Detection of Polystyrene Microplastics up to the Single Nanoparticle Limit Using SERS and Advanced ANN Design (KANformer)
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40560738
PubMed Central
PMC12305665
DOI
10.1021/acssensors.5c00846
Knihovny.cz E-zdroje
- Klíčová slova
- KAN, PS microplastic, SERS, annealing, artificial neural network, porous plasmon substrate,
- MeSH
- chemické látky znečišťující vodu * analýza MeSH
- limita detekce MeSH
- mikroplasty * analýza MeSH
- nanočástice * chemie MeSH
- neuronové sítě * MeSH
- polystyreny * analýza chemie MeSH
- Ramanova spektroskopie * metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- mikroplasty * MeSH
- polystyreny * MeSH
Due to uncontrolled release, gradual accumulation, low degradation rate, and potential negative impact on human health, microplastics (MPs) pose a serious environmental and healthcare risk. Thus, the spread of MPs should be at least carefully monitored to identify and eliminate their main sources, as well as to provide a suitable alarm in the case of MP concentration increase. Among various detection methods, surface-enhanced Raman spectroscopy (SERS) poses a unique detection limit and the ability to perform outdoor measurements without preliminary sample treatment. However, the utilization of SERS for MPs detection is significantly limited for a few reasons. First, the maximal SERS enhancement occurs in the so-called hot spots, where the MPs cannot penetrate due to their size. In addition, the natural environment can produce a significant spectral background, which blocks the microplastic characteristic signal. To overcome these limitations, we propose a new alternative route for introduction of MPs into the plasmonic hot spots, using in situ MP annealing and an advanced artificial neural network (ANN) design, the Kolmogorov-Arnold transformer (KANformer, KANF). Polystyrene (PS) MPs were used as a model compound. We have also demonstrated the potential versatility of our approach using different microplastics, such as polyethylene, polypropylene, and polyethylene terephthalate. The proposed approach allows us to detect the presence of PS up to the single nanoparticle limit (in the mL of analyzed solution) with a probability of above 95%, even under mixing with groundwater model matrices.
Zobrazit více v PubMed
Gasperi J., Wright S. L., Dris R., Collard F., Mandin C., Guerrouache M., Langlois V., Kelly F. J., Tassin B.. Microplastics in air: Are we breathing it in? Curr. Opin. Environ. Sci. Health. 2018;1:1–5. doi: 10.1016/j.coesh.2017.10.002. DOI
Koelmans A. A., Mohamed nor N. H., Hermsen E., Kooi M., Mintenig S. M., De France J.. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019;155:410–422. doi: 10.1016/j.watres.2019.02.054. PubMed DOI PMC
Buckingham J. W., Manno C., Waluda C. M., Waller C. L.. A record of microplastic in the marine nearshore waters of South Georgia. Environ. Pollut. 2022;306:119379. doi: 10.1016/j.envpol.2022.119379. PubMed DOI
EFSA Panel on Contaminants in the Food Chain. Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 2016, 14(6), e04501. DOI: 10.2903/j.efsa.2016.4501. PubMed DOI PMC
