Validity of cycloheximide chylomicron flow blocking method for the evaluation of lymphatic transport of drugs

. 2021 Dec ; 178 (23) : 4663-4674. [epub] 20210910

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34365639

BACKGROUND AND PURPOSE: Lymphatic transport of drugs after oral administration is an important mechanism for absorption of highly lipophilic compounds. Direct measurement in lymph duct cannulated animals is the gold standard method, but non-invasive cycloheximide chylomicron flow blocking method has gained popularity recently. However, concerns about its reliability have been raised. The aim of this work was to investigate the validity of cycloheximide chylomicron flow blocking method for the evaluation of lymphatic transport using model compounds with high to very high lipophilicity, that is, abiraterone and cinacalcet. EXPERIMENTAL APPROACH: Series of pharmacokinetic studies were conducted with abiraterone acetate and cinacalcet hydrochloride after enteral/intravenous administration to intact, lymph duct cannulated and/or cycloheximide pre-treated rats. KEY RESULTS: Mean total absolute oral bioavailability of abiraterone and cinacalcet was 7.0% and 28.7%, respectively. There was a large and significant overestimation of the lymphatic transport extent by the cycloheximide method. Mean relative lymphatic bioavailability of abiraterone and cinacalcet in cycloheximide method was 28-fold and 3-fold higher than in cannulation method, respectively. CONCLUSION AND IMPLICATIONS: Cycloheximide chylomicron flow blocking method did not provide reliable results on lymphatic absorption and substantially overestimated lymphatic transport for both molecules, that is, abiraterone and cinacalcet. This non-invasive method should not be used for the assessment of lymphatic transport and previously obtained data should be critically revised.

Zobrazit více v PubMed

Alexander, S. P. H., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Buneman, O. P., Cidlowski, J. A., Christopoulos, A., Davenport, A. P., Fabbro, D., Spedding, M., Striessnig, J., Davies, J. A., … Wong, S. S. (2019). The concise guide to pharmacology 2019/20: Introduction and other protein targets. British Journal of Pharmacology, 176, S1-S20. https://doi.org/10.1111/bph.14747

Boleslavská, T., Rychecký, O., Krov, M., Žvátora, P., Dammer, O., Beránek, J., Kozlík, P., Křížek, T., Hořínková, J., Ryšánek, P., Roušarová, J., Canová, N. K., Šíma, M., Slanař, O., & Štěpánek, F. (2020). Bioavailability enhancement and food effect elimination of abiraterone acetate by encapsulation in surfactant-enriched oil marbles. The AAPS Journal, 22(6), 122. https://doi.org/10.1208/s12248-020-00505-5

Boleslavská, T., Světlík, S., Žvátora, P., Bosák, J., Dammer, O., Beránek, J., Kozlík, P., Křížek, T., Kutinová Canová, N., Šíma, M., Slanař, O., & Štěpánek, F. (2020). Preclinical evaluation of new formulation concepts for abiraterone acetate bioavailability enhancement based on the inhibition of pH-induced precipitation. European Journal of Pharmaceutics and Biopharmaceutics, 151, 81-90. https://doi.org/10.1016/j.ejpb.2020.04.005

Caliph, S. M., Charman, W. N., & Porter, C. J. (2000). Effect of short-, medium-, and long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph-cannulated and non-cannulated rats. Journal of Pharmaceutical Sciences, 89(8), 1073-1084. https://doi.org/10.1002/1520-6017(200008)89:8<1073::aid-jps12>3.0.co;2-v

Charman, W. N. A., & Stella, V. J. (1986). Estimating the maximal potential for intestinal lymphatic transport of lipophilic drug molecules. International Journal of Pharmaceutics, 34(1-2), 175-178. https://doi.org/10.1016/0378-5173(86)90027-X

Chi, K. N., Spratlin, J., Kollmannsberger, C., North, S., Pankras, C., Gonzalez, M., Bernard, A., Stieltjes, H., Peng, L., Jiao, J., Acharya, M., Kheoh, T., Griffin, T. W., Yu, M. K., Chien, C., & Tran, N. P. (2015). Food effects on abiraterone pharmacokinetics in healthy subjects and patients with metastatic castration-resistant prostate cancer. Journal of Clinical Pharmacology, 55(12), 1406-1414. https://doi.org/10.1002/jcph.564

Choo, E. F., Boggs, J., Zhu, C., Lubach, J. W., Catron, N. D., Jenkins, G., Souers, A. J., & Voorman, R. (2014). The role of lymphatic transport on the systemic bioavailability of the Bcl-2 protein family inhibitors navitoclax (ABT-263) and ABT-199. Drug Metabolism and Disposition, 42(2), 207-212. https://doi.org/10.1124/dmd.113.055053

Cycloheximide Safety Datasheet. (2019). Retrieved from https://www.caymanchem.com/msdss/14126m.pdf

Dahan, A., & Hoffman, A. (2005). Evaluation of a chylomicron flow blocking approach to investigate the intestinal lymphatic transport of lipophilic drugs. European Journal of Pharmaceutical Sciences, 24(4), 381-388. https://doi.org/10.1016/j.ejps.2004.12.006

Grove, M., Nielsen, J. L., Pedersen, G. P., & Mullertz, A. (2006). Bioavailability of seocalcitol IV: Evaluation of lymphatic transport in conscious rats. Pharmaceutical Research, 23(11), 2681-2688. https://doi.org/10.1007/s11095-006-9109-z

Gurav, S., Punde, R., Farooqui, J., Zainuddin, M., Rajagopal, S., & Mullangi, R. (2012). Development and validation of a highly sensitive method for the determination of abiraterone in rat and human plasma by LC-MS/MS-ESI: Application to a pharmacokinetic study. Biomedical Chromatography, 26(6), 761-768. https://doi.org/10.1002/bmc.1726

Han, S., Hu, L., Quach, T., Simpson, J. S., Edwards, G. A., Trevaskis, N. L., & Porter, C. J. (2016a). Lymphatic transport and lymphocyte targeting of a triglyceride mimetic prodrug is enhanced in a large animal model: Studies in greyhound dogs. Molecular Pharmaceutics, 13(10), 3351-3361. https://doi.org/10.1021/acs.molpharmaceut.6b00195

Han, S., Hu, L., Quach, T., Simpson, J. S., Trevaskis, N. L., & Porter, C. J. H. (2016b). Constitutive triglyceride turnover into the mesenteric lymph is unable to support efficient lymphatic transport of a biomimetic triglyceride prodrug. Journal of Pharmaceutical Sciences, 105(2), 786-796. https://doi.org/10.1002/jps.24670

Hauss, D. J., Fogal, S. E., Ficorilli, J. V., Price, C. A., Roy, T., Jayaraj, A. A., & Keirns, J. J. (1998). Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor. Journal of Pharmaceutical Sciences, 87(2), 164-169. https://doi.org/10.1021/js970300n

Holm, R., Porter, C. J., Mullertz, A., Kristensen, H. G., & Charman, W. N. (2002). Structured triglyceride vehicles for oral delivery of halofantrine: Examination of intestinal lymphatic transport and bioavailability in conscious rats. Pharmaceutical Research, 19(9), 1354-1361. https://doi.org/10.1023/a:1020311127328

Khoo, S. M., Edwards, G. A., Porter, C. J. H., & Charman, W. N. (2001). A conscious dog model for assessing the absorption, enterocyte-based metabolism, and intestinal lymphatic transport of halofantrine. Journal of Pharmaceutical Sciences, 90, 1599-1607. https://doi.org/10.1002/jps.1110

Khoo, S. M., Shackleford, D. M., Porter, C. J., Edwards, G. A., & Charman, W. N. (2003). Intestinal lymphatic transport of halofantrine occurs after oral administration of a unit-dose lipid-based formulation to fasted dogs. Pharmaceutical Research, 20(9), 1460-1465. https://doi.org/10.1023/a:1025718513246

Kuijpers, G. (2004). Pharmacology and toxicology review of NDA (Application number 21-688).

Kumar, G. N., Sproul, C., Poppe, L., Turner, S., Gohdes, M., Ghoborah, H., Padhi, D., & Roskos, L. (2004). Metabolism and disposition of calcimimetic agent cinacalcet HCl in humans and animal models. Drug Metabolism and Disposition, 32(12), 1491-1500. https://doi.org/10.1124/dmd.104.000604

Kumar, S. V., Rudresha, G., Gurav, S., Zainuddin, M., Dewang, P., Kethiri, R. R., Rajagopal, S., & Mullangi, R. (2013). Validated RP-HPLC/UV method for the quantitation of abiraterone in rat plasma and its application to a pharmacokinetic study in rats. Biomedical Chromatography, 27(2), 203-207. https://doi.org/10.1002/bmc.2776

Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P., Cirino, G., Docherty, J. R., George, C. H., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Sobey, C. G., Stefanska, B., Stephens, G., Teixeira, M., & Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 177, 3611-3616. https://doi.org/10.1111/bph.15178

Lind, M. L., Jacobsen, J., Holm, R., & Mullertz, A. (2008). Intestinal lymphatic transport of halofantrine in rats assessed using a chylomicron flow blocking approach: The influence of polysorbate 60 and 80. European Journal of Pharmaceutical Sciences, 35(3), 211-218. https://doi.org/10.1016/j.ejps.2008.07.003

Padhi, D., Salfi, M., & Harris, R. Z. (2007). The pharmacokinetics of cinacalcet are unaffected following consumption of high- and low-fat meals. American Journal of Therapeutics, 14(3), 235-240. https://doi.org/10.1097/01.mjt.0000212703.71625.26

Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. British Journal of Pharmacology, 177(16), 3617-3624. https://doi.org/10.1111/bph.15193

Plattner, V., Leray, V., Leclair, M. D., Aube, A. C., Cherbut, C., & Galmiche, J. P. (2001). Interleukin-8 increases acetylcholine response of rat intestinal segments. Alimentary Pharmacology & Therapeutics, 15(8), 1227-1232. https://doi.org/10.1046/j.1365-2036.2001.01009.x

Porter, C. J., Trevaskis, N. L., & Charman, W. N. (2007). Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs. Nature Reviews. Drug Discovery, 6(3), 231-248. https://doi.org/10.1038/nrd2197

Rysanek, P., Grus, T., Sima, M., & Slanar, O. (2020). Lymphatic transport of drugs after intestinal absorption: Impact of drug formulation and physicochemical properties. Pharmaceutical Research, 37(9), 166. https://doi.org/10.1007/s11095-020-02858-0

Schultz, H. B., Meola, T. R., Thomas, N., & Prestidge, C. A. (2020). Oral formulation strategies to improve the bioavailability and mitigate the food effect of abiraterone acetate. International Journal of Pharmaceutics, 577, 119069. https://doi.org/10.1016/j.ijpharm.2020.119069

Shackleford, D. M., Faassen, W. A., Houwing, N., Lass, H., Edwards, G. A., Porter, C. J., & Charman, W. N. (2003). Contribution of lymphatically transported testosterone undecanoate to the systemic exposure of testosterone after oral administration of two andriol formulations in conscious lymph duct-cannulated dogs. The Journal of Pharmacology and Experimental Therapeutics, 306(3), 925-933. https://doi.org/10.1124/jpet.103.052522

Stappaerts, J., Geboers, S., Snoeys, J., Brouwers, J., Tack, J., Annaert, P., & Augustijns, P. (2015). Rapid conversion of the ester prodrug abiraterone acetate results in intestinal supersaturation and enhanced absorption of abiraterone: In vitro, rat in situ and human in vivo studies. European Journal of Pharmaceutics and Biopharmaceutics, 90, 1-7. https://doi.org/10.1016/j.ejpb.2015.01.001

Trevaskis, N. L., Caliph, S. M., Nguyen, G., Tso, P., Charman, W. N., & Porter, C. J. (2013). A mouse model to evaluate the impact of species, sex, and lipid load on lymphatic drug transport. Pharmaceutical Research, 30(12), 3254-3270. https://doi.org/10.1007/s11095-013-1000-0

Trevaskis, N. L., Hu, L., Caliph, S. M., Han, S., & Porter, C. J. (2015). The mesenteric lymph duct cannulated rat model: Application to the assessment of intestinal lymphatic drug transport. Journal of Visualized Experiments, 97, e52389. https://doi.org/10.3791/52389

Trevaskis, N. L., Lee, G., Escott, A., Phang, K. L., Hong, J., Cao, E., Katneni, K., Charman, S. A., Han, S., Charman, W. N., Phillips, A. R. J., Windsor, J. A., & Porter, C. J. H. (2020). Intestinal lymph flow, and lipid and drug transport scale allometrically from pre-clinical species to humans. Frontiers in Physiology, 11, 458. https://doi.org/10.3389/fphys.2020.00458

Trevaskis, N. L., McEvoy, C. L., McIntosh, M. P., Edwards, G. A., Shanker, R. M., Charman, W. N., & Porter, C. J. (2010). The role of the intestinal lymphatics in the absorption of two highly lipophilic cholesterol ester transfer protein inhibitors (CP524,515 and CP532,623). Pharmaceutical Research, 27(5), 878-893. https://doi.org/10.1007/s11095-010-0083-0

Valicherla, G. R., Dave, K. M., Syed, A. A., Riyazuddin, M., Gupta, A. P., Singh, A., Wahajuddin, Mitra, K., Datta, D., & Gayen, J. R. (2016). Formulation optimization of Docetaxel loaded self-emulsifying drug delivery system to enhance bioavailability and anti-tumor activity. Scientific Reports, 6, 26895. https://doi.org/10.1038/srep26895

Verbin, R. S., Longnecker, D. S., Liang, H., & Farber, E. (1971). Some observations on the acute histopathologic effects of cycloheximide in vivo. The American Journal of Pathology, 62(1), 111-125.

Wang, T., Shen, L., Zhang, Z., Li, H., Huang, R., