Magnetite particle size and spatial distribution may modulate neural oscillation in the human brain
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
23-06075S
Grantová Agentura České Republiky
LUAUS25082
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
40593272
PubMed Central
PMC12219572
DOI
10.1038/s41598-025-07988-2
PII: 10.1038/s41598-025-07988-2
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- magnetické nanočástice * chemie MeSH
- mozek * fyziologie MeSH
- neurony * fyziologie MeSH
- oxid železnato-železitý * chemie MeSH
- počítačová simulace MeSH
- velikost částic MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- magnetické nanočástice * MeSH
- oxid železnato-železitý * MeSH
This study proposes a novel hypothesis exploring the potential relationship between magnetite nanoparticle sizes in the human brain and neural oscillation frequencies. Magnetite, a naturally occurring magnetic material found in brain tissue, has been the subject of increasing scientific interest due to its potential role in brain function and its possible link to neurodegenerative diseases. Concurrently, neural oscillations are known to play crucial roles in various cognitive processes. Our theoretical model, grounded in Néel's theory of superparamagnetism and principles of electromagnetism, suggests a direct physical relationship between specific magnetite grain sizes (19-24 nm) and a wide range of neural oscillation frequency bands (1-1000 Hz). Using computational simulations and statistical analyses, we investigated how the magnetic properties of these nanoparticles might interact with or influence neural activity. Our calculations show that magnetite particles within this size range have magnetic moment fluctuation frequencies that span the range of known neural oscillations, with larger particles corresponding to lower frequencies and smaller particles to higher frequencies, following Néel's relaxation equation. This relationship encompasses the entire spectrum of known neural oscillations, from delta waves to high-frequency oscillations. Of particular interest, we found that magnetite particles within this size range could potentially interact with the 50-60 Hz frequencies of power grid systems, raising intriguing questions about potential interactions between environmental electromagnetic fields and endogenous brain activity. These results suggest potential size-dependent interactions between magnetite particles and neural oscillations, with implications for understanding brain function, aging processes, and the impact of environmental electromagnetic fields. This work provides a theoretical approach for future experimental studies and may offer new perspectives on the complex dynamics of brain physiology and pathology.
Zobrazit více v PubMed
Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. PubMed
Wang, X. J. Neurophysiological and computational principles of cortical rhythms in cognition. PubMed PMC
Knyazev, G. G. EEG delta oscillations as a correlate of basic homeostatic and motivational processes. PubMed
Fries, P. Neuronal Gamma-band synchronization as a fundamental process in cortical computation. PubMed
Curio, G. Linking 600-Hz “spikelike” EEG/MEG wavelets (“sigma-bursts”) to cellular substrates: concepts and caveats. PubMed
Jiruska, P. et al. Update on the mechanisms and roles of high-frequency oscillations in seizures and epileptic disorders. PubMed PMC
Usui, N. et al. Very high frequency oscillations (over 1000 Hz) in human epilepsy. PubMed
Fries, P. Rhythms for cognition: Communication through coherence. PubMed PMC
Kirschvink, J. L., Kobayashikirschvink, A. & Woodford, B. J. Magnetite biomineralization in the human brain. PubMed PMC
Maher, B. A. et al. Magnetite pollution nanoparticles in the human brain. PubMed PMC
Quintana, C. et al. Study of the localization of iron, ferritin, and hemosiderin in Alzheimer’s disease hippocampus by analytical microscopy at the subcellular level. PubMed
Zecca, L. et al. Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: Implications for Parkinson’s disease. PubMed
Connor, J. R., Menzies, S. L., St Martin, S. M. & Mufson, E. J. Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. PubMed
Hautot, D., Pankhurst, Q. A., Khan, N. & Dobson, J. Preliminary evaluation of nanoscale biogenic magnetite in Alzheimer’s disease brain tissue. PubMed PMC
Grassi-Schultheiss, P. P., Heller, F. & Dobson, J. Analysis of magnetic material in the human heart, spleen and liver. PubMed
Richardson, D. R. et al. Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. PubMed PMC
Collingwood, J. F. et al. Three-dimensional tomographic imaging and characterization of iron compounds within Alzheimer’s plaque core material. PubMed
Schultheiss-Grassi, P. P., Wessiken, R. & Dobson, J. TEM investigations of biogenic magnetite extracted from the human hippocampus. PubMed
Kirschvink, J. L., Walker, M. M. & Diebel, C. E. Magnetite-based magnetoreception. PubMed
Néel, L. Théorie du traînage magnétique des ferromagnétiques en grains fins avec application aux terres cuites.
