. S., Volkov V. S.. Giant Optical Anisotropy in Transition Metal Dichalcogenides for Next-Generation Photonics. Nat. Commun. 2021;12(1):854. doi: 10.1038/s41467-021-21139-x. PubMed DOI PMC

Mooshammer F., Chae S., Zhang S., Shao Y., Qiu S., Rajendran A., Sternbach A. J., Rizzo D. J., Zhu X., Schuck P. J., Hone J. C., Basov D. N.. In-Plane Anisotropy in Biaxial ReS2 Crystals Probed by Nano-Optical Imaging of Waveguide Modes. ACS Photonics. 2022;9(2):443–451. doi: 10.1021/acsphotonics.1c01841. DOI

Vyshnevyy A. A., Ermolaev G. A., Grudinin D. V., Voronin K. V., Kharichkin I., Mazitov A., Kruglov I. A., Yakubovsky D. I., Mishra P., Kirtaev R. V., Arsenin A. V., Novoselov K. S., Martin-Moreno L., Volkov V. S.. Van Der Waals Materials for Overcoming Fundamental Limitations in Photonic Integrated Circuitry. Nano Lett. 2023;23(17):8057–8064. doi: 10.1021/acs.nanolett.3c02051. PubMed DOI

Meng Y., Feng J., Han S., Xu Z., Mao W., Zhang T., Kim J. S., Roh I., Zhao Y., Kim D.-H., Yang Y., Lee J.-W., Yang L., Qiu C.-W., Bae S.-H.. Photonic van Der Waals Integration from 2D Materials to 3D Nanomembranes. Nat. Rev. Mater. 2023;8(8):498–517. doi: 10.1038/s41578-023-00558-w. DOI

Verre R., Baranov D. G., Munkhbat B., Cuadra J., Käll M., Shegai T.. Transition Metal Dichalcogenide Nanodisks as High-Index Dielectric Mie Nanoresonators. Nat. Nanotechnol. 2019;14(7):679–683. doi: 10.1038/s41565-019-0442-x. PubMed DOI

Flöry N., Ma P., Salamin Y., Emboras A., Taniguchi T., Watanabe K., Leuthold J., Novotny L.. Waveguide-Integrated van Der Waals Heterostructure Photodetector at Telecom Wavelengths with High Speed and High Responsivity. Nat. Nanotechnol. 2020;15(2):118–124. doi: 10.1038/s41565-019-0602-z. PubMed DOI PMC

Ling H., Khurgin J. B., Davoyan A. R.. Atomic-Void van Der Waals Channel Waveguides. Nano Lett. 2022;22(15):6254–6261. doi: 10.1021/acs.nanolett.2c01819. PubMed DOI

Bandurin D. A., Mönch E., Kapralov K., Phinney I. Y., Lindner K., Liu S., Edgar J. H., Dmitriev I. A., Jarillo-Herrero P., Svintsov D., Ganichev S. D.. Cyclotron Resonance Overtones and Near-Field Magnetoabsorption via Terahertz Bernstein Modes in Graphene. Nat. Phys. 2022;18(4):462–467. doi: 10.1038/s41567-021-01494-8. DOI

Anasori B., Lukatskaya M. R., Gogotsi Y.. 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat. Rev. Mater. 2017;2(2):1–17. doi: 10.1038/natrevmats.2016.98. DOI

Chaves A., Azadani J. G., Alsalman H., da Costa D. R., Frisenda R., Chaves A. J., Song S. H., Kim Y. D., He D., Zhou J., Castellanos-Gomez A., Peeters F. M., Liu Z., Hinkle C. L., Oh S.-H., Ye P. D., Koester S. J., Lee Y. H., Avouris P., Wang X., Low T.. Bandgap Engineering of Two-Dimensional Semiconductor Materials. Npj 2D Mater. Appl. 2020;4(1):1–21. doi: 10.1038/s41699-020-00162-4. DOI

Dean C. R., Young A. F., Meric I., Lee C., Wang L., Sorgenfrei S., Watanabe K., Taniguchi T., Kim P., Shepard K. L., Hone J.. Boron Nitride Substrates for High-Quality Graphene Electronics. Nat. Nanotechnol. 2010;5(10):722–726. doi: 10.1038/nnano.2010.172. PubMed DOI

Song O., Rhee D., Kim J., Jeon Y., Mazánek V., Söll A., Kwon Y. A., Cho J. H., Kim Y.-H., Sofer Z., Kang J.. All Inkjet-Printed Electronics Based on Electrochemically Exfoliated Two-Dimensional Metal, Semiconductor, and Dielectric. Npj 2D Mater. Appl. 2022;6(1):1–12. doi: 10.1038/s41699-022-00337-1. DOI

Shao Y., Wei L., Wu X., Jiang C., Yao Y., Peng B., Chen H., Huangfu J., Ying Y., Zhang C. J., Ping J.. Room-Temperature High-Precision Printing of Flexible Wireless Electronics Based on MXene Inks. Nat. Commun. 2022;13(1):3223. doi: 10.1038/s41467-022-30648-2. PubMed DOI PMC

Sun L., Yuan G., Gao L., Yang J., Chhowalla M., Gharahcheshmeh M. H., Gleason K. K., Choi Y. S., Hong B. H., Liu Z.. Chemical Vapour Deposition. Nat. Rev. Methods Primer. 2021;1(1):1–20. doi: 10.1038/s43586-020-00005-y. DOI

