Effect of Quantitative Structural Properties and Drug Formulation in Four Cannabinoids (Cannabidiol, Cannabigerol, Cannabichromene, and Cannabinol) on Their Lymphatic Transport after Enteral Administration in Rats
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40611782
PubMed Central
PMC12326358
DOI
10.1021/acs.molpharmaceut.4c01357
Knihovny.cz E-resources
- Keywords
- cannabinoids, lymph-targeting, lymphatic transport, nanoemulsion, oral bioavailability, pharmacokinetics, quantitative structure−activity relationship (QSAR),
- MeSH
- Administration, Oral MeSH
- Biological Availability MeSH
- Biological Transport MeSH
- Emulsions chemistry MeSH
- Cannabidiol chemistry administration & dosage pharmacokinetics MeSH
- Cannabinoids * chemistry administration & dosage pharmacokinetics MeSH
- Rats MeSH
- Nanoparticles chemistry MeSH
- Rats, Sprague-Dawley MeSH
- Drug Compounding methods MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- cannabigerol MeSH Browser
- Emulsions MeSH
- Cannabidiol MeSH
- Cannabinoids * MeSH
The effect of quantitative structural properties of drugs on the extent of lymphatic transport is not well understood. Our study aimed to describe these principles in four cannabinoids, cannabidiol (CBD), cannabigerol (CBG), cannabichromene (CBC), and cannabinol (CBN) administered as oil solutions and nanoemulsions. A series of studies in jugular vein cannulated rats and anesthetized mesenteric lymph duct cannulated rats was conducted to measure drug oral bioavailability and lymphatic transport. Log P was measured, and quantitative structural properties were correlated to the extent of lymphatic absorption. Nanoemulsion did not increase the absolute bioavailability via lymph in CBD but led to an 8-fold increase in CBG and a 3-fold increase in CBC and CBN. There was an even higher increase in the absolute bioavailability via portal vein (11-fold for CBD, 71-fold for CBG, 8-fold for CBC, and 13-fold for CBN). Relative bioavailability via lymph increased with decreasing smallest orthogonal molecular size and topological polar surface area. Nanoemulsion did not affect the total oral bioavailability but led to an increased absorption into portal blood. Intestinal lymphatic transport plays a major role in the absorption of CBD, CBG, CBC, and CBN. Planarity of the molecule and low surface polarity could be crucial structural features facilitating lymphatic transport.
See more in PubMed
Charman W. N. A., Stella V. J.. Estimating the Maximal Potential for Intestinal Lymphatic Transport of Lipophilic Drug Molecules. Int. J. Pharm. 1986;34(1–2):175–178. doi: 10.1016/0378-5173(86)90027-X. DOI
Rysanek P., Grus T., Sima M., Slanar O.. Lymphatic Transport of Drugs after Intestinal Absorption: Impact of Drug Formulation and Physicochemical Properties. Pharm. Res. 2020;37(9):166. doi: 10.1007/s11095-020-02858-0. PubMed DOI
Porter C. J. H., Trevaskis N. L., Charman W. N.. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov. 2007;6(3):231–248. doi: 10.1038/nrd2197. PubMed DOI
Trevaskis N. L., Kaminskas L. M., Porter C. J. H.. From sewer to saviour - targeting the lymphatic system to promote drug exposure and activity. Nat. Rev. Drug Discov. 2015;14(11):781–803. doi: 10.1038/nrd4608. PubMed DOI
White K. L., Nguyen G., Charman W. N., Edwards G. A., Faassen W. A., Porter C. J. H.. Lymphatic Transport of Methylnortestosterone Undecanoate (MU) and the Bioavailability of Methylnortestosterone Are Highly Sensitive to the Mass of Coadministered Lipid after Oral Administration of MU. J. Pharmacol Exp Ther. 2009;331(2):700–709. doi: 10.1124/jpet.109.154542. PubMed DOI
