Antimicrobial resistance mechanisms in non-tuberculous mycobacteria

. 2025 Aug ; 70 (4) : 729-738. [epub] 20250628

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40580364
Odkazy

PubMed 40580364
PubMed Central PMC12476398
DOI 10.1007/s12223-025-01287-z
PII: 10.1007/s12223-025-01287-z
Knihovny.cz E-zdroje

Non-tuberculous mycobacteria (NTM) are pathogens that are widely distributed in the environment and cause increasing rates of human infections. High levels of antimicrobial resistance shown by these bacteria complicate infection management and limit treatment options. The complex structure of cell walls and features such as biofilm formation are responsible for intrinsic resistance in NTMs. Antimicrobial resistance can be explained by four basic mechanisms: (i) limitation of drug uptake, meaning antibiotic entry is limited due to the presence of a hydrophobic and low permeability cell wall and a small number of porin channels, (ii) enzymatic modification of antibiotics, (iii) target site modification, (iv) efflux pumps, which prevent drug accumulation by actively expelling antibiotics from the cell and reduce treatment efficacy. For effective management of NTM infections, detailed understanding of resistance mechanisms, development of species-specific treatment protocols, and discovery of new antimicrobial agents are of great importance. In this review, the mechanisms causing drug resistance in NTMs will be reviewed.

Zobrazit více v PubMed

Alav I, Sutton JM, Rahman KM (2018) Role of bacterial efflux pumps in biofilm formation. J Antimicrob Chemother 73:2003–2020. 10.1093/jac/dky042 PubMed

AlMatar M, Albarri O, Makky EA, Köksal F (2021) Efflux pump inhibitors: new updates. Pharmacol Rep 73:1–16. 10.1007/s43440-020-00160-9 PubMed

Broncano-Lavado A, Senhaji-Kacha A, Santamaría-Corral G, Esteban J, García-Quintanilla M (2022) Alternatives to antibiotics against Mycobacterium abscessus. Antibiot (Basel) 11(10):1322 10.3390/antibiotics11101322 PubMed PMC

Brown-Elliott Barbara A, Nash Kevin A, Wallace Richard J (2012) Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev 25:545–582. 10.1128/cmr.05030-11 PubMed PMC

Brown-Elliott BA, Woods GL (2019) Antimycobacterial susceptibility testing of nontuberculous mycobacteria. J Clin Microbiol 57. 10.1128/jcm.00834-19 PubMed PMC

De Rossi E, Aínsa JA, Riccardi G (2006) Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol Rev 30:36–52. 10.1111/j.1574-6976.2005.00002.x PubMed

Faria S, Joao I, Jordao L (2015) General overview on nontuberculous mycobacteria, biofilms, and human infection. J Pathog 2015:809014. 10.1155/2015/809014 PubMed PMC

Garcia Carvalho NF, Pedace CS, Barbosa de Almeida AR, dos Santos Simeão FC, Chimara E (2021) Evaluation of drug susceptibility in nontuberculous Mycobacteria using the SLOMYCO and RAPMYCO sensititre plates. The International Journal of Mycobacteriology 10:379–387. 10.4103/ijmy.ijmy_219_21 PubMed

Gopalaswamy R, Shanmugam S, Mondal R, Subbian S (2020) Of tuberculosis and non-tuberculous mycobacterial infections - a comparative analysis of epidemiology, diagnosis and treatment. J Biomed Sci 27:74. 10.1186/s12929-020-00667-6 PubMed PMC

Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F et al (2007) An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175:367–416. 10.1164/rccm.200604-571ST PubMed

Gutiérrez AV, Richard M, Roquet-Banères F, Viljoen A, Kremer L (2019) The TetR family transcription factor MAB_2299c regulates the expression of two distinct MmpS-MmpL efflux pumps involved in cross-resistance to clofazimine and bedaquiline in Mycobacterium abscessus. Antimicrob Agents Chemother 63:e01000-19. 10.1128/aac.01000-19 PubMed PMC

Helmy YA, Taha-Abdelaziz K, Hawwas HAE, Ghosh S, AlKafaas SS, Moawad MMM et al (2023) Antimicrobial resistance and recent alternatives to antibiotics for the control of bacterial pathogens with an emphasis on foodborne pathogens. Antibiotics (Basel)12. 10.3390/antibiotics12020274 PubMed PMC

Huang WC, Yu MC, Huang YW (2020) Identification and drug susceptibility testing for nontuberculous mycobacteria. J Formos Med Assoc 119(Suppl 1):S32-s41. 10.1016/j.jfma.2020.05.002 PubMed

Jacobo-Delgado YM, Rodríguez-Carlos A, Serrano CJ, Rivas-Santiago B (2023) Mycobacterium tuberculosis cell-wall and antimicrobial peptides: a mission impossible? Front Immunol 14:1194923. 10.3389/fimmu.2023.1194923 PubMed PMC

Johansen MD, Herrmann JL, Kremer L (2020) Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat Rev Microbiol 18:392–407. 10.1038/s41579-020-0331-1 PubMed

Laws M, Jin P, Rahman KM (2022) Efflux pumps in Mycobacterium tuberculosis and their inhibition to tackle antimicrobial resistance. Trends Microbiol 30:57–68. 10.1016/j.tim.2021.05.001 PubMed