Kabashin A. V., Delaporte Ph., Pereira A., Grojo D., Torres R., Sarnet Th., Sentis M.. Nanofabrication with Pulsed Lasers. Nanoscale Res. Lett. 2010;5(3):454–463. doi: 10.1007/s11671-010-9543-z. PubMed DOI PMC

Castellanos-Gomez A., Barkelid M., Goossens A. M., Calado V. E., van der Zant H. S. J., Steele G. A.. Laser-Thinning of MoS 2: On Demand Generation of a Single-Layer Semiconductor. Nano Lett. 2012;12(6):3187–3192. doi: 10.1021/nl301164v. PubMed DOI

Mupparapu R., Steinert M., George A., Tang Z., Turchanin A., Pertsch T., Staude I.. Facile Resist-Free Nanopatterning of Monolayers of MoS 2 by Focused Ion-Beam Milling. Adv. Mater. Interfaces. 2020;7(19):2000858. doi: 10.1002/admi.202000858. DOI

Munkhbat B., Yankovich A. B., Baranov D. G., Verre R., Olsson E., Shegai T. O.. Transition Metal Dichalcogenide Metamaterials with Atomic Precision. Nat. Commun. 2020;11(1):4604. doi: 10.1038/s41467-020-18428-2. PubMed DOI PMC

Kabashin A. V., Meunier M.. Synthesis of Colloidal Nanoparticles during Femtosecond Laser Ablation of Gold in Water. J. Appl. Phys. 2003;94(12):7941–7943. doi: 10.1063/1.1626793. DOI

Belyaev I. B., Zelepukin I. V., Kotelnikova P. A., Tikhonowski G. V., Popov A. A., Kapitannikova A. Yu., Barman J., Kopylov A. N., Bratashov D. N., Prikhozhdenko E. S., Kabashin A. V., Deyev S. M., Zvyagin A. V.. Laser-Synthesized Germanium Nanoparticles as Biodegradable Material for Near-Infrared Photoacoustic Imaging and Cancer Phototherapy. Adv. Sci. 2024;11(20):2307060. doi: 10.1002/advs.202307060. PubMed DOI PMC

Semaltianos N. G., Logothetidis S., Perrie W., Romani S., Potter R. J., Sharp M., French P., Dearden G., Watkins K. G.. II–VI Semiconductor Nanoparticles Synthesized by Laser Ablation. Appl. Phys. A: Mater. Sci. Process. 2009;94(3):641–647. doi: 10.1007/s00339-008-4854-y. DOI

Sajti C. L., Sattari R., Chichkov B. N., Barcikowski S.. Gram Scale Synthesis of Pure Ceramic Nanoparticles by Laser Ablation in Liquid. J. Phys. Chem. C. 2010;114(6):2421–2427. doi: 10.1021/jp906960g. DOI

Nolte S., Momma C., Jacobs H., Tünnermann A., Chichkov B. N., Wellegehausen B., Welling H.. Ablation of Metals by Ultrashort Laser Pulses. J. Opt. Soc. Am. B. 1997;14(10):2716. doi: 10.1364/JOSAB.14.002716. DOI

Mafuné F., Kohno J., Takeda Y., Kondow T., Sawabe H.. Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution. J. Phys. Chem. B. 2000;104(39):9111–9117. doi: 10.1021/jp001336y. DOI

Rehbock C., Merk V., Gamrad L., Streubel R., Barcikowski S.. Size Control of Laser-Fabricated Surfactant-Free Gold Nanoparticles with Highly Diluted Electrolytes and Their Subsequent Bioconjugation. Phys. Chem. Chem. Phys. 2013;15(9):3057–3067. doi: 10.1039/C2CP42641B. PubMed DOI

Besner S., Kabashin A. V., Meunier M.. Two-Step Femtosecond Laser Ablation-Based Method for the Synthesis of Stable and Ultra-Pure Gold Nanoparticles in Water. Appl. Phys. A: Mater. Sci. Process. 2007;88(2):269–272. doi: 10.1007/s00339-007-4001-1. DOI

Zhang D., Gökce B., Barcikowski S.. Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chem. Rev. 2017;117(5):3990–4103. doi: 10.1021/acs.chemrev.6b00468. PubMed DOI

Sylvestre J.-P., Kabashin A. V., Sacher E., Meunier M., Luong J. H. T.. Stabilization and Size Control of Gold Nanoparticles during Laser Ablation in Aqueous Cyclodextrins. J. Am. Chem. Soc. 2004;126(23):7176–7177. doi: 10.1021/ja048678s. PubMed DOI

Amendola V., Meneghetti M.. Laser Ablation Synthesis in Solution and Size Manipulation of Noble Metal Nanoparticles. Phys. Chem. Chem. Phys. 2009;11(20):3805. doi: 10.1039/b900654k. PubMed DOI

Maximova K., Aristov A., Sentis M., Kabashin A. V.. Size-Controllable Synthesis of Bare Gold Nanoparticles by Femtosecond Laser Fragmentation in Water. Nanotechnology. 2015;26(6):065601. doi: 10.1088/0957-4484/26/6/065601. PubMed DOI

Sylvestre J.-P., Poulin S., Kabashin A. V., Sacher E., Meunier M., Luong J. H. T.. Surface Chemistry of Gold Nanoparticles Produced by Laser Ablation in Aqueous Media. J. Phys. Chem. B. 2004;108:16864–16869. doi: 10.1021/jp047134+. DOI

