Severe alpha-1 antitrypsin deficiency is associated with a higher risk of complications after first decompensation than other aetiologies of cirrhosis

. 2025 Jun ; 7 (6) : 101398. [epub] 20250320

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40535554
Odkazy

PubMed 40535554
PubMed Central PMC12174978
DOI 10.1016/j.jhepr.2025.101398
PII: S2589-5559(25)00075-8
Knihovny.cz E-zdroje

BACKGROUND & AIMS: Alpha-1 antitrypsin deficiency (AATD) causes/predisposes to advanced chronic liver disease. However, the role of the SERPINA1 Pi∗ZZ genotype in patients with decompensated cirrhosis is unclear. Thus, we evaluated the impact of the Pi∗ZZ genotype on the disease course after the first hepatic decompensation event. METHODS: We retrospectively included 59 adults with decompensated cirrhosis and severe AATD (Pi∗ZZ) from 12 European tertiary care centres. First decompensation was considered as baseline. To compare the course of AATD to other cirrhosis aetiologies, we applied propensity score matching for Child-Turcotte-Pugh (CTP) score as well as age/sex. Patients were followed until further decompensation, liver transplantation or liver-related death. RESULTS: Most patients were male (74.6%), with a mean age of 55 years. The most common type of first decompensation was ascites (n = 40; 67.8%), followed by variceal bleeding (n = 13; 22.0%) and overt hepatic encephalopathy (n = 6; 10.2%). Median CTP and MELD (model for end-stage liver disease) scores at first decompensation were 8 and 14, respectively. Median MELD scores were 16 and 20 points at listing and liver transplantation (median time on list: 2.9 [IQR 1.1-7.2] months), respectively. Patients with other aetiologies (subdistribution hazard ratio: steatotic liver disease: 0.62, 95% CI 0.44-0.88, p = 0.007; abstinent alcohol-associated liver disease: 0.50, 95% CI 0.35-0.71, p <0.001; hepatitis C virus-associated cirrhosis: 0.56, 95% CI 0.37-0.83, p = 0.004) had a significantly lower risk of further hepatic decompensation, liver transplantation, or liver-related death, compared to those with Pi∗ZZ. Exchanging further decompensation with acute-on-chronic liver failure yielded similar results. CONCLUSION: Our study defines the course of decompensated cirrhosis in patients with severe AATD (Pi∗ZZ), who are particularly prone to complications of cirrhosis and exhibit a more progressive disease course than those with cirrhosis of other aetiologies. IMPACT AND IMPLICATIONS: Alpha-1 antitrypsin deficiency is an inherited disease that affects the lung and the liver. Carrying two severely dysfunctional copies of the alpha-1 antitrypsin gene may cause advanced chronic liver disease/cirrhosis. Affected individuals with a first complication of cirrhosis are more prone to developing further liver-related events (including multiorgan dysfunction) and requiring liver transplantation (which cures the inherited liver disease) compared to patients who have similarly advanced liver disease. These findings should prompt the development of disease-modifying treatments and early listing for liver transplantation.

Coordinating Center for Alpha 1 Antitrypsin Deficiency related Liver Disease of the European Reference Network Registry Group 'Alpha1 Liver' University Hospital Aachen Aachen Germany

Department of Gastroenterology and Hepatology KU Leuven University Hospitals Health Care Provider of the European Reference Network on Rare Liver Disorders Leuven Belgium

Department of Gastroenterology and Hepatology Leiden University Medical Center Leiden The Netherlands

Department of Gastroenterology and Hepatology Medical University Graz Austria

Department of Gastroenterology Hepatology Infectious Diseases and Endocrinology Hannover Medical School Hannover Germany

Department of Hepatogastroenterology Institute for Clinical and Experimental Medicine Health Care Provider of the European Reference Network on Rare Liver Disorders Prague Czech Republic

Department of Internal Medicine 1 Klinikum Wels Grieskirchen Wels Austria

Department of Internal Medicine and Gastroenterology Klinikum Klagenfurt am Wörthersee Klagenfurt Austria

Department of Medicine 1 Gastroenterology Hepatology and Endocrinology Medical University of Innsbruck Innsbruck Austria

Division of Gastroenterology and Hepatology Department of Medicine 3 Medical University Vienna Health Care Provider of the European Reference Network on Rare Liver Disorders Vienna Austria

Liver Unit Hospital Universitari Vall d'Hebron Vall d'Hebron Institute of Research Vall d'Hebron Barcelona Hospital Campus Universitat Autonoma de Barcelona Barcelona Spain

Medical Clinic 3 Gastroenterology Metabolic Diseases and Intensive Care University Hospital RWTH Aachen Health Care Provider of the European Reference Network on Rare Liver Disorders Aachen Germany

Vienna Hepatic Hemodynamic Lab Division of Gastroenterology and Hepatology Department of Medicine 3 Medical University of Vienna Vienna Austria

