Detection of Polystyrene Microplastics up to the Single Nanoparticle Limit Using SERS and Advanced ANN Design (KANformer)

. 2025 Jul 25 ; 10 (7) : 4983-4995. [epub] 20250625

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40560738

Due to uncontrolled release, gradual accumulation, low degradation rate, and potential negative impact on human health, microplastics (MPs) pose a serious environmental and healthcare risk. Thus, the spread of MPs should be at least carefully monitored to identify and eliminate their main sources, as well as to provide a suitable alarm in the case of MP concentration increase. Among various detection methods, surface-enhanced Raman spectroscopy (SERS) poses a unique detection limit and the ability to perform outdoor measurements without preliminary sample treatment. However, the utilization of SERS for MPs detection is significantly limited for a few reasons. First, the maximal SERS enhancement occurs in the so-called hot spots, where the MPs cannot penetrate due to their size. In addition, the natural environment can produce a significant spectral background, which blocks the microplastic characteristic signal. To overcome these limitations, we propose a new alternative route for introduction of MPs into the plasmonic hot spots, using in situ MP annealing and an advanced artificial neural network (ANN) design, the Kolmogorov-Arnold transformer (KANformer, KANF). Polystyrene (PS) MPs were used as a model compound. We have also demonstrated the potential versatility of our approach using different microplastics, such as polyethylene, polypropylene, and polyethylene terephthalate. The proposed approach allows us to detect the presence of PS up to the single nanoparticle limit (in the mL of analyzed solution) with a probability of above 95%, even under mixing with groundwater model matrices.

Zobrazit více v PubMed

Gasperi J., Wright S. L., Dris R., Collard F., Mandin C., Guerrouache M., Langlois V., Kelly F. J., Tassin B.. Microplastics in air: Are we breathing it in? Curr. Opin. Environ. Sci. Health. 2018;1:1–5. doi: 10.1016/j.coesh.2017.10.002. DOI

Koelmans A. A., Mohamed nor N. H., Hermsen E., Kooi M., Mintenig S. M., De France J.. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019;155:410–422. doi: 10.1016/j.watres.2019.02.054. PubMed DOI PMC

Buckingham J. W., Manno C., Waluda C. M., Waller C. L.. A record of microplastic in the marine nearshore waters of South Georgia. Environ. Pollut. 2022;306:119379. doi: 10.1016/j.envpol.2022.119379. PubMed DOI

EFSA Panel on Contaminants in the Food Chain. Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 2016, 14(6), e04501. DOI: 10.2903/j.efsa.2016.4501. PubMed DOI PMC

Yang L., Zhang Y., Kang S., Wang Z., Wu C.. Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Sci. Total Environ. 2021;780:146546. doi: 10.1016/j.scitotenv.2021.146546. PubMed DOI

Yize W., Okochi H., Tani Y., Hayami H., Minami Y., Katsumi N., Takeuchi M., Sorimachi A., Fujii Y., Kajino M.. et al. Airborne hydrophilic microplastics in cloud water at high altitudes and their role in cloud formation. Environ. Chem. Lett. 2023;21:3055–3062. doi: 10.1007/s10311-023-01626-x. DOI

Wright S. L., Kelly F. J.. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017;51(12):6634–6647. doi: 10.1021/acs.est.7b00423. PubMed DOI

Li C., Busquets R., Campos L. C.. Assessment of microplastics in freshwater systems: A review. Sci. Total Environ. 2020;707:135578. doi: 10.1016/j.scitotenv.2019.135578. PubMed DOI

Li Y., Tao L., Wang Q., Wang F., Li G., Song M.. Potential Health Impact of Microplastics: A Review of Environmental Distribution, Human Exposure, and Toxic Effects. Environ. Health. 2023;1(4):249–257. doi: 10.1021/envhealth.3c00052. PubMed DOI PMC

Khan A., Qadeer A., Wajid A., Ullah Q., Rahman S. U., Ullah K., Safi S. Z., Ticha L., Skalickova S., Chilala P.. et al. Microplastics in animal nutrition: Occurrence, spread, and hazard in animals. J. Agric. Food Res. 2024;17:101258. doi: 10.1016/j.jafr.2024.101258. DOI

Mercogliano R., Avio C. G., Regoli F., Anastasio A., Colavita G., Santonicola S.. Occurrence of Microplastics in Commercial Seafood under the Perspective of the Human Food Chain. A Review. J. Agric. Food Chem. 2020;68(19):5296–5301. doi: 10.1021/acs.jafc.0c01209. PubMed DOI PMC

Mamun A. A., Prasetya T. A. E., Dewi I. R., Ahmad M.. Microplastics in human food chains: Food becoming a threat to health safety. Sci. Total Environ. 2023;858:159834. doi: 10.1016/j.scitotenv.2022.159834. PubMed DOI

Mintenig S. M., Bäuerlein P. S., Koelmans A. A., Dekker S. C., van Wezel A. P.. Closing the gap between small and smaller: towards a framework to analyse nano- and microplastics in aqueous environmental samples. Environ. Sci.: Nano. 2018;5(7):1640–1649. doi: 10.1039/C8EN00186C. DOI

Geiss, O. ; Belz, S. ; Cella, C. ; Gilliland, D. ; La Spina, R. ; Méhn, D. ; Sokull-Klüttgen, B. . Analytical methods to measure microplastics in drinking water: Review and evaluation of methods, Publications Office of the European Union, 2024.

Rodríguez Chialanza M., Sierra I., Pérez Parada A., Fornaro L.. Identification and quantitation of semi-crystalline microplastics using image analysis and differential scanning calorimetry. Environ. Sci. Pollut. Res. 2018;25(17):16767–16775. doi: 10.1007/s11356-018-1846-0. PubMed DOI

Singh B., Kumar A.. Advances in microplastics detection: A comprehensive review of methodologies and their effectiveness. TrAC, Trends Anal. Chem. 2024;170:117440. doi: 10.1016/j.trac.2023.117440. DOI

Leung M. M.-L., Ho Y.-W., Lee C.-H., Wang Y., Hu M., Kwok K. W. H., Chua S.-L., Fang J. K.-H.. Improved Raman spectroscopy-based approach to assess microplastics in seafood. Environ. Pollut. 2021;289:117648. doi: 10.1016/j.envpol.2021.117648. PubMed DOI

Shan J., Zhao J., Liu L., Zhang Y., Wang X., Wu F.. A novel way to rapidly monitor microplastics in soil by hyperspectral imaging technology and chemometrics. Environ. Pollut. 2018;238:121–129. doi: 10.1016/j.envpol.2018.03.026. PubMed DOI

Fischer M., Scholz-Böttcher B. M.. Simultaneous Trace Identification and Quantification of Common Types of Microplastics in Environmental Samples by Pyrolysis-Gas Chromatography–Mass Spectrometry. Environ. Sci. Technol. 2017;51(9):5052–5060. doi: 10.1021/acs.est.6b06362. PubMed DOI

Peters C. A., Hendrickson E., Minor E. C., Schreiner K., Halbur J., Bratton S. P.. Pyr-GC/MS analysis of microplastics extracted from the stomach content of benthivore fish from the Texas Gulf Coast. Mar. Pollut. Bull. 2018;137:91–95. doi: 10.1016/j.marpolbul.2018.09.049. PubMed DOI

Zhang Y.-K., Yang B.-K., Zhang C.-N., Xu S.-X., Sun P.. Effects of polystyrene microplastics acute exposure in the liver of swordtail fish (Xiphophorus helleri) revealed by LC-MS metabolomics. Sci. Total Environ. 2022;850:157772. doi: 10.1016/j.scitotenv.2022.157772. PubMed DOI

Peng C., Tang X., Gong X., Dai Y., Sun H., Wang L.. Development and Application of a mass spectrometry method to quantify nylon microplastics in Environment. Anal. Chem. 2020;92(20):13930–13935. doi: 10.1021/acs.analchem.0c02801. PubMed DOI

Cai H., Xu E. G., Du F., Li R., Liu J., Shi H.. Analysis of environmental nanoplastics: Progress and challenges. Chem. Eng. J. 2021;410:128208. doi: 10.1016/j.cej.2020.128208. DOI

Käppler A., Fischer D., Oberbeckmann S., Schernewski G., Labrenz M., Eichhorn K. J., Voit B.. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal. Bioanal. Chem. 2016;408(29):8377–8391. doi: 10.1007/s00216-016-9956-3. PubMed DOI

Sullivan G. L., Gallardo J. D., Jones E. W., Hollliman P. J., Watson T. M., Sarp S.. Detection of trace sub-micron (nano) plastics in water samples using pyrolysis-gas chromatography time of flight mass spectrometry (PY-GCToF) Chemosphere. 2020;249:126179. doi: 10.1016/j.chemosphere.2020.126179. PubMed DOI

Schymanski D., Goldbeck C., Humpf H.-U., Fürst P.. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Res. 2018;129:154–162. doi: 10.1016/j.watres.2017.11.011. PubMed DOI

Cabernard L., Roscher L., Lorenz C., Gerdts G., Primpke S.. Comparison of Raman and Fourier Transform Infrared Spectroscopy for the Quantification of Microplastics in the Aquatic Environment. Environ. Sci. Technol. 2018;52(22):13279–13288. doi: 10.1021/acs.est.8b03438. PubMed DOI

Fu W., Min J., Jiang W., Li Y., Zhang W.. Separation, characterization and identification of microplastics and nanoplastics in the environment. Sci. Total Environ. 2020;721:137561. doi: 10.1016/j.scitotenv.2020.137561. PubMed DOI

Araujo C. F., Nolasco M. M., Ribeiro A. M. P., Ribeiro-Claro P. J. A.. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Res. 2018;142:426–440. doi: 10.1016/j.watres.2018.05.060. PubMed DOI

Lv L., He L., Jiang S., Chen J., Zhou C., Qu J., Lu Y., Hong P., Sun S., Li C.. In situ surface-enhanced Raman spectroscopy for detecting microplastics and nanoplastics in aquatic environments. Sci. Total Environ. 2020;728:138449. doi: 10.1016/j.scitotenv.2020.138449. PubMed DOI

Hu R., Zhang K., Wang W., Wei L., Lai Y.. Quantitative and sensitive analysis of polystyrene nanoplastics down to 50 nm by surface-enhanced Raman spectroscopy in water. J. Hazard. Mater. 2022;429:128388. doi: 10.1016/j.jhazmat.2022.128388. PubMed DOI

Yang Q., Zhang S., Su J., Li S., Lv X., Chen J., Lai Y., Zhan J.. Identification of Trace Polystyrene Nanoplastics Down to 50 nm by the Hyphenated Method of Filtration and Surface-Enhanced Raman Spectroscopy Based on Silver Nanowire Membranes. Environ. Sci. Technol. 2022;56(15):10818–10828. doi: 10.1021/acs.est.2c02584. PubMed DOI

Xu G., Cheng H., Jones R., Feng Y., Gong K., Li K., Fang X., Tahir M. A., Valev V. K., Zhang L.. Surface-Enhanced Raman Spectroscopy Facilitates the Detection of Microplastics < 1 μm in the Environment. Environ. Sci. Technol. 2020;54(24):15594–15603. doi: 10.1021/acs.est.0c02317. PubMed DOI

Lee C.-H., Fang J. K.-H.. The onset of surface-enhanced Raman scattering for single-particle detection of submicroplastics. J. Environ. Sci. 2022;121:58–64. doi: 10.1016/j.jes.2021.08.044. PubMed DOI

Mikac L., Rigó I., Himics L., Tolić A., Ivanda M., Veres M.. Surface-enhanced Raman spectroscopy for the detection of microplastics. Appl. Surf. Sci. 2023;608:155239. doi: 10.1016/j.apsusc.2022.155239. DOI

Zhao M., Guo R., Leng J., Qin S., Huang J., Hu W., Zhao M., Ma Y.. Plasmonic array at liquid-liquid interface for trace microplastics detection. Sens. Actuators, B. 2024;420:136504. doi: 10.1016/j.snb.2024.136504. DOI

Qin Y., Qiu J., Tang N., Wu Y., Yao W., He Y.. Controllable preparation of mesoporous spike gold nanocrystals for surface-enhanced Raman spectroscopy detection of micro/nanoplastics in water. Environ. Res. 2023;228:115926. doi: 10.1016/j.envres.2023.115926. PubMed DOI

Ahn H. M., Park J. O., Lee H.-J., Lee C., Chun H., Kim K. B.. SERS detection of surface-adsorbent toxic substances of microplastics based on gold nanoparticles and surface acoustic waves. RSC Adv. 2024;14(3):2061–2069. doi: 10.1039/D3RA07382C. PubMed DOI PMC

Kim J. Y., Koh E. H., Yang J.-Y., Mun C., Lee S., Lee H., Kim J., Park S.-G., Kang M., Kim D.-H., Jung H. S.. 3D Plasmonic Gold Nanopocket Structure for SERS Machine Learning-Based Microplastic Detection. Adv. Funct. Mater. 2024;34(2):2307584. doi: 10.1002/adfm.202307584. DOI

Shan J., Ren T., Li X., Jin M., Wang X.. Study of microplastics as sorbents for rapid detection of multiple antibiotics in water based on SERS technology. Spectrochim. Acta, Part A. 2023;284:121779. doi: 10.1016/j.saa.2022.121779. PubMed DOI

Di Z., Gao J., Li J., Zhou H., Jia C.. Quantitative analysis of microplastics in seawater based on SERS internal standard method. Anal. Methods. 2024;16:1887–1893. doi: 10.1039/D3AY02027D. PubMed DOI

Xu D., Su W., Luo Y., Wang Z., Yin C., Chen B., Zhang Y.. Cellulose Nanofiber Films with Gold Nanoparticles Electrostatically Adsorbed for Facile Surface-Enhanced Raman Scattering Detection. ACS Appl. Mater. Interfaces. 2024;16(18):23352–23361. doi: 10.1021/acsami.4c03255. PubMed DOI

Xu D., Su W., Lu H., Luo Y., Yi T., Wu J., Wu H., Yin C., Chen B.. A gold nanoparticle doped flexible substrate for microplastics SERS detection. Phys. Chem. Chem. Phys. 2022;24(19):12036–12042. doi: 10.1039/D1CP05870C. PubMed DOI

Li Z., Ding Z., Yan Z., Han K., Zhang M., Zhou H., Sun X., Sun H., Li J., Zhang W., Liu X.. NiO/AgNPs nanowell enhanced SERS sensor for efficient detection of micro/nanoplastics in beverages. Talanta. 2025;281:126877. doi: 10.1016/j.talanta.2024.126877. PubMed DOI

Liu J., Xu G., Ruan X., Li K., Zhang L.. V-shaped substrate for surface and volume enhanced Raman spectroscopic analysis of microplastics. Front. Environ. Sci. Eng. 2022;16(11):143. doi: 10.1007/s11783-022-1578-8. DOI

Nie X.-L., Liu H.-L., Pan Z.-Q., Ahmed S. A., Shen Q., Yang J.-M., Pan J.-B., Pang J., Li C.-Y., Xia X.-H., Wang K.. Recognition of plastic nanoparticles using a single gold nanopore fabricated at the tip of a glass nanopipette. Chem. Commun. 2019;55(45):6397–6400. doi: 10.1039/C9CC01358J. PubMed DOI

Carreón R. V., Cortázar-Martínez O., Rodríguez-Hernández A. G., Serrano de la Rosa L. E., Gervacio-Arciniega J. J., Krishnan S. K.. Ionic Liquid-Assisted Thermal Evaporation of Bimetallic Ag–Au Nanoparticle Films as a Highly Reproducible SERS Substrate for Sensitive Nanoplastic Detection in Complex Environments. Anal. Chem. 2024;96(15):5790–5797. doi: 10.1021/acs.analchem.3c04442. PubMed DOI PMC

Huang X., Huang J., Lu M., Liu Y., Jiang G., Chang M., Xu W., Dai Z., Zhou C., Hong P., Li C.. In situ surface-enhanced Raman spectroscopy for the detection of nanoplastics: A novel approach inspired by the aging of nanoplastics. Sci. Total Environ. 2024;946:174249. doi: 10.1016/j.scitotenv.2024.174249. PubMed DOI

Xie L., Gong K., Liu Y., Zhang L.. Strategies and Challenges of Identifying Nanoplastics in Environment by Surface-Enhanced Raman Spectroscopy. Environ. Sci. Technol. 2023;57(1):25–43. doi: 10.1021/acs.est.2c07416. PubMed DOI

Liu L., Martinez Pancorbo P., Xiao T.-H., Noguchi S., Marumi M., Segawa H., Karhadkar S., Gala de Pablo J., Hiramatsu K., Kitahama Y.. et al. Highly Scalable, Wearable Surface-Enhanced Raman Spectroscopy. Adv. Opt. Mater. 2022;10(17):2200054. doi: 10.1002/adom.202200054. DOI

Wu Z., Janssen S. E., Tate M. T., Wei H., Qin M.. Adaptable Plasmonic Membrane Sensors for Fast and Reliable Detection of Trace Low-Micrometer Microplastics in Lake Water. Environ. Sci. Technol. 2024;58(45):20172–20180. doi: 10.1021/acs.est.4c06503. PubMed DOI PMC

Chaisrikhwun B., Balani M. J. D., Ekgasit S., Xie Y., Ozaki Y., Pienpinijtham P.. A green approach to nanoplastic detection: SERS with untreated filter paper for polystyrene nanoplastics. Analyst. 2024;149(16):4158–4167. doi: 10.1039/D4AN00702F. PubMed DOI

Lê Q. T., Ly N. H., Kim M.-K., Lim S. H., Son S. J., Zoh K.-D., Joo S.-W.. Nanostructured Raman substrates for the sensitive detection of submicrometer-sized plastic pollutants in water. J. Hazard. Mater. 2021;402:123499. doi: 10.1016/j.jhazmat.2020.123499. PubMed DOI

Chang L., Jiang S., Luo J., Zhang J., Liu X., Lee C.-Y., Zhang W.. Nanowell-enhanced Raman spectroscopy enables the visualization and quantification of nanoplastics in the environment. Environ. Sci.: Nano. 2022;9(2):542–553. doi: 10.1039/D1EN00945A. DOI

Zhang J., Peng M., Lian E., Xia L., Asimakopoulos A. G., Luo S., Wang L.. Identification of Poly­(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy. Environ. Sci. Technol. 2023;57(22):8365–8372. doi: 10.1021/acs.est.3c00842. PubMed DOI PMC

Luo Y., Su W., Xu D., Wang Z., Wu H., Chen B., Wu J.. Component identification for the SERS spectra of microplastics mixture with convolutional neural network. Sci. Total Environ. 2023;895:165138. doi: 10.1016/j.scitotenv.2023.165138. PubMed DOI

Ren L., Liu S., Huang S., Wang Q., Lu Y., Song J., Guo J.. Identification of microplastics using a convolutional neural network based on micro-Raman spectroscopy. Talanta. 2023;260:124611. doi: 10.1016/j.talanta.2023.124611. PubMed DOI

Srivastava S., Wang W., Zhou W., Jin M., Vikesland P. J.. Machine Learning-Assisted Surface-Enhanced Raman Spectroscopy Detection for Environmental Applications: A Review. Environ. Sci. Technol. 2024;58(47):20830–20848. doi: 10.1021/acs.est.4c06737. PubMed DOI PMC

Jin H., Kong F., Li X., Shen J.. Artificial intelligence in microplastic detection and pollution control. Environ. Res. 2024;262:119812. doi: 10.1016/j.envres.2024.119812. PubMed DOI

Luo Y., Su W., Rabbi M. F., Wan Q., Xu D., Wang Z., Liu S., Xu X., Wu J.. Quantitative analysis of microplastics in water environments based on Raman spectroscopy and convolutional neural network. Sci. Total Environ. 2024;926:171925. doi: 10.1016/j.scitotenv.2024.171925. PubMed DOI

Skvortsova A., Trelin A., Sedlar A., Erzina M., Travnickova M., Svobodova L., Kolska Z., Siegel J., Bacakova L., Svorcik V., Lyutakov O.. SERS-CNN approach for non-invasive and non-destructive monitoring of stem cell growth on a universal substrate through an analysis of the cultivation medium. Sens. Actuators, B. 2023;375:132812. doi: 10.1016/j.snb.2022.132812. DOI

Elashnikov R., Khrystonko O., Trelin A., Kuchař M., Švorčík V., Lyutakov O.. Label-free SERS-ML detection of cocaine trace in human blood plasma. J. Hazard. Mater. 2024;472:134525. doi: 10.1016/j.jhazmat.2024.134525. PubMed DOI

Luo Y., Su W., Xu X., Xu D., Wang Z., Wu H., Chen B., Wu J.. Raman Spectroscopy and Machine Learning for Microplastics Identification and Classification in Water Environments. IEEE J. Sel. Top. Quantum Electron. 2023;29:1–8. doi: 10.1109/JSTQE.2022.3222065. DOI

Cai, Z.-Q. ; Feng, W.-W. ; Wang, H.-Q. ; Liang, X.-H. ; Yang, J.-L. ; Wu, X. ; Wang, Q. . Identification method of microplastics based on Raman-infrared spectroscopy fusion Optical Design and Testing XII SPIE, 2022, 12315, 206–215 10.1117/12.2638579. DOI

Ramanna S., Morozovskii D., Swanson S., Bruneau J.. Machine Learning of polymer types from the spectral signature of Raman spectroscopy microplastics data. Adv. Artif. Intell. Mach. Learn. 2023;3:647–668. doi: 10.54364/AAIML.2023.1144. DOI

Xie L., Luo S., Liu Y., Ruan X., Gong K., Ge Q., Li K., Valev V. K., Liu G., Zhang L.. Automatic Identification of Individual Nanoplastics by Raman Spectroscopy Based on Machine Learning. Environ. Sci. Technol. 2023;57(46):18203–18214. doi: 10.1021/acs.est.3c03210. PubMed DOI

Lei B., Bissonnette J. R., Hogan Ú. E., Bec A. E., Feng X., Smith R. D. L.. Customizable Machine-Learning Models for Rapid Microplastic Identification Using Raman Microscopy. Anal. Chem. 2022;94(49):17011–17019. doi: 10.1021/acs.analchem.2c02451. PubMed DOI

Zhang W., Feng W., Cai Z., Wang H., Yan Q., Wang Q.. A deep one-dimensional convolutional neural network for microplastics classification using Raman spectroscopy. Vib. Spectrosc. 2023;124:103487. doi: 10.1016/j.vibspec.2022.103487. DOI

Skvortsova A., Trelin A., Kriz P., Elashnikov R., Vokata B., Ulbrich P., Pershina A., Svorcik V., Guselnikova O., Lyutakov O.. SERS and advanced chemometrics – Utilization of Siamese neural network for picomolar identification of beta-lactam antibiotics resistance gene fragment. Anal. Chim. Acta. 2022;1192:339373. doi: 10.1016/j.aca.2021.339373. PubMed DOI

Skvortsova A., Trelin A., Guselnikova O., Pershina A., Vokata B., Svorcik V., Lyutakov O.. Surface enhanced Raman spectroscopy and machine learning for identification of beta-lactam antibiotics resistance gene fragment in bacterial plasmid. Anal. Chim. Acta. 2024;1329:343118. doi: 10.1016/j.aca.2024.343118. PubMed DOI

Erzina M., Trelin A., Guselnikova O., Skvortsova A., Strnadova K., Svorcik V., Lyutakov O.. Quantitative detection of α1-acid glycoprotein (AGP) level in blood plasma using SERS and CNN transfer learning approach. Sens. Actuators, B. 2022;367:132057. doi: 10.1016/j.snb.2022.132057. DOI

Zabelina A., Trelin A., Skvortsova A., Zabelin D., Burtsev V., Miliutina E., Svorcik V., Lyutakov O.. Bioinspired superhydrophobic SERS substrates for machine learning assisted miRNA detection in complex biomatrix below femtomolar limit. Anal. Chim. Acta. 2023;1278:341708. doi: 10.1016/j.aca.2023.341708. PubMed DOI

Guselnikova O., Trelin A., Kang Y., Postnikov P., Kobashi M., Suzuki A., Shrestha L. K., Henzie J., Yamauchi Y.. Pretreatment-free SERS sensing of microplastics using a self-attention-based neural network on hierarchically porous Ag foams. Nat. Commun. 2024;15(1):4351. doi: 10.1038/s41467-024-48148-w. PubMed DOI PMC

Kukralova K., Miliutina E., Guselnikova O., Burtsev V., Hrbek T., Svorcik V., Lyutakov O.. Dual-mode electrochemical and SERS detection of PFAS using functional porous substrate. Chemosphere. 2024;364:143149. doi: 10.1016/j.chemosphere.2024.143149. PubMed DOI

Wakaura, H. ; Suksmono, A. B. ; Mulyawan, R. . Variational Quantum Kolmogorov-Arnold Network. 2024. 10.21203/rs.3.rs-4504342/v3. DOI

Chen F., Zhao M., Zhang B., Li G., Liu H., Li Z., Zhao M., Ma Y.. Gas-Liquid Interface Plasmonic Arrays for SERS Detection of Microplastics. Appl. Surf. Sci. 2025;690:162583. doi: 10.1016/j.apsusc.2025.162583. DOI

Zhou X.-X., Liu R., Hao L.-T., Liu J.-F.. Identification of Polystyrene Nanoplastics Using Surface Enhanced Raman Spectroscopy. Talanta. 2021;221:121552. doi: 10.1016/j.talanta.2020.121552. PubMed DOI

Jeon Y., Kim D., Kwon G., Lee K., Oh C.-S., Kim U.-J., You J.. Detection of Nanoplastics Based on Surface-Enhanced Raman Scattering with Silver Nanowire Arrays on Regenerated Cellulose Films. Carbohydr. Polym. 2021;272:118470. doi: 10.1016/j.carbpol.2021.118470. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...