Yang L., Zhang Y., Kang S., Wang Z., Wu C.. Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Sci. Total Environ. 2021;780:146546. doi: 10.1016/j.scitotenv.2021.146546. PubMed DOI
Yize W., Okochi H., Tani Y., Hayami H., Minami Y., Katsumi N., Takeuchi M., Sorimachi A., Fujii Y., Kajino M.. et al. Airborne hydrophilic microplastics in cloud water at high altitudes and their role in cloud formation. Environ. Chem. Lett. 2023;21:3055–3062. doi: 10.1007/s10311-023-01626-x. DOI
Wright S. L., Kelly F. J.. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017;51(12):6634–6647. doi: 10.1021/acs.est.7b00423. PubMed DOI
Li C., Busquets R., Campos L. C.. Assessment of microplastics in freshwater systems: A review. Sci. Total Environ. 2020;707:135578. doi: 10.1016/j.scitotenv.2019.135578. PubMed DOI
Li Y., Tao L., Wang Q., Wang F., Li G., Song M.. Potential Health Impact of Microplastics: A Review of Environmental Distribution, Human Exposure, and Toxic Effects. Environ. Health. 2023;1(4):249–257. doi: 10.1021/envhealth.3c00052. PubMed DOI PMC
Khan A., Qadeer A., Wajid A., Ullah Q., Rahman S. U., Ullah K., Safi S. Z., Ticha L., Skalickova S., Chilala P.. et al. Microplastics in animal nutrition: Occurrence, spread, and hazard in animals. J. Agric. Food Res. 2024;17:101258. doi: 10.1016/j.jafr.2024.101258. DOI
Mercogliano R., Avio C. G., Regoli F., Anastasio A., Colavita G., Santonicola S.. Occurrence of Microplastics in Commercial Seafood under the Perspective of the Human Food Chain. A Review. J. Agric. Food Chem. 2020;68(19):5296–5301. doi: 10.1021/acs.jafc.0c01209. PubMed DOI PMC
Mamun A. A., Prasetya T. A. E., Dewi I. R., Ahmad M.. Microplastics in human food chains: Food becoming a threat to health safety. Sci. Total Environ. 2023;858:159834. doi: 10.1016/j.scitotenv.2022.159834. PubMed DOI
Mintenig S. M., Bäuerlein P. S., Koelmans A. A., Dekker S. C., van Wezel A. P.. Closing the gap between small and smaller: towards a framework to analyse nano- and microplastics in aqueous environmental samples. Environ. Sci.: Nano. 2018;5(7):1640–1649. doi: 10.1039/C8EN00186C. DOI
Geiss, O. ; Belz, S. ; Cella, C. ; Gilliland, D. ; La Spina, R. ; Méhn, D. ; Sokull-Klüttgen, B. . Analytical methods to measure microplastics in drinking water: Review and evaluation of methods, Publications Office of the European Union, 2024.
Rodríguez Chialanza M., Sierra I., Pérez Parada A., Fornaro L.. Identification and quantitation of semi-crystalline microplastics using image analysis and differential scanning calorimetry. Environ. Sci. Pollut. Res. 2018;25(17):16767–16775. doi: 10.1007/s11356-018-1846-0. PubMed DOI
Singh B., Kumar A.. Advances in microplastics detection: A comprehensive review of methodologies and their effectiveness. TrAC, Trends Anal. Chem. 2024;170:117440. doi: 10.1016/j.trac.2023.117440. DOI
Leung M. M.-L., Ho Y.-W., Lee C.-H., Wang Y., Hu M., Kwok K. W. H., Chua S.-L., Fang J. K.-H.. Improved Raman spectroscopy-based approach to assess microplastics in seafood. Environ. Pollut. 2021;289:117648. doi: 10.1016/j.envpol.2021.117648. PubMed DOI