Louw GE, Warren RM, Gey van Pittius NC, McEvoy CR, Van Helden PD, Victor TC (2009) A balancing act: efflux/influx in mycobacterial drug resistance. Antimicrob Agents Chemother 53:3181–3189. 10.1128/aac.01577-08 PubMed PMC

Luthra S, Rominski A, Sander P (2018) The role of antibiotic-target-modifying and antibiotic-modifying enzymes in Mycobacterium abscessus drug resistance. Front Microbiol 9:2179. 10.3389/fmicb.2018.02179 PubMed PMC

Nasiri MJ, Haeili M, Ghazi M, Goudarzi H, Pormohammad A, Imani Fooladi AA, Feizabadi MM (2017) New insights in to the intrinsic and acquired drug resistance mechanisms in mycobacteria. Front Microbiol 8:681. 10.3389/fmicb.2017.00681 PubMed PMC

Nguyen TQ, Heo BE, Jeon S, Ash A, Lee H, Moon C, Jang J (2024) Exploring antibiotic resistance mechanisms in Mycobacterium abscessus for enhanced therapeutic approaches. Front Microbiol 15:1331508. 10.3389/fmicb.2024.1331508 PubMed PMC

Pennington KM, Vu A, Challener D, Rivera CG, Shweta FNU, Zeuli JD, Temesgen Z (2021) Approach to the diagnosis and treatment of non-tuberculous mycobacterial disease. J Clin Tuberc Other Mycobact Dis 24:100244. 10.1016/j.jctube.2021.100244 PubMed PMC

Rindi L (2020) Efflux pump inhibitors against nontuberculous mycobacteria. Int J Mol Sci 21:4191. 10.3390/ijms21124191 PubMed PMC

Rudra P, Hurst-Hess K, Lappierre P, Ghosh P (2018) High levels of intrinsic tetracycline resistance in Mycobacterium abscessus are conferred by a tetracycline-modifying monooxygenase. Antimicrob Agents Chemother 62:e00119-18. 10.1128/aac.00119-18 PubMed PMC

Ryu YJ, Koh WJ, Daley CL (2016) Diagnosis and treatment of nontuberculous mycobacterial lung disease: clinicians’ perspectives. Tuberc Respir Dis (Seoul) 79:74–84. 10.4046/trd.2016.79.2.74 PubMed PMC

Sachan RSK, Mistry V, Dholaria M, Rana A, Devgon I, Ali I et al (2023) Overcoming Mycobacterium tuberculosis drug resistance: novel medications and repositioning strategies. ACS Omega 8:32244–32257. 10.1021/acsomega.3c02563 PubMed PMC

Sangsayunh P, Sanchat T, Sangkaew K, Thuansuwan W (2024) Diagnostic performance of genotype MTBDRsl assay (version 2) for detecting 2nd line drug resistance tb compared to sensititre MycoTBI MIC in MDR-TB patients. J Med Assoc Thail 107. 10.35755/jmedassocthai.2024.1.13932

Saxena S, Spaink HP, Forn-Cuní G (2021) Drug resistance in nontuberculous mycobacteria: mechanisms and models. Biology (Basel) 10. 10.3390/biology10020096 PubMed PMC

Schmalstieg AM, Srivastava S, Belkaya S, Deshpande D, Meek C, Leff R et al (2012) The antibiotic resistance arrow of time: efflux pump induction is a general first step in the evolution of mycobacterial drug resistance. Antimicrob Agents Chemother 56:4806–4815. 10.1128/aac.05546-11 PubMed PMC

Singh P, Rameshwaram NR, Ghosh S, Mukhopadhyay S (2018) Cell envelope lipids in the pathophysiology of Mycobacterium tuberculosis. Future Microbiol 13:689–710. 10.2217/fmb-2017-0135 PubMed

Singh R, Dwivedi SP, Gaharwar US, Meena R, Rajamani P, Prasad T (2020) Recent updates on drug resistance in Mycobacterium tuberculosis. J Appl Microbiol 128:1547–1567. 10.1111/jam.14478 PubMed

Skinner KT, Palkar AM, Hong AL (2023) Genetics of ABCB1 in cancer. PubMed PMC

Song L, Wu X (2016) Development of efflux pump inhibitors in antituberculosis therapy. Int J Antimicrob Agents 47:421–429. 10.1016/j.ijantimicag.2016.04.007 PubMed

Tarashi S, Siadat SD, Fateh A (2022) Nontuberculous mycobacterial resistance to antibiotics and disinfectants: challenges still ahead. Biomed Res Int 2022:8168750. 10.1155/2022/8168750 PubMed PMC

Tran T, Bonham AJ, Chan ED, Honda JR (2019) A paucity of knowledge regarding nontuberculous mycobacterial lipids compared to the tubercle bacillus. Tuberculosis (Edinb) 115:96–107. 10.1016/j.tube.2019.02.008 PubMed

van Ingen J, Boeree MJ, van Soolingen D, Mouton JW (2012) Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist Updat 15:149–161. 10.1016/j.drup.2012.04.001 PubMed

Victoria L, Gupta A, Gómez JL, Robledo J (2021) Mycobacterium abscessus complex: a review of recent developments in an emerging pathogen. Front Cell Infect Microbiol 11:659997. 10.3389/fcimb.2021.659997 PubMed PMC

Wu ML, Aziz DB, Dartois V, Dick T (2018) NTM drug discovery: status, gaps and the way forward. Drug Discov Today 23:1502–1519. 10.1016/j.drudis.2018.04.001 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...