Bärsch N., Jakobi J., Weiler S., Barcikowski S.. Pure Colloidal Metal and Ceramic Nanoparticles from High-Power Picosecond Laser Ablation in Water and Acetone. Nanotechnology. 2009;20(44):445603. doi: 10.1088/0957-4484/20/44/445603. PubMed DOI

Streubel R., Barcikowski S., Gökce B.. Continuous Multigram Nanoparticle Synthesis by High-Power, High-Repetition-Rate Ultrafast Laser Ablation in Liquids. Opt. Lett. 2016;41(7):1486. doi: 10.1364/OL.41.001486. PubMed DOI

Tselikov G. I., Ermolaev G. A., Popov A. A., Tikhonowski G. V., Panova D. A., Taradin A. S., Vyshnevyy A. A., Syuy A. V., Klimentov S. M., Novikov S. M., Evlyukhin A. B., Kabashin A. V., Arsenin A. V., Novoselov K. S., Volkov V. S.. Transition Metal Dichalcogenide Nanospheres for High-Refractive-Index Nanophotonics and Biomedical Theranostics. Proc. Natl. Acad. Sci. U. S. A. 2022;119(39):e2208830119. doi: 10.1073/pnas.2208830119. PubMed DOI PMC

Kögler M., Ryabchikov Y. V., Uusitalo S., Popov A., Popov A., Tselikov G., Välimaa A., Al-Kattan A., Hiltunen J., Laitinen R., Neubauer P., Meglinski I., Kabashin A. V.. Bare Laser-synthesized Au-based Nanoparticles as Nondisturbing Surface-enhanced Raman Scattering Probes for Bacteria Identification. J. Biophotonics. 2018;11(7):e201700225. doi: 10.1002/jbio.201700225. PubMed DOI

Zelepukin I. V., Popov A. A., Shipunova V. O., Tikhonowski G. V., Mirkasymov A. B., Popova-Kuznetsova E. A., Klimentov S. M., Kabashin A. V., Deyev S. M.. Laser-Synthesized TiN Nanoparticles for Biomedical Applications: Evaluation of Safety, Biodistribution and Pharmacokinetics. Mater. Sci. Eng., C. 2021;120:111717. doi: 10.1016/j.msec.2020.111717. PubMed DOI

Zhang J., Chaker M., Ma D.. Pulsed Laser Ablation Based Synthesis of Colloidal Metal Nanoparticles for Catalytic Applications. J. Colloid Interface Sci. 2017;489:138–149. doi: 10.1016/j.jcis.2016.07.050. PubMed DOI

Farooq S., Vital C. V. P., Tikhonowski G., Popov A. A., Klimentov S. M., Malagon A.G. L., De Araujo R. E., Kabashin A. V., Rativa D.. Thermo-Optical Performance of Bare Laser-Synthesized TiN Nanofluids for Direct Absorption Solar Collector Applications. Sol. Energy Mater. Sol. Cells. 2023;252:112203. doi: 10.1016/j.solmat.2023.112203. DOI

Popov A. A., Tselikov G., Dumas N., Berard C., Metwally K., Jones N., Al-Kattan A., Larrat B., Braguer D., Mensah S., Da Silva A., Estève M.-A., Kabashin A. V.. Laser- Synthesized TiN Nanoparticles as Promising Plasmonic Alternative for Biomedical Applications. Sci. Rep. 2019;9(1):1194. doi: 10.1038/s41598-018-37519-1. PubMed DOI PMC

Kabashin A. V., Meunier M., Kingston C., Luong J. H. T.. Fabrication and Characterization of Gold Nanoparticles by Femtosecond Laser Ablation in an Aqueous Solution of Cyclodextrins. J. Phys. Chem. B. 2003;107(19):4527–4531. doi: 10.1021/jp034345q. DOI

Intartaglia R., Bagga K., Scotto M., Diaspro A., Brandi F.. Luminescent Silicon Nanoparticles Prepared by Ultra Short Pulsed Laser Ablation in Liquid for Imaging Applications. Opt. Mater. Express. 2012;2(5):510. doi: 10.1364/OME.2.000510. DOI

Ibrahimkutty S., Wagener P., Menzel A., Plech A., Barcikowski S.. Nanoparticle Formation in a Cavitation Bubble after Pulsed Laser Ablation in Liquid Studied with High Time Resolution Small Angle X-Ray Scattering. Appl. Phys. Lett. 2012;101(10):103104. doi: 10.1063/1.4750250. DOI

Al-Kattan A., Tselikov G., Metwally K., Popov A. A., Mensah S., Kabashin A. V.. Laser Ablation-Assisted Synthesis of Plasmonic Si@Au Core-Satellite Nanocomposites for Biomedical Applications. Nanomaterials. 2021;11(3):592. doi: 10.3390/nano11030592. PubMed DOI PMC

Jung H. J., Choi M. Y.. Specific Solvent Produces Specific Phase Ni Nanoparticles: A Pulsed Laser Ablation in Solvents. J. Phys. Chem. C. 2014;118(26):14647–14654. doi: 10.1021/jp503009a. DOI

Blandin P., Maximova K. A., Gongalsky M. B., Sanchez-Royo J. F., Chirvony V. S., Sentis M., Timoshenko V. Yu., Kabashin A. V.. Femtosecond Laser Fragmentation from Water-Dispersed Microcolloids: Toward Fast Controllable Growth of Ultrapure Si-Based Nanomaterials for Biological Applications. J. Mater. Chem. B. 2013;1(19):2489. doi: 10.1039/c3tb20285b. PubMed DOI