Shan J., Zhao J., Liu L., Zhang Y., Wang X., Wu F.. A novel way to rapidly monitor microplastics in soil by hyperspectral imaging technology and chemometrics. Environ. Pollut. 2018;238:121–129. doi: 10.1016/j.envpol.2018.03.026. PubMed DOI
Fischer M., Scholz-Böttcher B. M.. Simultaneous Trace Identification and Quantification of Common Types of Microplastics in Environmental Samples by Pyrolysis-Gas Chromatography–Mass Spectrometry. Environ. Sci. Technol. 2017;51(9):5052–5060. doi: 10.1021/acs.est.6b06362. PubMed DOI
Peters C. A., Hendrickson E., Minor E. C., Schreiner K., Halbur J., Bratton S. P.. Pyr-GC/MS analysis of microplastics extracted from the stomach content of benthivore fish from the Texas Gulf Coast. Mar. Pollut. Bull. 2018;137:91–95. doi: 10.1016/j.marpolbul.2018.09.049. PubMed DOI
Zhang Y.-K., Yang B.-K., Zhang C.-N., Xu S.-X., Sun P.. Effects of polystyrene microplastics acute exposure in the liver of swordtail fish (Xiphophorus helleri) revealed by LC-MS metabolomics. Sci. Total Environ. 2022;850:157772. doi: 10.1016/j.scitotenv.2022.157772. PubMed DOI
Peng C., Tang X., Gong X., Dai Y., Sun H., Wang L.. Development and Application of a mass spectrometry method to quantify nylon microplastics in Environment. Anal. Chem. 2020;92(20):13930–13935. doi: 10.1021/acs.analchem.0c02801. PubMed DOI
Cai H., Xu E. G., Du F., Li R., Liu J., Shi H.. Analysis of environmental nanoplastics: Progress and challenges. Chem. Eng. J. 2021;410:128208. doi: 10.1016/j.cej.2020.128208. DOI
Käppler A., Fischer D., Oberbeckmann S., Schernewski G., Labrenz M., Eichhorn K. J., Voit B.. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal. Bioanal. Chem. 2016;408(29):8377–8391. doi: 10.1007/s00216-016-9956-3. PubMed DOI
Sullivan G. L., Gallardo J. D., Jones E. W., Hollliman P. J., Watson T. M., Sarp S.. Detection of trace sub-micron (nano) plastics in water samples using pyrolysis-gas chromatography time of flight mass spectrometry (PY-GCToF) Chemosphere. 2020;249:126179. doi: 10.1016/j.chemosphere.2020.126179. PubMed DOI
Schymanski D., Goldbeck C., Humpf H.-U., Fürst P.. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Res. 2018;129:154–162. doi: 10.1016/j.watres.2017.11.011. PubMed DOI
Cabernard L., Roscher L., Lorenz C., Gerdts G., Primpke S.. Comparison of Raman and Fourier Transform Infrared Spectroscopy for the Quantification of Microplastics in the Aquatic Environment. Environ. Sci. Technol. 2018;52(22):13279–13288. doi: 10.1021/acs.est.8b03438. PubMed DOI
Fu W., Min J., Jiang W., Li Y., Zhang W.. Separation, characterization and identification of microplastics and nanoplastics in the environment. Sci. Total Environ. 2020;721:137561. doi: 10.1016/j.scitotenv.2020.137561. PubMed DOI
Araujo C. F., Nolasco M. M., Ribeiro A. M. P., Ribeiro-Claro P. J. A.. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Res. 2018;142:426–440. doi: 10.1016/j.watres.2018.05.060. PubMed DOI
Lv L., He L., Jiang S., Chen J., Zhou C., Qu J., Lu Y., Hong P., Sun S., Li C.. In situ surface-enhanced Raman spectroscopy for detecting microplastics and nanoplastics in aquatic environments. Sci. Total Environ. 2020;728:138449. doi: 10.1016/j.scitotenv.2020.138449. PubMed DOI
