Antimicrobial resistance mechanisms in non-tuberculous mycobacteria
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40580364
PubMed Central
PMC12476398
DOI
10.1007/s12223-025-01287-z
PII: 10.1007/s12223-025-01287-z
Knihovny.cz E-zdroje
- Klíčová slova
- Antimicrobial resistance, Cell wall, Non-tuberculous mycobacteria, Resistance mechanism,
- MeSH
- antibakteriální látky * farmakologie MeSH
- atypické mykobakteriální infekce * mikrobiologie farmakoterapie MeSH
- bakteriální léková rezistence * MeSH
- bakteriální proteiny metabolismus genetika MeSH
- biofilmy MeSH
- buněčná stěna metabolismus MeSH
- lidé MeSH
- netuberkulózní mykobakterie * účinky léků genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antibakteriální látky * MeSH
- bakteriální proteiny MeSH
Non-tuberculous mycobacteria (NTM) are pathogens that are widely distributed in the environment and cause increasing rates of human infections. High levels of antimicrobial resistance shown by these bacteria complicate infection management and limit treatment options. The complex structure of cell walls and features such as biofilm formation are responsible for intrinsic resistance in NTMs. Antimicrobial resistance can be explained by four basic mechanisms: (i) limitation of drug uptake, meaning antibiotic entry is limited due to the presence of a hydrophobic and low permeability cell wall and a small number of porin channels, (ii) enzymatic modification of antibiotics, (iii) target site modification, (iv) efflux pumps, which prevent drug accumulation by actively expelling antibiotics from the cell and reduce treatment efficacy. For effective management of NTM infections, detailed understanding of resistance mechanisms, development of species-specific treatment protocols, and discovery of new antimicrobial agents are of great importance. In this review, the mechanisms causing drug resistance in NTMs will be reviewed.
Zobrazit více v PubMed
Alav I, Sutton JM, Rahman KM (2018) Role of bacterial efflux pumps in biofilm formation. J Antimicrob Chemother 73:2003–2020. 10.1093/jac/dky042 PubMed
AlMatar M, Albarri O, Makky EA, Köksal F (2021) Efflux pump inhibitors: new updates. Pharmacol Rep 73:1–16. 10.1007/s43440-020-00160-9 PubMed
Broncano-Lavado A, Senhaji-Kacha A, Santamaría-Corral G, Esteban J, García-Quintanilla M (2022) Alternatives to antibiotics against Mycobacterium abscessus. Antibiot (Basel) 11(10):1322 10.3390/antibiotics11101322 PubMed PMC
Brown-Elliott Barbara A, Nash Kevin A, Wallace Richard J (2012) Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev 25:545–582. 10.1128/cmr.05030-11 PubMed PMC
Brown-Elliott BA, Woods GL (2019) Antimycobacterial susceptibility testing of nontuberculous mycobacteria. J Clin Microbiol 57. 10.1128/jcm.00834-19 PubMed PMC
De Rossi E, Aínsa JA, Riccardi G (2006) Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol Rev 30:36–52. 10.1111/j.1574-6976.2005.00002.x PubMed
Faria S, Joao I, Jordao L (2015) General overview on nontuberculous mycobacteria, biofilms, and human infection. J Pathog 2015:809014. 10.1155/2015/809014 PubMed PMC
Garcia Carvalho NF, Pedace CS, Barbosa de Almeida AR, dos Santos Simeão FC, Chimara E (2021) Evaluation of drug susceptibility in nontuberculous Mycobacteria using the SLOMYCO and RAPMYCO sensititre plates. The International Journal of Mycobacteriology 10:379–387. 10.4103/ijmy.ijmy_219_21 PubMed
Gopalaswamy R, Shanmugam S, Mondal R, Subbian S (2020) Of tuberculosis and non-tuberculous mycobacterial infections - a comparative analysis of epidemiology, diagnosis and treatment. J Biomed Sci 27:74. 10.1186/s12929-020-00667-6 PubMed PMC
Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F et al (2007) An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175:367–416. 10.1164/rccm.200604-571ST PubMed
Gutiérrez AV, Richard M, Roquet-Banères F, Viljoen A, Kremer L (2019) The TetR family transcription factor MAB_2299c regulates the expression of two distinct MmpS-MmpL efflux pumps involved in cross-resistance to clofazimine and bedaquiline in Mycobacterium abscessus. Antimicrob Agents Chemother 63:e01000-19. 10.1128/aac.01000-19 PubMed PMC
Helmy YA, Taha-Abdelaziz K, Hawwas HAE, Ghosh S, AlKafaas SS, Moawad MMM et al (2023) Antimicrobial resistance and recent alternatives to antibiotics for the control of bacterial pathogens with an emphasis on foodborne pathogens. Antibiotics (Basel)12. 10.3390/antibiotics12020274 PubMed PMC
Huang WC, Yu MC, Huang YW (2020) Identification and drug susceptibility testing for nontuberculous mycobacteria. J Formos Med Assoc 119(Suppl 1):S32-s41. 10.1016/j.jfma.2020.05.002 PubMed
Jacobo-Delgado YM, Rodríguez-Carlos A, Serrano CJ, Rivas-Santiago B (2023) Mycobacterium tuberculosis cell-wall and antimicrobial peptides: a mission impossible? Front Immunol 14:1194923. 10.3389/fimmu.2023.1194923 PubMed PMC