Coviello V., Forrer D., Amendola V.. Recent Developments in Plasmonic Alloy Nanoparticles: Synthesis, Modelling, Properties and Applications. ChemPhysChem. 2022;23(21):e202200136. doi: 10.1002/cphc.202200136. PubMed DOI PMC

Shih C.-Y., Streubel R., Heberle J., Letzel A., Shugaev M. V., Wu C., Schmidt M., Gökce B., Barcikowski S., Zhigilei L. V.. Two Mechanisms of Nanoparticle Generation in Picosecond Laser Ablation in Liquids: The Origin of the Bimodal Size Distribution. Nanoscale. 2018;10(15):6900–6910. doi: 10.1039/C7NR08614H. PubMed DOI PMC

Chichkov B.. Laser Printing: Trends and Perspectives. Appl. Phys. A: Mater. Sci. Process. 2022;128(11):1015. doi: 10.1007/s00339-022-06158-9. PubMed DOI PMC

Novikov I. S., Gubaev K., Podryabinkin E. V., Shapeev A. V.. The MLIP Package: Moment Tensor Potentials with MPI and Active Learning. Mach. Learn. Sci. Technol. 2021;2(2):025002. doi: 10.1088/2632-2153/abc9fe. DOI

Shapeev A. V.. Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials. Multiscale Model. Simul. 2016;14(3):1153–1173. doi: 10.1137/15M1054183. DOI

Popov A., Tikhonowski G., Shakhov P., Popova-Kuznetsova E., Tselikov G., Romanov R., Markeev A., Klimentov S., Kabashin A.. Synthesis of Titanium Nitride Nanoparticles by Pulsed Laser Ablation in Different Aqueous and Organic Solutions. Nanomaterials. 2022;12(10):1672. doi: 10.3390/nano12101672. PubMed DOI PMC

Amendola V., Meneghetti M.. What Controls the Composition and the Structure of Nanomaterials Generated by Laser Ablation in Liquid Solution? Phys. Chem. Chem. Phys. 2013;15(9):3027–3046. doi: 10.1039/C2CP42895D. PubMed DOI

Chernikov A. S., Tselikov G. I., Gubin M. Yu., Shesterikov A. V., Khorkov K. S., Syuy A. V., Ermolaev G. A., Kazantsev I. S., Romanov R. I., Markeev A. M., Popov A. A., Tikhonowski G. V., Kapitanova O. O., Kochuev D. A., Leksin A. Yu., Tselikov D. I., Arsenin A. V., Kabashin A. V., Volkov V. S., Prokhorov A. V.. Tunable Optical Properties of Transition Metal Dichalcogenide Nanoparticles Synthesized by Femtosecond Laser Ablation and Fragmentation. J. Mater. Chem. C. 2023;11(10):3493–3503. doi: 10.1039/D2TC05235K. DOI

Fromme T., Reichenberger S., Tibbetts K. M., Barcikowski S.. Laser Synthesis of Nanoparticles in Organic Solvents–Products, Reactions, and Perspectives. Beilstein J. Nanotechnol. 2024;15:638–663. doi: 10.3762/bjnano.15.54. PubMed DOI PMC

Jendrzej S., Gökce B., Epple M., Barcikowski S.. How Size Determines the Value of Gold: Economic Aspects of Wet Chemical and Laser-Based Metal Colloid Synthesis. ChemPhysChem. 2017;18(9):1012–1019. doi: 10.1002/cphc.201601139. PubMed DOI

Monga D., Sharma S., Shetti N. P., Basu S., Reddy K. R., Aminabhavi T. M.. Advances in Transition Metal Dichalcogenide-Based Two-Dimensional Nanomaterials. Mater. Today Chem. 2021;19:100399. doi: 10.1016/j.mtchem.2020.100399. DOI

Sharma S., Basu S.. Highly Reusable Visible Light Active Hierarchical Porous WO3/SiO2Monolith in Centimeter Length Scale for Enhanced Photocatalytic Degradation of Toxic Pollutants. Sep. Purif. Technol. 2020;231:115916. doi: 10.1016/j.seppur.2019.115916. DOI

Fujishima A., Honda K.. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 1972;238(5358):37–38. doi: 10.1038/238037a0. PubMed DOI

Mehta A., Mishra A., Basu S., Shetti N. P., Reddy K. R., Saleh T. A., Aminabhavi T. M.. Band Gap Tuning and Surface Modification of Carbon Dots for Sustainable Environmental Remediation and Photocatalytic Hydrogen Production–A Review. J. Environ. Manage. 2019;250:109486. doi: 10.1016/j.jenvman.2019.109486. PubMed DOI

Monga D., Ilager D., Shetti N. P., Basu S., Aminabhavi T. M.. 2D/2d Heterojunction of MoS2/g-C3N4 Nanoflowers for Enhanced Visible-Light-Driven Photocatalytic and Electrochemical Degradation of Organic Pollutants. J. Environ. Manage. 2020;274:111208. doi: 10.1016/j.jenvman.2020.111208. PubMed DOI

Ermolaev G. A., Stebunov Y. V., Vyshnevyy A. A., Tatarkin D. E., Yakubovsky D. I., Novikov S. M., Baranov D. G., Shegai T., Nikitin A. Y., Arsenin A. V., Volkov V. S.. Broadband Optical Properties of Monolayer and Bulk MoS2. Npj 2D Mater. Appl. 2020;4(1):21. doi: 10.1038/s41699-020-0155-x. DOI