Hu R., Zhang K., Wang W., Wei L., Lai Y.. Quantitative and sensitive analysis of polystyrene nanoplastics down to 50 nm by surface-enhanced Raman spectroscopy in water. J. Hazard. Mater. 2022;429:128388. doi: 10.1016/j.jhazmat.2022.128388. PubMed DOI
Yang Q., Zhang S., Su J., Li S., Lv X., Chen J., Lai Y., Zhan J.. Identification of Trace Polystyrene Nanoplastics Down to 50 nm by the Hyphenated Method of Filtration and Surface-Enhanced Raman Spectroscopy Based on Silver Nanowire Membranes. Environ. Sci. Technol. 2022;56(15):10818–10828. doi: 10.1021/acs.est.2c02584. PubMed DOI
Xu G., Cheng H., Jones R., Feng Y., Gong K., Li K., Fang X., Tahir M. A., Valev V. K., Zhang L.. Surface-Enhanced Raman Spectroscopy Facilitates the Detection of Microplastics < 1 μm in the Environment. Environ. Sci. Technol. 2020;54(24):15594–15603. doi: 10.1021/acs.est.0c02317. PubMed DOI
Lee C.-H., Fang J. K.-H.. The onset of surface-enhanced Raman scattering for single-particle detection of submicroplastics. J. Environ. Sci. 2022;121:58–64. doi: 10.1016/j.jes.2021.08.044. PubMed DOI
Mikac L., Rigó I., Himics L., Tolić A., Ivanda M., Veres M.. Surface-enhanced Raman spectroscopy for the detection of microplastics. Appl. Surf. Sci. 2023;608:155239. doi: 10.1016/j.apsusc.2022.155239. DOI
Zhao M., Guo R., Leng J., Qin S., Huang J., Hu W., Zhao M., Ma Y.. Plasmonic array at liquid-liquid interface for trace microplastics detection. Sens. Actuators, B. 2024;420:136504. doi: 10.1016/j.snb.2024.136504. DOI
Qin Y., Qiu J., Tang N., Wu Y., Yao W., He Y.. Controllable preparation of mesoporous spike gold nanocrystals for surface-enhanced Raman spectroscopy detection of micro/nanoplastics in water. Environ. Res. 2023;228:115926. doi: 10.1016/j.envres.2023.115926. PubMed DOI
Ahn H. M., Park J. O., Lee H.-J., Lee C., Chun H., Kim K. B.. SERS detection of surface-adsorbent toxic substances of microplastics based on gold nanoparticles and surface acoustic waves. RSC Adv. 2024;14(3):2061–2069. doi: 10.1039/D3RA07382C. PubMed DOI PMC
Kim J. Y., Koh E. H., Yang J.-Y., Mun C., Lee S., Lee H., Kim J., Park S.-G., Kang M., Kim D.-H., Jung H. S.. 3D Plasmonic Gold Nanopocket Structure for SERS Machine Learning-Based Microplastic Detection. Adv. Funct. Mater. 2024;34(2):2307584. doi: 10.1002/adfm.202307584. DOI
Shan J., Ren T., Li X., Jin M., Wang X.. Study of microplastics as sorbents for rapid detection of multiple antibiotics in water based on SERS technology. Spectrochim. Acta, Part A. 2023;284:121779. doi: 10.1016/j.saa.2022.121779. PubMed DOI
Di Z., Gao J., Li J., Zhou H., Jia C.. Quantitative analysis of microplastics in seawater based on SERS internal standard method. Anal. Methods. 2024;16:1887–1893. doi: 10.1039/D3AY02027D. PubMed DOI
Xu D., Su W., Luo Y., Wang Z., Yin C., Chen B., Zhang Y.. Cellulose Nanofiber Films with Gold Nanoparticles Electrostatically Adsorbed for Facile Surface-Enhanced Raman Scattering Detection. ACS Appl. Mater. Interfaces. 2024;16(18):23352–23361. doi: 10.1021/acsami.4c03255. PubMed DOI
