Immunotherapy for rapid bone marrow conditioning and leukemia depletion that allows efficient hematopoietic stem cell transplantation
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
40579234
PubMed Central
PMC12207149
DOI
10.1136/jitc-2025-011888
PII: jitc-2025-011888
Knihovny.cz E-zdroje
- Klíčová slova
- Bispecific T cell engager - BiTE, Immunotherapy, Leukemia, Pharmacokinetics - PK, Stem cell,
- MeSH
- hematopoetické kmenové buňky imunologie metabolismus MeSH
- imunoterapie * metody MeSH
- leukemie * terapie imunologie MeSH
- lidé MeSH
- myši MeSH
- příprava pacienta k transplantaci * metody MeSH
- protoonkogenní proteiny c-kit imunologie metabolismus MeSH
- transplantace hematopoetických kmenových buněk * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protoonkogenní proteiny c-kit MeSH
Hematopoietic stem cell transplantation (HSCT) is a life-saving procedure to treat hematopoietic disorders. Current bone marrow conditioning protocols create space for healthy donor stem cells by employing irradiation and/or chemotherapy, but carry severe toxicities, resulting in significant morbidity, mortality and substantial long-term complications. To develop a low-toxicity solution, we generated a bi-specific T-cell engager (BTCE) that targets CD117, an abundantly expressed receptor on hematopoietic stem and progenitor cells (HSPC) and leukemia-initiating cells (LICs). We show that the CD117×CD3 BTCE efficiently depletes in vitro and in vivo HSPCs and LICs. The CD117×CD3 BTCE was not toxic and facilitates highly efficient engraftment of human allogenic donor CD34+cells in humanized mice, thereby restoring hematopoiesis in vivo in both normal and leukemia-bearing humanized mice. We demonstrate here that a potent CD117×CD3 BTCE enables rapid HSCT in both benign and malignant conditions.
Czech Academy of Sciences Prague Czech Republic
Department of Hematology Erasmus MC Universitair Medisch Centrum Rotterdam Rotterdam The Netherlands
Department of Immunology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
Zobrazit více v PubMed
Baldomero H, Neumann D, Hamad N, et al. The role of registries in hematological disorders. Best Pract Res Clin Haematol. 2024;37:101556. doi: 10.1016/j.beha.2024.101556. PubMed DOI
Goebel GA, de Assis CS, Cunha LAO, et al. Survival After Hematopoietic Stem Cell Transplantation in Severe Combined Immunodeficiency (SCID): A Worldwide Review of the Prognostic Variables. Clin Rev Allergy Immunol. 2024;66:192–209. doi: 10.1007/s12016-024-08993-5. PubMed DOI
Lum SH, Eikema D-J, Piepenbroek B, et al. Outcomes of hematopoietic stem cell transplantation in 813 pediatric patients with Fanconi anemia. Blood. 2024;144:1329–42. doi: 10.1182/blood.2023022751. PubMed DOI
Passweg JR, Baldomero H, Chabannon C, et al. Hematopoietic cell transplantation and cellular therapy survey of the EBMT: monitoring of activities and trends over 30 years. Bone Marrow Transplant. 2021;56:1651–64. doi: 10.1038/s41409-021-01227-8. PubMed DOI PMC
Testi AM, Moleti ML, Angi A, et al. Pediatric Autologous Hematopoietic Stem Cell Transplantation: Safety, Efficacy, and Patient Outcomes. Literature Review. Pediatric Health Med Ther . 2023;14:197–215. doi: 10.2147/PHMT.S366636. PubMed DOI PMC