Li Y., Wang H., Xie L., Liang Y., Hong G., Dai H.. MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2011;133(19):7296–7299. doi: 10.1021/ja201269b. PubMed DOI

Ismail, A. F. ; Goh, P. S. ; Hasbullah, H. ; Aziz, F. . Advanced Materials for Wastewater Treatment and Desalination: Fundamentals to Applications; CRC Press: Boca Raton, 2022. 10.1201/9781003167327. DOI

Kalantar-Zadeh K., Ou J. Z.. Biosensors Based on Two-Dimensional MoS2. ACS Sens. 2016;1(1):5–16. doi: 10.1021/acssensors.5b00142. DOI

Kim H. J., Lee J. H.. Highly Sensitive and Selective Gas Sensors Using P-Type Oxide Semiconductors: Overview. Sens. Actuators B Chem. 2014;192:607–627. doi: 10.1016/j.snb.2013.11.005. DOI

Joshi N., Hayasaka T., Liu Y., Liu H., Oliveira O. N., Lin L.. A Review on Chemiresistive Room Temperature Gas Sensors Based on Metal Oxide Nanostructures, Graphene and 2D Transition Metal Dichalcogenides. Microchim. Acta. 2018;185(4):213. doi: 10.1007/s00604-018-2750-5. PubMed DOI

Presutti D., Agarwal T., Zarepour A., Celikkin N., Hooshmand S., Nayak C., Ghomi M., Zarrabi A., Costantini M., Behera B., Maiti T. K.. Transition Metal Dichalcogenides (TMDC)-Based Nanozymes for Biosensing and Therapeutic Applications. Materials. 2022;15(1):337. doi: 10.3390/ma15010337. PubMed DOI PMC

Goswami P., Gupta G.. Recent Progress of Flexible NO2 and NH3 Gas Sensors Based on Transition Metal Dichalcogenides for Room Temperature Sensing. Mater. Today Chem. 2022;23:100726. doi: 10.1016/j.mtchem.2021.100726. DOI

Liu X., Shuai H. L., Liu Y. J., Huang K. J.. An Electrochemical Biosensor for DNA Detection Based on Tungsten Disulfide/Multi-Walled Carbon Nanotube Composites and Hybridization Chain Reaction Amplification. Sens. Actuators B Chem. 2016;235:603–613. doi: 10.1016/j.snb.2016.05.132. DOI

Huang K. J., Liu Y. J., Cao J. T., Wang H. B.. An Aptamer Electrochemical Assay for Sensitive Detection of Immunoglobulin e Based on Tungsten Disulfide-Graphene Composites and Gold Nanoparticles. RSC Adv. 2014;4(69):36742–36748. doi: 10.1039/C4RA06133K. DOI

Huang K. J., Shuai H. L., Zhang J. Z.. Ultrasensitive Sensing Platform for Platelet-Derived Growth Factor BB Detection Based on Layered Molybdenum Selenide-Graphene Composites and Exonuclease III Assisted Signal Amplification. Biosens. Bioelectron. 2016;77:69–75. doi: 10.1016/j.bios.2015.09.026. PubMed DOI

Jariwala D., Howell S. L., Chen K. S., Kang J., Sangwan V. K., Filippone S. A., Turrisi R., Marks T. J., Lauhon L. J., Hersam M. C.. Hybrid, Gate-Tunable, van Der Waals p-n Heterojunctions from Pentacene and MoS2. Nano Lett. 2016;16(1):497–503. doi: 10.1021/acs.nanolett.5b04141. PubMed DOI

Jiang H., Ren D., Wang H., Hu Y., Guo S., Yuan H., Hu P., Zhang L., Li C.. 2D Monolayer MoS2-Carbon Interoverlapped Superstructure: Engineering Ideal Atomic Interface for Lithium Ion Storage. Adv. Mater. 2015;27(24):3687–3695. doi: 10.1002/adma.201501059. PubMed DOI

Zhao C., Kong J., Yao X., Tang X., Dong Y., Phua S. L., Lu X.. Thin MoS2 Nanoflakes Encapsulated in Carbon Nanofibers as High-Performance Anodes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces. 2014;6(9):6392–6398. doi: 10.1021/am4058088. PubMed DOI

Kumar N., Mishra D., Kumar A., Dash B., Mishra R. K., Song J., Jin S. H.. Enhanced Electrochemical Performance of Supercapacitors via Two-Dimensional Indium Sulfide Heterostructure on Carbon Nanotubes. Appl. Sci. Switz. 2023;13(6):3678. doi: 10.3390/app13063678. DOI

Park S. K., Yu S. H., Woo S., Quan B., Lee D. C., Kim M. K., Sung Y. E., Piao Y.. A Simple L-Cysteine-Assisted Method for the Growth of MoS2 Nanosheets on Carbon Nanotubes for High-Performance Lithium Ion Batteries. J. Chem. Soc., Dalton Trans. 2013;42(7):2399–2405. doi: 10.1039/C2DT32137H. PubMed DOI

Wang Z., Wu H., Burr G. W., Hwang C. S., Wang K. L., Xia Q., Yang J. J.. Resistive Switching Materials for Information Processing. Nat. Rev. Mater. 2020;5(3):173–195. doi: 10.1038/s41578-019-0159-3. DOI

Tang J., Yuan F., Shen X., Wang Z., Rao M., He Y., Sun Y., Li X., Zhang W., Li Y., Gao B., Qian H., Bi G., Song S., Yang J. J., Wu H.. Bridging Biological and Artificial Neural Networks with Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges. Adv. Mater. 2019;31(49):1902761. doi: 10.1002/adma.201902761. PubMed DOI