Xu D., Su W., Lu H., Luo Y., Yi T., Wu J., Wu H., Yin C., Chen B.. A gold nanoparticle doped flexible substrate for microplastics SERS detection. Phys. Chem. Chem. Phys. 2022;24(19):12036–12042. doi: 10.1039/D1CP05870C. PubMed DOI
Li Z., Ding Z., Yan Z., Han K., Zhang M., Zhou H., Sun X., Sun H., Li J., Zhang W., Liu X.. NiO/AgNPs nanowell enhanced SERS sensor for efficient detection of micro/nanoplastics in beverages. Talanta. 2025;281:126877. doi: 10.1016/j.talanta.2024.126877. PubMed DOI
Liu J., Xu G., Ruan X., Li K., Zhang L.. V-shaped substrate for surface and volume enhanced Raman spectroscopic analysis of microplastics. Front. Environ. Sci. Eng. 2022;16(11):143. doi: 10.1007/s11783-022-1578-8. DOI
Nie X.-L., Liu H.-L., Pan Z.-Q., Ahmed S. A., Shen Q., Yang J.-M., Pan J.-B., Pang J., Li C.-Y., Xia X.-H., Wang K.. Recognition of plastic nanoparticles using a single gold nanopore fabricated at the tip of a glass nanopipette. Chem. Commun. 2019;55(45):6397–6400. doi: 10.1039/C9CC01358J. PubMed DOI
Carreón R. V., Cortázar-Martínez O., Rodríguez-Hernández A. G., Serrano de la Rosa L. E., Gervacio-Arciniega J. J., Krishnan S. K.. Ionic Liquid-Assisted Thermal Evaporation of Bimetallic Ag–Au Nanoparticle Films as a Highly Reproducible SERS Substrate for Sensitive Nanoplastic Detection in Complex Environments. Anal. Chem. 2024;96(15):5790–5797. doi: 10.1021/acs.analchem.3c04442. PubMed DOI PMC
Huang X., Huang J., Lu M., Liu Y., Jiang G., Chang M., Xu W., Dai Z., Zhou C., Hong P., Li C.. In situ surface-enhanced Raman spectroscopy for the detection of nanoplastics: A novel approach inspired by the aging of nanoplastics. Sci. Total Environ. 2024;946:174249. doi: 10.1016/j.scitotenv.2024.174249. PubMed DOI
Xie L., Gong K., Liu Y., Zhang L.. Strategies and Challenges of Identifying Nanoplastics in Environment by Surface-Enhanced Raman Spectroscopy. Environ. Sci. Technol. 2023;57(1):25–43. doi: 10.1021/acs.est.2c07416. PubMed DOI
Liu L., Martinez Pancorbo P., Xiao T.-H., Noguchi S., Marumi M., Segawa H., Karhadkar S., Gala de Pablo J., Hiramatsu K., Kitahama Y.. et al. Highly Scalable, Wearable Surface-Enhanced Raman Spectroscopy. Adv. Opt. Mater. 2022;10(17):2200054. doi: 10.1002/adom.202200054. DOI
Wu Z., Janssen S. E., Tate M. T., Wei H., Qin M.. Adaptable Plasmonic Membrane Sensors for Fast and Reliable Detection of Trace Low-Micrometer Microplastics in Lake Water. Environ. Sci. Technol. 2024;58(45):20172–20180. doi: 10.1021/acs.est.4c06503. PubMed DOI PMC
Chaisrikhwun B., Balani M. J. D., Ekgasit S., Xie Y., Ozaki Y., Pienpinijtham P.. A green approach to nanoplastic detection: SERS with untreated filter paper for polystyrene nanoplastics. Analyst. 2024;149(16):4158–4167. doi: 10.1039/D4AN00702F. PubMed DOI
Lê Q. T., Ly N. H., Kim M.-K., Lim S. H., Son S. J., Zoh K.-D., Joo S.-W.. Nanostructured Raman substrates for the sensitive detection of submicrometer-sized plastic pollutants in water. J. Hazard. Mater. 2021;402:123499. doi: 10.1016/j.jhazmat.2020.123499. PubMed DOI
Chang L., Jiang S., Luo J., Zhang J., Liu X., Lee C.-Y., Zhang W.. Nanowell-enhanced Raman spectroscopy enables the visualization and quantification of nanoplastics in the environment. Environ. Sci.: Nano. 2022;9(2):542–553. doi: 10.1039/D1EN00945A. DOI