Yabe H, Koike T, Yamamoto S, et al. Allogeneic stem cell transplantation for inherited metabolic disorders: 35 years’ experience at a single institution. Int J Hematol. 2024;120:365–74. doi: 10.1007/s12185-024-03810-3. PubMed DOI
Sawyer J, Elliott T, Orton L, et al. Prevention and management of acute toxicities from conditioning regimens during hematopoietic stem cell transplantation. Clin Hematol Int . 2024;6:1–10. doi: 10.46989/001c.94952. PubMed DOI PMC
Gyurkocza B, Sandmaier BM. Conditioning regimens for hematopoietic cell transplantation: one size does not fit all. Blood. 2014;124:344–53. doi: 10.1182/blood-2014-02-514778. PubMed DOI PMC
Raber-Durlacher JE, Treister NS, Zadik Y, et al. MASCC/ISOO Clinical Practice Statement: The risk of secondary oral cancer following hematopoietic cell transplantation. Support Care Cancer. 2024;32:545. doi: 10.1007/s00520-024-08685-y. PubMed DOI PMC
Al-Mahayri ZN, AlAhmad MM, Ali BR. Long-Term Effects of Pediatric Acute Lymphoblastic Leukemia Chemotherapy: Can Recent Findings Inform Old Strategies? Front Oncol. 2021;11:710163. doi: 10.3389/fonc.2021.710163. PubMed DOI PMC
Roganovic J, Haupt R, Bárdi E, et al. Late Adverse Effects after Treatment for Childhood Acute Leukemia. Acta Med Acad. 2024;53:59–80. doi: 10.5644/ama2006-124.438. PubMed DOI PMC
Ferrari S, Valeri E, Conti A, et al. Genetic engineering meets hematopoietic stem cell biology for next-generation gene therapy. Cell Stem Cell. 2023;30:549–70. doi: 10.1016/j.stem.2023.04.014. PubMed DOI
Domen J, Weissman IL. Hematopoietic stem cells need two signals to prevent apoptosis; BCL-2 can provide one of these, Kitl/c-Kit signaling the other. J Exp Med. 2000;192:1707–18. doi: 10.1084/jem.192.12.1707. PubMed DOI PMC
Czechowicz A, Kraft D, Weissman IL, et al. Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science. 2007;318:1296–9. doi: 10.1126/science.1149726. PubMed DOI PMC
Chhabra A, Ring AM, Weiskopf K, et al. Hematopoietic stem cell transplantation in immunocompetent hosts without radiation or chemotherapy. Sci Transl Med. 2016;8:351ra105. doi: 10.1126/scitranslmed.aae0501. PubMed DOI PMC
Bankova AK, Pang WW, Velasco BJ, et al. 5-Azacytidine depletes HSCs and synergizes with an anti-CD117 antibody to augment donor engraftment in immunocompetent mice. Blood Adv. 2021;5:3900–12. doi: 10.1182/bloodadvances.2020003841. PubMed DOI PMC
Czechowicz A, Palchaudhuri R, Scheck A, et al. Selective hematopoietic stem cell ablation using CD117-antibody-drug-conjugates enables safe and effective transplantation with immunity preservation. Nat Commun. 2019;10:617. doi: 10.1038/s41467-018-08201-x. PubMed DOI PMC
Uchida N, Stasula U, Demirci S, et al. Fertility-preserving myeloablative conditioning using single-dose CD117 antibody-drug conjugate in a rhesus gene therapy model. Nat Commun. 2023;14:6291. doi: 10.1038/s41467-023-41153-5. PubMed DOI PMC
Magnani CF, Myburgh R, Brunn S, et al. Anti-CD117 CAR T cells incorporating a safety switch eradicate human acute myeloid leukemia and hematopoietic stem cells. Mol Ther Oncolytics. 2023;30:56–71. doi: 10.1016/j.omto.2023.07.003. PubMed DOI PMC
Arai Y, Choi U, Corsino CI, et al. Myeloid Conditioning with c-kit-Targeted CAR-T Cells Enables Donor Stem Cell Engraftment. Mol Ther. 2018;26:1181–97. doi: 10.1016/j.ymthe.2018.03.003. PubMed DOI PMC
Bubb QR, Balood M, Seir GE, et al. Development of multivalent CAR T cells as dual immunotherapy and conditioning agents. Mol Ther Oncol . 2025;33:200944. doi: 10.1016/j.omton.2025.200944. PubMed DOI PMC
Volta L, Myburgh R, Hofstetter M, et al. A single-chain variable fragment-based bispecific T-cell activating antibody against CD117 enables T-cell mediated lysis of acute myeloid leukemia and hematopoietic stem and progenitor cells. Hemasphere. 2024;8:e70055. doi: 10.1002/hem3.70055. PubMed DOI PMC
Casirati G, Cosentino A, Mucci A, et al. Epitope editing enables targeted immunotherapy of acute myeloid leukaemia. Nature New Biol. 2023;621:404–14. doi: 10.1038/s41586-023-06496-5. PubMed DOI PMC
Kwon H-S, Logan AC, Chhabra A, et al. Anti-human CD117 antibody-mediated bone marrow niche clearance in nonhuman primates and humanized NSG mice. Blood. 2019;133:2104–8. doi: 10.1182/blood-2018-06-853879. PubMed DOI PMC
Jung D, Long-Boyle JR, Pang WW, et al. Pharmacokinetics of Briquilimab as a Conditioning Agent for Hematopoietic Stem Cell Transplantation in Patients With Severe Combined Immunodeficiency, Myelodysplastic Syndrome, or Acute Myeloid Leukemia. Transplant Cell Ther. 2024;30:923. doi: 10.1016/j.jtct.2024.07.001. PubMed DOI
Salerno SN, Deng R, Kakkar T. Physiologically-based pharmacokinetic modeling of immunoglobulin and antibody coadministration in patients with primary human immunodeficiency. CPT Pharmacometrics Syst Pharmacol. 2022;11:1316–27. doi: 10.1002/psp4.12847. PubMed DOI PMC
Agarwal R, Dvorak CC, Prohaska S, et al. Toxicity-Free Hematopoietic Stem Cell Engraftment Achieved with Anti-CD117 Monoclonal Antibody Conditioning. Biol Blood Marrow Transplant. 2019;25:S92. doi: 10.1016/j.bbmt.2018.12.172. DOI
Baeuerle PA, Kufer P, Lutterbüse R. Bispecific antibodies for polyclonal T-cell engagement. Curr Opin Mol Ther. 2003;5:413–9. PubMed
Broudy VC, Lin N, Zsebo KM, et al. Isolation and characterization of a monoclonal antibody that recognizes the human c-kit receptor. Blood. 1992;79:338–46. PubMed
Blumberg RS, Ley S, Sancho J, et al. Structure of the T-cell antigen receptor: evidence for two CD3 epsilon subunits in the T-cell receptor-CD3 complex. Proc Natl Acad Sci U S A. 1990;87:7220–4. doi: 10.1073/pnas.87.18.7220. PubMed DOI PMC
Minutti CM, Piot C, Pereira da Costa M, et al. Distinct ontogenetic lineages dictate cDC2 heterogeneity. Nat Immunol. 2024;25:448–61. doi: 10.1038/s41590-024-01745-9. PubMed DOI PMC
Li K, Du Y, Cai Y, et al. Single-cell analysis reveals the chemotherapy-induced cellular reprogramming and novel therapeutic targets in relapsed/refractory acute myeloid leukemia. Leukemia. 2023;37:308–25. doi: 10.1038/s41375-022-01789-6. PubMed DOI PMC
Heinrich MC, Blanke CD, Druker BJ, et al. Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. J Clin Oncol. 2002;20:1692–703. doi: 10.1200/JCO.2002.20.6.1692. PubMed DOI
Thomas D, Majeti R. Biology and relevance of human acute myeloid leukemia stem cells. Blood. 2017;129:1577–85. doi: 10.1182/blood-2016-10-696054. PubMed DOI PMC
Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature New Biol. 1994;367:645–8. doi: 10.1038/367645a0. PubMed DOI
Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7. doi: 10.1038/nm0797-730. PubMed DOI
Gandhi A, Lee CJ, Varma A, et al. Allogeneic transplantation: conditioning regimens, engraftment and acute toxicities. Blood. 2023;142:470–2. doi: 10.1182/blood-2023-185533. DOI
Polisetti N, Schlötzer-Schrehardt U, Reinhard T, et al. Isolation and enrichment of melanocytes from human corneal limbus using CD117 (c-Kit) as selection marker. Sci Rep. 2020;10:17588. doi: 10.1038/s41598-020-74869-1. PubMed DOI PMC
Nishida H, Daa T, Kashima K, et al. KIT (CD117) Expression in Benign and Malignant Sweat Gland Tumors. Am J Dermatopathol. 2015;37:898–905. doi: 10.1097/DAD.0000000000000301. PubMed DOI PMC
Myburgh R, Kiefer JD, Russkamp NF, et al. Anti-human CD117 CAR T-cells efficiently eliminate healthy and malignant CD117-expressing hematopoietic cells. Leukemia. 2020;34:2688–703. doi: 10.1038/s41375-020-0818-9. PubMed DOI
Lammie A, Drobnjak M, Gerald W, et al. Expression of c-kit and kit ligand proteins in normal human tissues. J Histochem Cytochem. 1994;42:1417–25. doi: 10.1177/42.11.7523489. PubMed DOI
Kantarjian H, Stein A, Gökbuget N, et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N Engl J Med. 2017;376:836–47. doi: 10.1056/NEJMoa1609783. PubMed DOI PMC
Moreau P, Garfall AL, van de Donk NWCJ, et al. Teclistamab in Relapsed or Refractory Multiple Myeloma. N Engl J Med. 2022;387:495–505. doi: 10.1056/NEJMoa2203478. PubMed DOI PMC
Bahlis NJ, Costello CL, Raje NS, et al. Elranatamab in relapsed or refractory multiple myeloma: the MagnetisMM-1 phase 1 trial. Nat Med. 2023;29:2570–6. doi: 10.1038/s41591-023-02589-w. PubMed DOI PMC
Dickinson MJ, Carlo-Stella C, Morschhauser F, et al. Glofitamab for Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N Engl J Med. 2022;387:2220–31. doi: 10.1056/NEJMoa2206913. PubMed DOI
Thieblemont C, Phillips T, Ghesquieres H, et al. Epcoritamab, a Novel, Subcutaneous CD3xCD20 Bispecific T-Cell-Engaging Antibody, in Relapsed or Refractory Large B-Cell Lymphoma: Dose Expansion in a Phase I/II Trial. J Clin Oncol. 2023;41:2238–47. doi: 10.1200/JCO.22.01725. PubMed DOI PMC
Budde LE, Sehn LH, Matasar M, et al. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: a single-arm, multicentre, phase 2 study. Lancet Oncol. 2022;23:1055–65. doi: 10.1016/S1470-2045(22)00335-7. PubMed DOI
Chari A, Minnema MC, Berdeja JG, et al. Talquetamab, a T-Cell-Redirecting GPRC5D Bispecific Antibody for Multiple Myeloma. N Engl J Med. 2022;387:2232–44. doi: 10.1056/NEJMoa2204591. PubMed DOI
Omer MH, Shafqat A, Ahmad O, et al. Bispecific Antibodies in Hematological Malignancies: A Scoping Review. Cancers (Basel) 2023;15:4550. doi: 10.3390/cancers15184550. PubMed DOI PMC
Haber L, Olson K, Kelly MP, et al. Generation of T-cell-redirecting bispecific antibodies with differentiated profiles of cytokine release and biodistribution by CD3 affinity tuning. Sci Rep. 2021;11:14397. doi: 10.1038/s41598-021-93842-0. PubMed DOI PMC