Song M. K., Kang J. H., Zhang X., Ji W., Ascoli A., Messaris I., Demirkol A. S., Dong B., Aggarwal S., Wan W., Hong S. M., Cardwell S. G., Boybat I., Seo J. S., Lee J. S., Lanza M., Yeon H., Onen M., Li J., Yildiz B., del Alamo J. A., Kim S., Choi S., Milano G., Ricciardi C., Alff L., Chai Y., Wang Z., Bhaskaran H., Hersam M. C., Strukov D., Wong H. S. P., Valov I., Gao B., Wu H., Tetzlaff R., Sebastian A., Lu W., Chua L., Yang J. J., Kim J.. Recent Advances and Future Prospects for Memristive Materials, Devices, and Systems. ACS Nano. 2023;17(13):11994–12039. doi: 10.1021/acsnano.3c03505. PubMed DOI

Liu P., Luo H., Yin X., Wang X., He X., Zhu J., Xue H., Mao W., Pu Y.. A Memristor Based on Two-Dimensional MoSe2/MoS2 heterojunction for Synaptic Device Application. Appl. Phys. Lett. 2022;121(23):233501. doi: 10.1063/5.0127880. DOI

Zhang X., Qiao H., Nian X., Huang Y., Pang X.. Resistive Switching Memory Behaviours of MoSe2 Nano-Islands Array. J. Mater. Sci. Mater. Electron. 2016;27(7):7609–7613. doi: 10.1007/s10854-016-4744-6. DOI

Yan Y., Sun B., Ma D.. Resistive Switching Memory Characteristics of Single MoSe2 Nanorods. Chem. Phys. Lett. 2015;638:103–107. doi: 10.1016/j.cplett.2015.08.035. DOI

Li P., Sun B., Zhang X., Zhou G., Xia Y., Gan L., Zhang Y., Zhao Y.. Effect of Temperature on the Magnetism and Memristive Memory Behavior of MoSe2 Nanosheets. Mater. Lett. 2017;202:13–16. doi: 10.1016/j.matlet.2017.05.087. DOI

Jamilpanah L., Khademi I., Shoa e Gharehbagh J., Aziz Mohseni S., Mohseni S. M.. Promising Memristive Behavior in MoS2–MoO2–MoO3 Scalable Composite Thin Films. J. Alloys Compd. 2020;835:155291. doi: 10.1016/j.jallcom.2020.155291. DOI

Kaur R., Singh K. P., Tripathi S. K.. Electrical, Linear and Non-Linear Optical Properties of MoSe2/PVA Nanocomposites as Charge Trapping Elements for Memory Device Applications. J. Alloys Compd. 2022;905:164103. doi: 10.1016/j.jallcom.2022.164103. DOI

Kaur R., Singh K. P., Tripathi S. K.. Study of Linear and Non-Linear Optical Responses of MoSe2–PMMA Nanocomposites. J. Mater. Sci. Mater. Electron. 2020;31(22):19974–19988. doi: 10.1007/s10854-020-04520-2. DOI

Li Y., Cao J., Chen J., Xu Q., Liu X., Qiu J., Chen Y., Wang H., Wang M.. Guar Gum-WTe2 Nanohybrid-Based Biomemristor Synapse With Short- and Long-Term Plasticity. IEEE Electron Device Lett. 2023;44(12):2047–2050. doi: 10.1109/LED.2023.3323980. DOI

Pereira M. E., Martins R., Fortunato E., Barquinha P., Kiazadeh A.. Recent Progress in Optoelectronic Memristors for Neuromorphic and In-Memory Computation. Neuromorphic Comput. Eng. 2023;3(2):022002. doi: 10.1088/2634-4386/acd4e2. DOI

Zhai Y., Yang X., Wang F., Li Z., Ding G., Qiu Z., Wang Y., Zhou Y., Han S. T.. Infrared-Sensitive Memory Based on Direct-Grown MoS2–Upconversion-Nanoparticle Heterostructure. Adv. Mater. 2018;30(49):e1803563. doi: 10.1002/adma.201803563. PubMed DOI

Tian Y., Zhang S., Tan W.. Improved Optical and Electrical Switching in Bi2S3 Nested Nano-Networks with Broad Trap Distribution. Appl. Nanosci. Switz. 2022;12(7):2023–2030. doi: 10.1007/s13204-022-02466-x. DOI

Chen M., Ki S. J., Liang X.. Bi2Se3-Based Memristive Devices for Neuromorphic Processing of Analogue Video Signals. ACS Appl. Electron. Mater. 2023;5(7):3830–3842. doi: 10.1021/acsaelm.3c00544. DOI

Konstantinova E. A., Minnekhanov A. A., Trusov G. V., Kytin V. G.. Titania-Based Nanoheterostructured Microspheres for Prolonged Visible-Light-Driven Photocatalysis. Nanotechnology. 2020;31(34):345207. doi: 10.1088/1361-6528/ab91f1. PubMed DOI

Xia J., Ge Y., Zhao D., Di J., Ji M., Yin S., Li H., Chen R.. Microwave-Assisted Synthesis of Few-Layered MoS2/BiOBr Hollow Microspheres with Superior Visible-Light-Response Photocatalytic Activity for Ciprofloxacin Removal. CrystEngComm. 2015;17(19):3645–3651. doi: 10.1039/C5CE00347D. DOI

Zou X., Zhang J., Zhao X., Zhang Z.. MoS2/RGO Composites for Photocatalytic Degradation of Ranitidine and Elimination of NDMA Formation Potential under Visible Light. Chem. Eng. J. 2020;383:123084. doi: 10.1016/j.cej.2019.123084. DOI

Li Q., Zhang N., Yang Y., Wang G., Ng D. H. L.. High Efficiency Photocatalysis for Pollutant Degradation with MoS 2/C3N4 Heterostructures. Langmuir. 2014;30(29):8965–8972. doi: 10.1021/la502033t. PubMed DOI

Chen H., Liu T., Su Z., Shang L., Wei G.. 2D Transition Metal Dichalcogenide Nanosheets for Photo/Thermo-Based Tumor Imaging and Therapy. Nanoscale Horiz. 2018;3(2):74–89. doi: 10.1039/C7NH00158D. PubMed DOI

Cheng L., Liu J., Gu X., Gong H., Shi X., Liu T., Wang C., Wang X., Liu G., Xing H., Bu W., Sun B., Liu Z.. PEGylated WS 2 Nanosheets as a Multifunctional Theranostic Agent for in Vivo Dual-Modal CT/Photoacoustic Imaging Guided Photothermal Therapy. Adv. Mater. 2014;26(12):1886–1893. doi: 10.1002/adma.201304497. PubMed DOI

An D., Fu J., Zhang B., Xie N., Nie G., Ågren H., Qiu M., Zhang H.. NIR-II Responsive Inorganic 2D Nanomaterials for Cancer Photothermal Therapy: Recent Advances and Future Challenges. Adv. Funct. Mater. 2021;31(32):2101625. doi: 10.1002/adfm.202101625. DOI

Xu D., Li Z., Li L., Wang J.. Insights into the Photothermal Conversion of 2D MXene Nanomaterials: Synthesis, Mechanism, and Applications. Adv. Funct. Mater. 2020;30(47):2000712. doi: 10.1002/adfm.202000712. DOI

Zhao Y., Chen B.-Q., Kankala R. K., Wang S.-B., Chen A.-Z.. Recent Advances in Combination of Copper Chalcogenide-Based Photothermal and Reactive Oxygen Species-Related Therapies. ACS Biomater. Sci. Eng. 2020;6(9):4799–4815. doi: 10.1021/acsbiomaterials.0c00830. PubMed DOI

Liu G., Zou J., Tang Q., Yang X., Zhang Y., Zhang Q., Huang W., Chen P., Shao J., Dong X.. Surface Modified Ti 3 C 2 MXene Nanosheets for Tumor Targeting Photothermal/Photodynamic/Chemo Synergistic Therapy. ACS Appl. Mater. Interfaces. 2017;9(46):40077–40086. doi: 10.1021/acsami.7b13421. PubMed DOI

Zhang H., Zeng X., Li Z.. Copper-Chalcogenide-Based Multimodal Nanotheranostics. ACS Appl. Bio Mater. 2020;3(10):6529–6537. doi: 10.1021/acsabm.0c00937. PubMed DOI

Song X., Huang Q., Yang Y., Ma L., Liu W., Ou C., Chen Q., Zhao T., Xiao Z., Wang M., Jiang Y., Yang Y., Zhang J., Nan Y., Wu W., Ai K.. Efficient Therapy of Inflammatory Bowel Disease (IBD) with Highly Specific and Durable Targeted Ta 2 C Modified with Chondroitin Sulfate (TACS) Adv. Mater. 2023;35(36):2301585. doi: 10.1002/adma.202301585. PubMed DOI

Shao J., Zhang J., Jiang C., Lin J., Huang P.. Biodegradable Titanium Nitride MXene Quantum Dots for Cancer Phototheranostics in NIR-I/II Biowindows. Chem. Eng. J. 2020;400:126009. doi: 10.1016/j.cej.2020.126009. DOI

Han X., Huang J., Lin H., Wang Z., Li P., Chen Y.. 2D Ultrathin MXene-Based Drug-Delivery Nanoplatform for Synergistic Photothermal Ablation and Chemotherapy of Cancer. Adv. Healthc. Mater. 2018;7(9):1701394. doi: 10.1002/adhm.201701394. PubMed DOI

Valencia C., Valencia C. H., Zuluaga F., Valencia M. E., Mina J. H., Grande-Tovar C. D.. Synthesis and Application of Scaffolds of Chitosan-Graphene Oxide by the Freeze-Drying Method for Tissue Regeneration. Molecules. 2018;23(10):2651. doi: 10.3390/molecules23102651. PubMed DOI PMC

Silva M., Pinho I. S., Covas J. A., Alves N. M., Paiva M. C.. 3D Printing of Graphene-Based Polymeric Nanocomposites for Biomedical Applications. Funct. Compos. Mater. 2021;2(1):8. doi: 10.1186/s42252-021-00020-6. DOI

Zotev P. G., Wang Y., Andres-Penares D., Severs-Millard T., Randerson S., Hu X., Sortino L., Louca C., Brotons-Gisbert M., Huq T., Vezzoli S., Sapienza R., Krauss T. F., Gerardot B. D., Tartakovskii A. I.. Van Der Waals Materials for Applications in Nanophotonics. Laser Photonics Rev. 2023;17(8):2200957. doi: 10.1002/lpor.202200957. DOI

Jobayr M. R., Salman E. M. T.. Investigation of the Thermoelectric Properties of One-Layer Transition Metal Dichalcogenides. Chin. J. Phys. 2021;74:270–278. doi: 10.1016/j.cjph.2021.07.041. DOI