Zhang J., Peng M., Lian E., Xia L., Asimakopoulos A. G., Luo S., Wang L.. Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy. Environ. Sci. Technol. 2023;57(22):8365–8372. doi: 10.1021/acs.est.3c00842. PubMed DOI PMC
Luo Y., Su W., Xu D., Wang Z., Wu H., Chen B., Wu J.. Component identification for the SERS spectra of microplastics mixture with convolutional neural network. Sci. Total Environ. 2023;895:165138. doi: 10.1016/j.scitotenv.2023.165138. PubMed DOI
Ren L., Liu S., Huang S., Wang Q., Lu Y., Song J., Guo J.. Identification of microplastics using a convolutional neural network based on micro-Raman spectroscopy. Talanta. 2023;260:124611. doi: 10.1016/j.talanta.2023.124611. PubMed DOI
Srivastava S., Wang W., Zhou W., Jin M., Vikesland P. J.. Machine Learning-Assisted Surface-Enhanced Raman Spectroscopy Detection for Environmental Applications: A Review. Environ. Sci. Technol. 2024;58(47):20830–20848. doi: 10.1021/acs.est.4c06737. PubMed DOI PMC
Jin H., Kong F., Li X., Shen J.. Artificial intelligence in microplastic detection and pollution control. Environ. Res. 2024;262:119812. doi: 10.1016/j.envres.2024.119812. PubMed DOI
Luo Y., Su W., Rabbi M. F., Wan Q., Xu D., Wang Z., Liu S., Xu X., Wu J.. Quantitative analysis of microplastics in water environments based on Raman spectroscopy and convolutional neural network. Sci. Total Environ. 2024;926:171925. doi: 10.1016/j.scitotenv.2024.171925. PubMed DOI
Skvortsova A., Trelin A., Sedlar A., Erzina M., Travnickova M., Svobodova L., Kolska Z., Siegel J., Bacakova L., Svorcik V., Lyutakov O.. SERS-CNN approach for non-invasive and non-destructive monitoring of stem cell growth on a universal substrate through an analysis of the cultivation medium. Sens. Actuators, B. 2023;375:132812. doi: 10.1016/j.snb.2022.132812. DOI
Elashnikov R., Khrystonko O., Trelin A., Kuchař M., Švorčík V., Lyutakov O.. Label-free SERS-ML detection of cocaine trace in human blood plasma. J. Hazard. Mater. 2024;472:134525. doi: 10.1016/j.jhazmat.2024.134525. PubMed DOI
Luo Y., Su W., Xu X., Xu D., Wang Z., Wu H., Chen B., Wu J.. Raman Spectroscopy and Machine Learning for Microplastics Identification and Classification in Water Environments. IEEE J. Sel. Top. Quantum Electron. 2023;29:1–8. doi: 10.1109/JSTQE.2022.3222065. DOI
Cai, Z.-Q. ; Feng, W.-W. ; Wang, H.-Q. ; Liang, X.-H. ; Yang, J.-L. ; Wu, X. ; Wang, Q. . Identification method of microplastics based on Raman-infrared spectroscopy fusion Optical Design and Testing XII SPIE, 2022, 12315, 206–215 10.1117/12.2638579. DOI
Ramanna S., Morozovskii D., Swanson S., Bruneau J.. Machine Learning of polymer types from the spectral signature of Raman spectroscopy microplastics data. Adv. Artif. Intell. Mach. Learn. 2023;3:647–668. doi: 10.54364/AAIML.2023.1144. DOI
Xie L., Luo S., Liu Y., Ruan X., Gong K., Ge Q., Li K., Valev V. K., Liu G., Zhang L.. Automatic Identification of Individual Nanoplastics by Raman Spectroscopy Based on Machine Learning. Environ. Sci. Technol. 2023;57(46):18203–18214. doi: 10.1021/acs.est.3c03210. PubMed DOI