Wang, C. X. et al. Transduction of the geomagnetic field as evidenced from alpha-band activity in the human brain. PubMed PMC
Kletetschka, G., Bazala, R., Takác, M. & Svecova, E. Magnetic domains oscillation in the brain with neurodegenerative disease. PubMed PMC
Binhi, V. N. & Prato, F. S. Biological effects of the hypomagnetic field: An analytical review of experiments and theories. PubMed PMC
Warman, E. N., Grill, W. M. & Durand, D. Modeling the effects of electric fields on nerve fibers: Determination of excitation thresholds. PubMed
Palop, J. J., Chin, J. & Mucke, L. A network dysfunction perspective on neurodegenerative diseases. PubMed
Wiltschko, R. & Wiltschko, W.
Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J. & Lounasmaa, O. V. Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain.
Lakatos, P. et al. The spectrotemporal filter mechanism of auditory selective attention. PubMed PMC
Lebedev, M. A. & Nicolelis, M. A. Brain-machine interfaces: Past, present and future. PubMed
Brown, W. F. Thermal fluctuations of a single-domain particle.
Kletetschka, G., Bazala, R., Takáč, M. & Svecova, E. Magnetic domains oscillation in the brain with neurodegenerative disease. PubMed PMC
Bazala, R., Zoppellaro, G. & Kletetschka, G. Iron level changes in the brain with neurodegenerative disease.
Pankhurst, Q., Thanh, N., Jones, S. & Dobson, J. Topical review: Progress in applications of magnetic nanoparticles in biomedicine.
Oberdörster, G. et al. Translocation of inhaled ultrafine particles to the brain. PubMed
Dunlop, D. J. & Özdemir, Ö.
Morrish, A. H.
Jiles, D.
Goya, G. F., Berquó, T. S., Fonseca, F. C. & Morales, M. P. Static and dynamic magnetic properties of spherical magnetite nanoparticles.
Moskowitz, B. M. in
Rosensweig, R. E. Heating magnetic fluid with alternating magnetic field.
Hergt, R., Dutz, S., Müller, R. & Zeisberger, M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy.
Laurent, S., Dutz, S., Häfeli, U. O. & Mahmoudi, M. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. PubMed
Périgo, E. A. et al. Fundamentals and advances in magnetic hyperthermia.
Hu, H., Gan, J. & Jonas, P. Interneurons. Fast-spiking, parvalbumin⁺ GABAergic interneurons: From cellular design to microcircuit function. PubMed
Carrubba, S., Frilot, C. 2nd., Chesson, A. L. Jr. & Marino, A. A. Evidence of a nonlinear human magnetic sense. PubMed
Ghione, S., Seppia, C. D., Mezzasalma, L. & Bonfiglio, L. Effects of 50 Hz electromagnetic fields on electroencephalographic alpha activity, dental pain threshold and cardiovascular parameters in humans. PubMed
Buzsáki, G.
Singer, W. Consciousness and the binding problem.
Dobson, J. Investigation of age-related variations in biogenic magnetite levels in the human hippocampus. PubMed
Hardell, L. & Sage, C. Biological effects from electromagnetic field exposure and public exposure standards. PubMed
Donoghue, T., Schaworonkow, N. & Voytek, B. Methodological considerations for studying neural oscillations. PubMed PMC
Uhlhaas, P. J. & Singer, W. Abnormal neural oscillations and synchrony in schizophrenia. PubMed
Voytek, B. et al. Age-related changes in 1/<em>f</em> neural electrophysiological noise. PubMed PMC