Lee W. Y., Kang M. S., Choi J. W., Kim S. H., Park N. W., Kim G. S., Kim Y. H., Lee S. K.. Alternatingly Stacked Low- and High-Resistance PtSe2/PtSe2 Homostructures Boost Thermoelectric Power Factors. Adv. Electron. Mater. 2023;9(8):2300170. doi: 10.1002/aelm.202300170. DOI

Qin D., Yan P., Ding G., Ge X., Song H., Gao G.. Monolayer PdSe2: A Promising Two-Dimensional Thermoelectric Material. Sci. Rep. 2018;8(1):2764. doi: 10.1038/s41598-018-20918-9. PubMed DOI PMC

Zhang J., Liu H. J., Cheng L., Wei J., Liang J. H., Fan D. D., Shi J., Tang X. F., Zhang Q. J.. Phosphorene Nanoribbon as a Promising Candidate for Thermoelectric Applications. Sci. Rep. 2014;4(1):6452. doi: 10.1038/srep06452. PubMed DOI PMC

Ghosh K., Singisetti U.. Thermoelectric Transport Coefficients in Mono-Layer MoS2 and WSe2: Role of Substrate, Interface Phonons, Plasmon, and Dynamic Screening. J. Appl. Phys. 2015;118(13):135711. doi: 10.1063/1.4932140. DOI

Tarachand, Okram G. S., De B. K., Dam S., Hussain S., Sathe V., Deshpande U., Lakhani A., Kuo Y. K.. Enhanced Thermoelectric Performance of Novel Reaction Condition-Induced Bi2S3-Bi Nanocomposites. ACS Appl. Mater. Interfaces. 2020;12(33):37248–37257. doi: 10.1021/acsami.0c10774. PubMed DOI

Zhang Y. X., Zhu Y. K., Song D. S., Feng J., Ge Z. H.. Excellent Thermoelectric Performance Achieved in Bi2Te3/Bi2S3@Bi Nanocomposites. Chem. Commun. 2021;57(20):2555–2558. doi: 10.1039/D1CC00119A. PubMed DOI

Zhou Y., Li N., Xin Y., Cao X., Ji S., Jin P.. Cs x WO 3 Nanoparticle-Based Organic Polymer Transparent Foils: Low Haze, High near Infrared-Shielding Ability and Excellent Photochromic Stability. J. Mater. Chem. C. 2017;5(25):6251–6258. doi: 10.1039/C7TC01616F. DOI

Park Y., Kang H., Jeong W., Son H., Ha D.-H.. Electrophoretic Deposition of Aged and Charge Controlled Colloidal Copper Sulfide Nanoparticles. Nanomaterials. 2021;11(1):133. doi: 10.3390/nano11010133. PubMed DOI PMC

Sansoni S., Anoè F. M., Meneghetti M.. Simple and Sustainable Synthesis of Perovskite-Based Optoelectronic Material: CsPbBr3 Nanocrystals via Laser Ablation in Alcohol. Nanoscale Adv. 2022;4(23):5009–5014. doi: 10.1039/D2NA00596D. PubMed DOI PMC

Ren X., Zhang F., Zhang X.. Synthesis of Black Phosphorus Quantum Dots with High Quantum Yield by Pulsed Laser Ablation for Cell Bioimaging. Chem.–Asian J. 2018;13(14):1842–1846. doi: 10.1002/asia.201800482. PubMed DOI

Zhao M., Wu J., Wei Y., Chen J.. Preparation of Antimonene by Laser Irradiation in Different Solvents for Optical Limiting. Opt. Mater. 2020;109:110132. doi: 10.1016/j.optmat.2020.110132. DOI

Molle A., Yuhara J., Yamada-Takamura Y., Sofer Z.. Synthesis of Xenes: Physical and Chemical Methods. Chem. Soc. Rev. 2025;54(4):1845–1869. doi: 10.1039/D4CS00999A. PubMed DOI PMC

Xenes: 2D Synthetic Materials beyond Graphene; Molle, A. ; Grazianetti, C. , Eds.; Woodhead Publishing series in Electronic and Optical Materials; Woodhead Publishing: Cambridge, MA, 2022.

Bulmahn J. C., Tikhonowski G., Popov A. A., Kuzmin A., Klimentov S. M., Kabashin A. V., Prasad P. N.. Laser-Ablative Synthesis of Stable Aqueous Solutions of Elemental Bismuth Nanoparticles for Multimodal Theranostic Applications. Nanomaterials. 2020;10(8):1463. doi: 10.3390/nano10081463. PubMed DOI PMC

Hahn A.. Influences on Nanoparticle Production during Pulsed Laser Ablation. J. Laser MicroNanoengineering. 2008;3(2):73–77. doi: 10.2961/jlmn.2008.02.0003. DOI

Plimpton S.. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995;117(1):1–19. doi: 10.1006/jcph.1995.1039. DOI

Evans D. J., Holian B. L.. The Nose–Hoover Thermostat. J. Chem. Phys. 1985;83(8):4069–4074. doi: 10.1063/1.449071. DOI

Kresse G., Joubert D.. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B. 1999;59(3):1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Perdew J. P., Burke K., Ernzerhof M.. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77(18):3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Blöchl P. E.. Projector Augmented-Wave Method. Phys. Rev. B. 1994;50(24):17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI

Grimme S., Antony J., Ehrlich S., Krieg H.. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010;132(15):154104. doi: 10.1063/1.3382344. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...