Zobrazit více v PubMed

Sharp H.L., Bridges R.A., Krivit W., et al. Cirrhosis associated with alpha-1-antitrypsin deficiency: a previously unrecognized inherited disorder. J Lab Clin Med. 1969;73(6):934–939. PubMed

Eriksson S., Carlson J., Velez R. Risk of cirrhosis and primary liver cancer in alpha 1-antitrypsin deficiency. N Engl J Med. 1986;314(12):736–739. PubMed

Lomas D.A., Hurst J.R., Gooptu B. Update on alpha-1 antitrypsin deficiency: new therapies. J Hepatol. 2016;65(2):413–424. PubMed

Zoller H., Wagner S., Tilg H. Is heterozygosity for the alpha-1 antitrypsin risk allele Pi∗MZ a disease modifier or genetic risk factor? Gastroenterology. 2020;159(2):433–434. PubMed

Greene C.M., Marciniak S.J., Teckman J., et al. α1-Antitrypsin deficiency. Nat Rev Dis Primers. 2016;2 PubMed

Strnad P., McElvaney N.G., Lomas D.A. Alpha(1)-Antitrypsin deficiency. N Engl J Med. 2020;382(15):1443–1455. PubMed

Fromme M., Schneider C.V., Pereira V., et al. Hepatobiliary phenotypes of adults with alpha-1 antitrypsin deficiency. Gut. 2022;71(2):415–423. PubMed

Hamesch K., Mandorfer M., Pereira V.M., et al. Liver fibrosis and metabolic alterations in adults with alpha-1-antitrypsin deficiency caused by the Pi∗ZZ mutation. Gastroenterology. 2019;157(3):705–719.e18. PubMed

Mandorfer M., Hernández-Gea V., Reiberger T., et al. Hepatic venous pressure gradient response in non-selective beta-blocker treatment—is it worth measuring? Curr Hepatol Rep. 2019;18(2):174–186.

Schneider C.V., Hamesch K., Gross A., et al. Liver phenotypes of European adults heterozygous or homozygous for Pi∗Z variant of AAT (Pi∗MZ vs Pi∗ZZ genotype) and noncarriers. Gastroenterology. 2020;159(2):534–548.e11. PubMed

Strnad P., Buch S., Hamesch K., et al. Heterozygous carriage of the alpha1-antitrypsin Pi∗Z variant increases the risk to develop liver cirrhosis. Gut. 2019;68(6):1099–1107. PubMed

Wu T., Hagiwara M., Gnass E., et al. Liver disease progression in patients with alpha-1 antitrypsin deficiency and protease inhibitor ZZ genotype with or without lung disease. Aliment Pharmacol Ther. 2023;58(10):1075–1085. PubMed

Balcar L., Scheiner B., Urheu M., et al. Alpha-1 antitrypsin Pi∗Z allele is an independent risk factor for liver transplantation and death in patients with advanced chronic liver disease. JHEP Rep. 2022;4(11) PubMed PMC

Chen V.L., Burkholder D.A., Moran I.J., et al. Hepatic decompensation is accelerated in patients with cirrhosis and alpha-1 antitrypsin Pi∗MZ genotype. JHEP Rep. 2022;4(6) PubMed PMC

Schaefer B., Mandorfer M., Viveiros A., et al. Heterozygosity for the alpha-1-antitrypsin Z allele in cirrhosis is associated with more advanced disease. Liver Transpl. 2018;24(6):744–751. PubMed PMC

Kappe N.N., Stolk J., van Hoek B. Liver transplantation. N Engl J Med. 2024;390(4):387. PubMed

Meister F., Lurje G., Neumann U.P., et al. Heterozygosity for the alpha-1-antitrypsin Z allele in cirrhosis is associated with more advanced disease. Liver Transpl. 2019;25(2):342–343. PubMed

Mandorfer M., Simbrunner B. Prevention of first decompensation in advanced chronic liver disease. Clin Liver Dis. 2021;25(2):291–310. PubMed

Strnad P., Mandorfer M., Choudhury G., et al. Fazirsiran for liver disease associated with alpha(1)-antitrypsin deficiency. N Engl J Med. 2022;387(6):514–524. PubMed

Clark V.C., Strange C., Strnad P., et al. Fazirsiran for adults with alpha-1 antitrypsin deficiency liver disease: a phase 2 placebo controlled trial (SEQUOIA) Gastroenterology. 2024;167(5):1008–1018. PubMed

Loomba R., Clark G., Teckman J., et al. Review article: new developments in biomarkers and clinical drug development in alpha-1 antitrypsin deficiency-related liver disease. Aliment Pharmacol Ther. 2024;59(10):1183–1195. PubMed

de Franchis R., Bosch J., Garcia-Tsao G., et al. Baveno VII - renewing consensus in portal hypertension. J Hepatol. 2022;76(4):959–974. PubMed PMC

Schwabl P., Bota S., Salzl P., et al. New reliability criteria for transient elastography increase the number of accurate measurements for screening of cirrhosis and portal hypertension. Liver Int. 2015;35(2):381–390. PubMed

Moreau R., Jalan R., Gines P., et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology. 2013;144(7):1426–1437. 37.e1-9. PubMed

Jalan R., Saliba F., Pavesi M., et al. Development and validation of a prognostic score to predict mortality in patients with acute-on-chronic liver failure. J Hepatol. 2014;61(5):1038–1047. PubMed

Fine J.P., Gray R.J. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94(446):496–509.