Shackleford D. M., Faassen W. A., Houwing N., Lass H., Edwards G. A., Porter C. J., Charman W. N.. Contribution of lymphatically transported testosterone undecanoate to the systemic exposure of testosterone after oral administration of two andriol formulations in conscious lymph duct-cannulated dogs. J. Pharmacol Exp Ther. 2003;306(3):925–33. doi: 10.1124/jpet.103.052522. PubMed DOI
Yoshida T., Nakanishi K., Yoshioka T., Tsutsui Y., Maeda A., Kondo H., Sako K.. Oral tacrolimus oil formulations for enhanced lymphatic delivery and efficient inhibition of T-cell’s interleukin-2 production. Eur. J. Pharm. Biopharm. 2016;100:58–65. doi: 10.1016/j.ejpb.2015.12.006. PubMed DOI
Han S. F., Hu L. J., Gracia, Quach T., Simpson J. S., Edwards G. A., Trevaskis N. L., Porter C. J. H.. Lymphatic Transport and Lymphocyte Targeting of a Triglyceride Mimetic Prodrug Is Enhanced in a Large Animal Model: Studies in Greyhound Dogs. Mol. Pharmaceut. 2016;13(10):3351–3361. doi: 10.1021/acs.molpharmaceut.6b00195. PubMed DOI
Khoo S. M., Shackleford D. M., Porter C. J., Edwards G. A., Charman W. N.. Intestinal lymphatic transport of halofantrine occurs after oral administration of a unit-dose lipid-based formulation to fasted dogs. Pharm. Res. 2003;20(9):1460–5. doi: 10.1023/A:1025718513246. PubMed DOI
Caliph S. M., Charman W. N., Porter C. J.. Effect of short-, medium-, and long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph-cannulated and non-cannulated rats. J. Pharm. Sci. 2000;89(8):1073–84. doi: 10.1002/1520-6017(200008)89:8<1073::AID-JPS12>3.0.CO;2-V. PubMed DOI
Han S. F., Hu L. J., Quach T., Simpson J. S., Trevaskis N. L., Porter C. J. H.. Constitutive Triglyceride Turnover into the Mesenteric Lymph Is Unable to Support Efficient Lymphatic Transport of a Biomimetic Triglyceride Prodrug. J. Pharm. Sci. 2016;105(2):786–796. doi: 10.1002/jps.24670. PubMed DOI
Dahan A., Duvdevani R., Shapiro I., Elmann A., Finkelstein E., Hoffman A.. The oral absorption of phospholipid prodrugs: In vivo and in vitro mechanistic investigation of trafficking of a lecithin-valproic acid conjugate following oral administration. J. Controlled Release. 2008;126(1):1–9. doi: 10.1016/j.jconrel.2007.10.025. PubMed DOI
Sugihara J., Furuuchi S., Nakano K., Harigaya S.. Studies on Intestinal Lymphatic Absorption of Drugs.1. Lymphatic Absorption of Alkyl Ester Derivatives and Alpha-Monoglyceride Derivatives of Drugs. J. Pharmacobio-Dynam. 1988;11(5):369–376. doi: 10.1248/bpb1978.11.369. PubMed DOI
Rysanek P., Grus T., Lukac P., Kozlik P., Krizek T., Pozniak J., Rousarova J., Kralovicova J., Canova N. K., Boleslavska T., Bosak J., Stepanek F., Sima M., Slanar O.. Validity of cycloheximide chylomicron flow blocking method for the evaluation of lymphatic transport of drugs. Br. J. Pharmacol. 2021;178(23):4663–4674. doi: 10.1111/bph.15644. PubMed DOI
Ueda C. T., Lemaire M., Gsell G., Nussbaumer K.. Intestinal lymphatic absorption of cyclosporin A following oral administration in an olive oil solution in rats. Biopharm Drug Dispos. 1983;4(2):113–24. doi: 10.1002/bdd.2510040203. PubMed DOI
Griffin B. T., O’Driscoll C. M.. A comparison of intestinal lymphatic transport and systemic bioavailability of saquinavir from three lipid-based formulations in the anaesthetised rat model. J. Pharm. Pharmacol. 2006;58(7):917–25. doi: 10.1211/jpp.58.7.0006. PubMed DOI
WHO . WHO Expert Committee on Drug Dependence (Fourtieth Report); World Health Organization, 2018.
