Reanalysis of Next-Generation Sequencing Data to Detect Tandem Repeat Expansions in 1,106 Czech Probands With Neurologic Disease

. 2025 Aug ; 11 (4) : e200272. [epub] 20250625

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40585427

BACKGROUND AND OBJECTIVES: Tandem repeats (TRs) are DNA regions of tandemly repeated nucleotide motifs. Their pathogenic expansions cause various, mainly neurologic, diseases. METHODS: We analyzed 65 TR loci using ExpansionHunter in individuals who underwent short-read whole-exome sequencing (WES) or whole-genome sequencing (WGS) for the diagnosis of a rare neurologic condition. RESULTS: Of 1,106 proband samples (1,053 WES, 53 WGS), we detected 232 TR expansions in the intermediate or pathogenic range in 18.7% (207/1,106). However, 51 TR expansions were revised as false positives (FPs) and 83 as nondisease-causing. Of the 98 disease-causing TR expansions, 5 were classified as causal hemizygous or heterozygous TR expansions associated with X-linked recessive (XLR) or autosomal dominant (AD) neurologic disorders in 5 probands (0.5%). The low incidence is due to the fact that individuals with typical clinical symptoms (spinocerebellar ataxia) were tested for TR expansion by conventional laboratory methods. Only 1 proband with clinical suspicion of spinal and bulbar muscular atrophy was fully explained by TR expansion in the AR gene, and in 4 others, we hypothesize the possible involvement of 2 different neurologic diseases. Another 82 causal hemizygous or heterozygous TR expansions associated with XLR or AD non-neurologic diseases (secondary findings) were identified in 81 probands (7.3%), of which 70 expansions in TCF4 were associated with Fuchs endothelial corneal dystrophy, a common eye disease in older patients. Finally, we detected 11 heterozygous TR expansions for XLR and autosomal recessive (AR) diseases in 11 probands who had no clinical symptoms of the associated TR disease. DISCUSSION: The unexpectedly high detection rate (18.7%) of TR expansions necessitates the filtration of FPs and nondisease-causing expansions, thereby underscoring the necessity of visual inspection of ExpansionHunter results. The study demonstrated that both WES and WGS diagnostics can benefit from TR expansion analysis. The secondary findings indicate that the previously published pathogenic ranges of TR expansions in RUNX2 and ZIC3 warrant further investigation.

Zobrazit více v PubMed

Chintalaphani SR, Pineda SS, Deveson IW, Kumar KR. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol Commun. 2021;9(1):98. doi: 10.1186/s40478-021-01201-x. PubMed DOI PMC

Depienne C, Mandel JL. 30 years of repeat expansion disorders: what have we learned and what are the remaining challenges? Am J Hum Genet. 2021;108(5):764-785. doi: 10.1016/j.ajhg.2021.03.011 PubMed DOI PMC

Gatchel JR, Zoghbi HY. Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet. 2005;6(10):743-755. doi: 10.1038/nrg1691 PubMed DOI

Dolzhenko E, Deshpande V, Schlesinger F, et al. ExpansionHunter: a sequence-graph-based tool to analyze variation in short tandem repeat regions. Bioinformatics. 2019;35(22):4754-4756. doi: 10.1093/bioinformatics/btz431 PubMed DOI PMC

Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884-i890. doi: 10.1093/bioinformatics/bty560 PubMed DOI PMC

GitHub. Retrieved September 20, 2021. github.com/Illumina/DRAGMAP.

GitHub. Retrieved January 5, 2020. broadinstitute.github.io/picard/

Dolzhenko E, Weisburd B, Garikano KI, et al. REViewer: haplotype-resolved visualization of read alignments in and around tandem repeats. doi: 10.1101/2021.10.20.465046 PubMed DOI PMC

Halman A, Dolzhenko E, Oshlack A. STRipy: a graphical application for enhanced genotyping of pathogenic short tandem repeats in sequencing data. Hum Mutat. 2022;43(7):859-868. doi: 10.1002/humu.24382 PubMed DOI PMC

La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature. 1991;352(6330):77-79. doi: 10.1038/352077a0 PubMed DOI

Liquori CL, Ricker K, Moseley ML, et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science. 2001;293(5531):864-867. doi: 10.1126/science.1062125 PubMed DOI

Brook JD, McCurrach ME, Harley HG, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3’ end of a transcript encoding a protein kinase family member. Cell. 1992;69(2):385. doi: 10.1016/0092-8674(92)90418-c PubMed DOI

Gatto EM, Rojas NG, Persi G, Etcheverry JL, Cesarini ME, Perandones C. Huntington disease: advances in the understanding of its mechanisms. Clin Park Relat Disord. 2020;3:100056. doi: 10.1016/j.prdoa.2020.100056 PubMed DOI PMC

Albrecht AN, Kornak U, Böddrich A, et al. A molecular pathogenesis for transcription factor associated poly-alanine tract expansions. Hum Mol Genet. 2004;13(20):2351-2359. doi: 10.1093/hmg/ddh277 PubMed DOI

Tazelaar GHP, Dekker AM, van Vugt JJFA, et al. Association of NIPA1 repeat expansions with amyotrophic lateral sclerosis in a large international cohort. Neurobiol Aging. 2019;74:234.e9-234.e15. doi: 10.1016/j.neurobiolaging.2018.09.012. PubMed DOI PMC

Sivan Y, Zhou A, Jennings LJ, et al. Congenital central hypoventilation syndrome: severe disease caused by co-occurrence of two PHOX2B variants inherited separately from asymptomatic family members. Am J Med Genet A. 2019;179(3):503-506. doi: 10.1002/ajmg.a.61047 PubMed DOI

Shibata A, Machida J, Yamaguchi S, et al. Characterisation of novel RUNX2 mutation with alanine tract expansion from Japanese cleidocranial dysplasia patient. Mutagenesis. 2016;31(1):61-67. doi: 10.1093/mutage/gev057 PubMed DOI

Wessels MW, Kuchinka B, Heydanus R, et al. Polyalanine expansion in the ZIC3 gene leading to X-linked heterotaxy with VACTERL association: a new polyalanine disorder? J Med Genet. 2010;47(5):351-355. doi: 10.1136/jmg.2008.060913 PubMed DOI

Trimouille A, Tingaud-Sequeira A, Lacombe D, et al. Description of a family with X-linked oculo-auriculo-vertebral spectrum associated with polyalanine tract expansion in ZIC3. Clin Genet. 2020;98(4):384-389. doi: 10.1111/cge.13811 PubMed DOI

Kekou K, Sofocleous C, Papadimas G, et al. A dynamic trinucleotide repeat (TNR) expansion in the PubMed DOI

Epplen C, Epplen JT, Frank G, Miterski B, Santos EJM, Schöls L. Differential stability of the (GAA)n tract in the Friedreich ataxia (STM7) gene. Hum Genet. 1997;99(6):834-836. doi: 10.1007/s004390050458 PubMed DOI

Brais B, Bouchard JP, Xie YG, et al. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet. 1998;18(2):164-167. doi: 10.1038/ng0298-164 PubMed DOI

Pagnamenta AT, Kaiyrzhanov R, Zou Y, et al. An ancestral 10-bp repeat expansion in VWA1 causes recessive hereditary motor neuropathy. Brain. 2021;144(2):584-600. doi: 10.1093/brain/awaa420 PubMed DOI PMC

Salehi LB, Bonifazi E, Stasio ED, et al. Risk prediction for clinical phenotype in myotonic dystrophy type 1: data from 2,650 patients. Genet Test. 2007;11(1):84-90. doi: 10.1089/gte.2006.0511 PubMed DOI

Oosterloo M, Touze A, Byrne LM, et al. Clinical review of juvenile Huntington's disease. J Huntington's Dis. 2024;13(2):149-161. doi: 10.3233/JHD-231523 PubMed DOI PMC

Sipilä JOT, Soilu-Hänninen M, Majamaa K. Comorbid epilepsy in Finnish patients with adult-onset Huntington's disease. BMC Neurol. 2016;16:24. doi: 10.1186/s12883-016-0545-z PubMed DOI PMC

Quarrell OWJ, Rigby AS, Barron L, et al. Reduced penetrance alleles for Huntington's disease: a multi-centre direct observational study. J Med Genet. 2007;44(3):e68. doi: 10.1136/jmg.2006.045120 PubMed DOI PMC

Findlay Black H, Wright GEB, Collins JA, et al. Frequency of the loss of CAA interruption in the PubMed DOI PMC

Repetto GM, Corrales RJ, Abara SG, et al. Later-onset congenital central hypoventilation syndrome due to a heterozygous 24-polyalanine repeat expansion mutation in the PHOX2B gene. Acta Paediatr. 2009;98(1):192-195. doi: 10.1111/j.1651-2227.2008.01039.x PubMed DOI

Mundlos S, Otto F, Mundlos C, et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell. 1997;89(5):773-779. doi: 10.1016/S0092-8674(00)80260-3 PubMed DOI

Zarouchlioti C, Sanchez-Pintado B, Hafford Tear NJ, et al. Antisense therapy for a common corneal dystrophy ameliorates TCF4 repeat expansion-mediated toxicity. Am J Hum Genet. 2018;102(4):528-539. doi: 10.1016/j.ajhg.2018.02.010 PubMed DOI PMC

Bellchambers HM, Ware SM. ZIC3 in heterotaxy. In: Aruga J, ed. Springer; 2018:301-327. doi: 10.1007/978-981-10-7311-3_15.Zic Family: Evolution, Development and Disease. PubMed DOI PMC

Zühlke C, Dalski A, Hellenbroich Y, Bubel S, Schwinger E, Bürk K. Spinocerebellar ataxia type 1 (SCA1): phenotype-genotype correlation studies in intermediate alleles. Eur J Hum Genet. 2002;10(3):204-209. doi: 10.1038/sj.ejhg.5200788 PubMed DOI

Yoon JG, Lee S, Cho J, et al. Diagnostic uplift through the implementation of short tandem repeat analysis using exome sequencing. Eur J Hum Genet. 2024;32(5):584-587. doi: 10.1038/s41431-024-01542-w PubMed DOI PMC

Tang H, Kirkness EF, Lippert C, et al. Profiling of short-tandem-repeat disease alleles in 12,632 human whole genomes. Am J Hum Genet. 2017;101(5):700-715. doi: 10.1016/j.ajhg.2017.09.013 PubMed DOI PMC

Yang Y, Muzny DM, Reid JG, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013;369(16):1502-1511. doi: 10.1056/NEJMoa1306555 PubMed DOI PMC

Kurt S, Karaer H, Kaplan Y, et al. Combination of myotonic dystrophy and hereditary motor and sensory neuropathy. J Neurol Sci. 2010;288(1-2):197-199. doi: 10.1016/j.jns.2009.09.028 PubMed DOI

Cowan J, Tariq M, Ware SM. Genetic and functional analyses of ZIC3 variants in congenital heart disease. Hum Mutat. 2014;35(1):66-75. doi: 10.1002/humu.22457 PubMed DOI PMC

Cui Y, Ye W, Li JS, et al. A genome-wide spectrum of tandem repeat expansions in 338,963 humans. Cell. 2024;187(9):2336-2341.e5. doi: 10.1016/j.cell.2024.03.004 PubMed DOI PMC

Cossée M, Schmitt M, Campuzano V, et al. Evolution of the Friedreich's ataxia trinucleotide repeat expansion: founder effect and premutations. Proc Natl Acad Sci U S A. 1997;94(14):7452-7457. PubMed PMC

van der Sanden BPGH, Corominas J, de Groot M, et al. Systematic analysis of short tandem repeats in 38,095 exomes provides an additional diagnostic yield. Genet Med. 2021;23(8):1569-1573. doi: 10.1038/s41436-021-01174-1 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...