Johansen MD, Herrmann JL, Kremer L (2020) Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat Rev Microbiol 18:392–407. 10.1038/s41579-020-0331-1 PubMed
Laws M, Jin P, Rahman KM (2022) Efflux pumps in Mycobacterium tuberculosis and their inhibition to tackle antimicrobial resistance. Trends Microbiol 30:57–68. 10.1016/j.tim.2021.05.001 PubMed
Louw GE, Warren RM, Gey van Pittius NC, McEvoy CR, Van Helden PD, Victor TC (2009) A balancing act: efflux/influx in mycobacterial drug resistance. Antimicrob Agents Chemother 53:3181–3189. 10.1128/aac.01577-08 PubMed PMC
Luthra S, Rominski A, Sander P (2018) The role of antibiotic-target-modifying and antibiotic-modifying enzymes in Mycobacterium abscessus drug resistance. Front Microbiol 9:2179. 10.3389/fmicb.2018.02179 PubMed PMC
Nasiri MJ, Haeili M, Ghazi M, Goudarzi H, Pormohammad A, Imani Fooladi AA, Feizabadi MM (2017) New insights in to the intrinsic and acquired drug resistance mechanisms in mycobacteria. Front Microbiol 8:681. 10.3389/fmicb.2017.00681 PubMed PMC
Nguyen TQ, Heo BE, Jeon S, Ash A, Lee H, Moon C, Jang J (2024) Exploring antibiotic resistance mechanisms in Mycobacterium abscessus for enhanced therapeutic approaches. Front Microbiol 15:1331508. 10.3389/fmicb.2024.1331508 PubMed PMC
Pennington KM, Vu A, Challener D, Rivera CG, Shweta FNU, Zeuli JD, Temesgen Z (2021) Approach to the diagnosis and treatment of non-tuberculous mycobacterial disease. J Clin Tuberc Other Mycobact Dis 24:100244. 10.1016/j.jctube.2021.100244 PubMed PMC
Rindi L (2020) Efflux pump inhibitors against nontuberculous mycobacteria. Int J Mol Sci 21:4191. 10.3390/ijms21124191 PubMed PMC
Rudra P, Hurst-Hess K, Lappierre P, Ghosh P (2018) High levels of intrinsic tetracycline resistance in Mycobacterium abscessus are conferred by a tetracycline-modifying monooxygenase. Antimicrob Agents Chemother 62:e00119-18. 10.1128/aac.00119-18 PubMed PMC
Ryu YJ, Koh WJ, Daley CL (2016) Diagnosis and treatment of nontuberculous mycobacterial lung disease: clinicians’ perspectives. Tuberc Respir Dis (Seoul) 79:74–84. 10.4046/trd.2016.79.2.74 PubMed PMC
Sachan RSK, Mistry V, Dholaria M, Rana A, Devgon I, Ali I et al (2023) Overcoming Mycobacterium tuberculosis drug resistance: novel medications and repositioning strategies. ACS Omega 8:32244–32257. 10.1021/acsomega.3c02563 PubMed PMC
Sangsayunh P, Sanchat T, Sangkaew K, Thuansuwan W (2024) Diagnostic performance of genotype MTBDRsl assay (version 2) for detecting 2nd line drug resistance tb compared to sensititre MycoTBI MIC in MDR-TB patients. J Med Assoc Thail 107. 10.35755/jmedassocthai.2024.1.13932
Saxena S, Spaink HP, Forn-Cuní G (2021) Drug resistance in nontuberculous mycobacteria: mechanisms and models. Biology (Basel) 10. 10.3390/biology10020096 PubMed PMC
Schmalstieg AM, Srivastava S, Belkaya S, Deshpande D, Meek C, Leff R et al (2012) The antibiotic resistance arrow of time: efflux pump induction is a general first step in the evolution of mycobacterial drug resistance. Antimicrob Agents Chemother 56:4806–4815. 10.1128/aac.05546-11 PubMed PMC
Singh P, Rameshwaram NR, Ghosh S, Mukhopadhyay S (2018) Cell envelope lipids in the pathophysiology of Mycobacterium tuberculosis. Future Microbiol 13:689–710. 10.2217/fmb-2017-0135 PubMed
Singh R, Dwivedi SP, Gaharwar US, Meena R, Rajamani P, Prasad T (2020) Recent updates on drug resistance in Mycobacterium tuberculosis. J Appl Microbiol 128:1547–1567. 10.1111/jam.14478 PubMed
Skinner KT, Palkar AM, Hong AL (2023) Genetics of ABCB1 in cancer. PubMed PMC
Song L, Wu X (2016) Development of efflux pump inhibitors in antituberculosis therapy. Int J Antimicrob Agents 47:421–429. 10.1016/j.ijantimicag.2016.04.007 PubMed
Tarashi S, Siadat SD, Fateh A (2022) Nontuberculous mycobacterial resistance to antibiotics and disinfectants: challenges still ahead. Biomed Res Int 2022:8168750. 10.1155/2022/8168750 PubMed PMC
Tran T, Bonham AJ, Chan ED, Honda JR (2019) A paucity of knowledge regarding nontuberculous mycobacterial lipids compared to the tubercle bacillus. Tuberculosis (Edinb) 115:96–107. 10.1016/j.tube.2019.02.008 PubMed
van Ingen J, Boeree MJ, van Soolingen D, Mouton JW (2012) Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist Updat 15:149–161. 10.1016/j.drup.2012.04.001 PubMed
Victoria L, Gupta A, Gómez JL, Robledo J (2021) Mycobacterium abscessus complex: a review of recent developments in an emerging pathogen. Front Cell Infect Microbiol 11:659997. 10.3389/fcimb.2021.659997 PubMed PMC
Wu ML, Aziz DB, Dartois V, Dick T (2018) NTM drug discovery: status, gaps and the way forward. Drug Discov Today 23:1502–1519. 10.1016/j.drudis.2018.04.001 PubMed PMC