Taylor L., Gidal B., Blakey G., Tayo B., Morrison G.. A Phase I, Randomized, Double-Blind, Placebo-Controlled, Single Ascending Dose, Multiple Dose, and Food Effect Trial of the Safety, Tolerability and Pharmacokinetics of Highly Purified Cannabidiol in Healthy Subjects. Cns Drugs. 2018;32(11):1053–1067. doi: 10.1007/s40263-018-0578-5. PubMed DOI PMC
Zgair A., Wong J. C., Lee J. B., Mistry J., Sivak O., Wasan K. M., Hennig I. M., Barrett D. A., Constantinescu C. S., Fischer P. M., Gershkovich P.. Dietary fats and pharmaceutical lipid excipients increase systemic exposure to orally administered cannabis and cannabis-based medicines. Am. J. Transl. Res. 2016;8(8):3448–59. PubMed PMC
Calapai F., Cardia L., Esposito E., Ammendolia I., Mondello C., Lo Giudice R., Gangemi S., Calapai G., Mannucci C.. Pharmacological Aspects and Biological Effects of Cannabigerol and Its Synthetic Derivatives. Evidence-Based Complementary Altern. Med. 2022;2022:3336516. doi: 10.1155/2022/3336516. PubMed DOI PMC
Amstutz K., Schwark W. S., Zakharov A., Gomez B., Lyubimov A., Ellis K., Venator K. P., Wakshlag J. J.. Single dose and chronic oral administration of cannabigerol and cannabigerolic acid-rich hemp extract in fed and fasted dogs: Physiological effect and pharmacokinetic evaluation. J. Vet Pharmacol Ther. 2022;45(3):245–254. doi: 10.1111/jvp.13048. PubMed DOI
Wirth P. W., Watson E. S., ElSohly M., Turner C. E., Murphy J. C.. Anti-inflammatory properties of cannabichromene. Life Sci. 1980;26(23):1991–5. doi: 10.1016/0024-3205(80)90631-1. PubMed DOI
O’Neil J. D., Dalton W. S., Forney R. B.. The effect of cannabichromene on mean blood pressure, heart rate, and respiration rate responses to tetrahydrocannabinol in the anesthetized rat. Toxicol. Appl. Pharmacol. 1979;49(2):265–70. doi: 10.1016/0041-008X(79)90250-3. PubMed DOI
Peters E. N., MacNair L., Mosesova I., Christians U., Sempio C., Klawitter J., Land M. H., Ware M. A., Turcotte C., Bonn-Miller M. O.. Pharmacokinetics of cannabichromene in a medical cannabis product also containing cannabidiol and Delta(9)-tetrahydrocannabinol: a pilot study. Eur. J. Clin Pharmacol. 2022;78(2):259–265. doi: 10.1007/s00228-021-03232-8. PubMed DOI PMC
Sampson P. B.. Phytocannabinoid Pharmacology: Medicinal Properties of Cannabis sativa Constituents Aside from the “Big Two”. J. Nat. Prod. 2021;84(1):142–160. doi: 10.1021/acs.jnatprod.0c00965. PubMed DOI
Moore C. F., Weerts E. M., Kulpa J., Schwotzer D., Dye W., Jantzi J., McDonald J. D., Lefever T. W., Bonn-Miller M. O.. Pharmacokinetics of Oral Minor Cannabinoids in Blood and Brain. Cannabis Cannabinoid Res. 2023;8(S1):S51–S61. doi: 10.1089/can.2023.0066. PubMed DOI
Miao Y. F., Zhao S. H., Zuo J., Sun J. Q., Wang J. N.. Reduced the Food Effect and Enhanced the Oral Bioavailability of Ivacaftor by Self-Nanoemulsifying Drug Delivery System (SNEDDS) Using a New Oil Phase. Drug Des Dev Ther. 2022;16:1531–1546. doi: 10.2147/DDDT.S356967. PubMed DOI PMC
Jelinek P., Rousarova J., Rysanek P., Jezkova M., Havlujova T., Pozniak J., Kozlik P., Krizek T., Kucera T., Sima M., Slanar O., Soos M.. Application of Oil-in-Water Cannabidiol Emulsion for the Treatment of Rheumatoid Arthritis. Cannabis Cannabinoid Res. 2024;9:147. doi: 10.1089/can.2022.0176. PubMed DOI PMC
Myers R. A., Stella V. J.. Factors Affecting the Lymphatic Transport of Penclomedine (Nsc-338720), a Lipophilic Cytotoxic Drug - Comparison to Ddt and Hexachlorobenzene. Int. J. Pharm. 1992;80(1):51–62. doi: 10.1016/0378-5173(92)90261-Y. DOI
Holm R., Hoest J.. Successful in silico predicting of intestinal lymphatic transfer. Int. J. Pharm. 2004;272(1–2):189–193. doi: 10.1016/j.ijpharm.2003.12.017. PubMed DOI
Trevaskis N. L., Hu L., Caliph S. M., Han S., Porter C. J.. The mesenteric lymph duct cannulated rat model: application to the assessment of intestinal lymphatic drug transport. J. Vis Exp. 2015;(97):e52389. doi: 10.3791/52389. PubMed DOI PMC
EMA . ICH guideline M10 on bioanalytical method validation and study sample analysis. European Medicines Agency, 2022.
Zhang Y., Huo M. R., Zhou J. P., Xie S. F.. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Meth Prog. Bio. 2010;99(3):306–314. doi: 10.1016/j.cmpb.2010.01.007. PubMed DOI
Pozniak J., Rysanek P., Smrcka D., Kozlik P., Krizek T., Smardova J., Novakova A., Das D., Bobek D., Arora M., Hofmann J., Dousova T., Sima M., Slanar O.. Ivacaftor pharmacokinetics and lymphatic transport after enteral administration in rats. Front. Pharmacol. 2024;15:1331637. doi: 10.3389/fphar.2024.1331637. PubMed DOI PMC
Dahan A., Hoffman A.. Evaluation of a chylomicron flow blocking approach to investigate the intestinal lymphatic transport of lipophilic drugs. Eur. J. Pharm. Sci. 2005;24(4):381–388. doi: 10.1016/j.ejps.2004.12.006. PubMed DOI