Balan T.A., Putter H. A tutorial on frailty models. Stat Methods Med Res. 2020;29(11):3424–3454. PubMed PMC

Clark V.C., Marek G., Liu C., et al. Clinical and histologic features of adults with alpha-1 antitrypsin deficiency in a non-cirrhotic cohort. J Hepatol. 2018;69(6):1357–1364. PubMed

Fromme M., Schneider C.V., Trautwein C., et al. Alpha-1 antitrypsin deficiency: a re-surfacing adult liver disorder. J Hepatol. 2022;76(4):946–958. PubMed

Jachs M., Hartl L., Simbrunner B., et al. Prognostic performance of non-invasive tests for portal hypertension is comparable to that of hepatic venous pressure gradient. J Hepatol. 2024;80(5):744–752. PubMed

Fromme M., Payancé A., Mandorfer M., et al. TOP-141 Longitudinal assessment of individuals with homozygous alpha-1 antitrypsin deficiency (Pi∗ZZ genotype) provides evidence for clinical patient management. J Hepatol. 2024;80

D'Amico G., Morabito A., D'Amico M., et al. Clinical states of cirrhosis and competing risks. J Hepatol. 2018;68(3):563–576. PubMed

Sanyal A.J., Van Natta M.L., Clark J., et al. Prospective study of outcomes in adults with nonalcoholic fatty liver disease. N Engl J Med. 2021;385(17):1559–1569. PubMed PMC

Bassegoda O., Olivas P., Turco L., et al. Decompensation in advanced nonalcoholic fatty liver disease may occur at lower hepatic venous pressure gradient levels than in patients with viral disease. Clin Gastroenterol Hepatol. 2022;20(10):2276–2286.e6. PubMed

Paternostro R., Kwanten W.J., Hofer B.S., et al. Hepatic venous pressure gradient predicts risk of hepatic decompensation and liver-related mortality in patients with MASLD. J Hepatol. 2024;81(5):827–836. PubMed

Carey E.J., Iyer V.N., Nelson D.R., et al. Outcomes for recipients of liver transplantation for alpha-1-antitrypsin deficiency–related cirrhosis. Liver Transpl. 2013;19(12):1370–1376. PubMed

Clark V.C. Liver transplantation in alpha-1 antitrypsin deficiency. Clin Liver Dis. 2017;21(2):355–365. PubMed

Hiller A.M., Ekström M., Piitulainen E., et al. Cancer risk in severe alpha-1-antitrypsin deficiency. Eur Respir J. 2022;60(4) PubMed

Grander C., Schaefer B., Schwärzler J., et al. Alpha-1 antitrypsin governs alcohol-related liver disease in mice and humans. Gut. 2021;70(3):585–594. PubMed

Fromme M., Hamesch K., Schneider C.V., et al. Alpha-1 antitrypsin augmentation and the liver phenotype of adults with alpha-1 antitrypsin deficiency (genotype Pi∗ZZ) Clin Gastroenterol Hepatol. 2024;22(2):283–294.e5. PubMed

Arroyo V., Angeli P., Moreau R., et al. The systemic inflammation hypothesis: towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis. J Hepatol. 2021;74(3):670–685. PubMed

Gurbuz B., Guldiken N., Reuken P., et al. Biomarkers of hepatocellular synthesis in patients with decompensated cirrhosis. Hepatol Int. 2023;17(3):698–708. PubMed PMC

Dominik N., Scheiner B., Zanetto A., et al. Von Willebrand factor for outcome prediction within different clinical stages of advanced chronic liver disease. Aliment Pharmacol Ther. 2024;59(11):1376–1386. PubMed

Mandorfer M., Kozbial K., Schwabl P., et al. Sustained virologic response to interferon-free therapies ameliorates HCV-induced portal hypertension. J Hepatol. 2016;65(4):692–699. PubMed

Semmler G., Lens S., Meyer E.L., et al. Non-invasive tests for clinically significant portal hypertension after HCV cure. J Hepatol. 2022;77(6):1573–1585. PubMed

Krassenburg L.A.P., Maan R., Ramji A., et al. Clinical outcomes following DAA therapy in patients with HCV-related cirrhosis depend on disease severity. J Hepatol. 2021;74(5):1053–1063. PubMed

Semmler G., Meyer E.L., Kozbial K., et al. HCC risk stratification after cure of hepatitis C in patients with compensated advanced chronic liver disease. J Hepatol. 2022;76(4):812–821. PubMed

Hofer B.S., Simbrunner B., Hartl L., et al. Alcohol abstinence improves prognosis across all stages of portal hypertension in alcohol-related cirrhosis. Clin Gastroenterol Hepatol. 2023;21(9):2308–2317.e7. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...