Lei B., Bissonnette J. R., Hogan Ú. E., Bec A. E., Feng X., Smith R. D. L.. Customizable Machine-Learning Models for Rapid Microplastic Identification Using Raman Microscopy. Anal. Chem. 2022;94(49):17011–17019. doi: 10.1021/acs.analchem.2c02451. PubMed DOI
Zhang W., Feng W., Cai Z., Wang H., Yan Q., Wang Q.. A deep one-dimensional convolutional neural network for microplastics classification using Raman spectroscopy. Vib. Spectrosc. 2023;124:103487. doi: 10.1016/j.vibspec.2022.103487. DOI
Skvortsova A., Trelin A., Kriz P., Elashnikov R., Vokata B., Ulbrich P., Pershina A., Svorcik V., Guselnikova O., Lyutakov O.. SERS and advanced chemometrics – Utilization of Siamese neural network for picomolar identification of beta-lactam antibiotics resistance gene fragment. Anal. Chim. Acta. 2022;1192:339373. doi: 10.1016/j.aca.2021.339373. PubMed DOI
Skvortsova A., Trelin A., Guselnikova O., Pershina A., Vokata B., Svorcik V., Lyutakov O.. Surface enhanced Raman spectroscopy and machine learning for identification of beta-lactam antibiotics resistance gene fragment in bacterial plasmid. Anal. Chim. Acta. 2024;1329:343118. doi: 10.1016/j.aca.2024.343118. PubMed DOI
Erzina M., Trelin A., Guselnikova O., Skvortsova A., Strnadova K., Svorcik V., Lyutakov O.. Quantitative detection of α1-acid glycoprotein (AGP) level in blood plasma using SERS and CNN transfer learning approach. Sens. Actuators, B. 2022;367:132057. doi: 10.1016/j.snb.2022.132057. DOI
Zabelina A., Trelin A., Skvortsova A., Zabelin D., Burtsev V., Miliutina E., Svorcik V., Lyutakov O.. Bioinspired superhydrophobic SERS substrates for machine learning assisted miRNA detection in complex biomatrix below femtomolar limit. Anal. Chim. Acta. 2023;1278:341708. doi: 10.1016/j.aca.2023.341708. PubMed DOI
Guselnikova O., Trelin A., Kang Y., Postnikov P., Kobashi M., Suzuki A., Shrestha L. K., Henzie J., Yamauchi Y.. Pretreatment-free SERS sensing of microplastics using a self-attention-based neural network on hierarchically porous Ag foams. Nat. Commun. 2024;15(1):4351. doi: 10.1038/s41467-024-48148-w. PubMed DOI PMC
Kukralova K., Miliutina E., Guselnikova O., Burtsev V., Hrbek T., Svorcik V., Lyutakov O.. Dual-mode electrochemical and SERS detection of PFAS using functional porous substrate. Chemosphere. 2024;364:143149. doi: 10.1016/j.chemosphere.2024.143149. PubMed DOI
Wakaura, H. ; Suksmono, A. B. ; Mulyawan, R. . Variational Quantum Kolmogorov-Arnold Network. 2024. 10.21203/rs.3.rs-4504342/v3. DOI
Chen F., Zhao M., Zhang B., Li G., Liu H., Li Z., Zhao M., Ma Y.. Gas-Liquid Interface Plasmonic Arrays for SERS Detection of Microplastics. Appl. Surf. Sci. 2025;690:162583. doi: 10.1016/j.apsusc.2025.162583. DOI
Zhou X.-X., Liu R., Hao L.-T., Liu J.-F.. Identification of Polystyrene Nanoplastics Using Surface Enhanced Raman Spectroscopy. Talanta. 2021;221:121552. doi: 10.1016/j.talanta.2020.121552. PubMed DOI
Jeon Y., Kim D., Kwon G., Lee K., Oh C.-S., Kim U.-J., You J.. Detection of Nanoplastics Based on Surface-Enhanced Raman Scattering with Silver Nanowire Arrays on Regenerated Cellulose Films. Carbohydr. Polym. 2021;272:118470. doi: 10.1016/j.carbpol.2021.118470. PubMed DOI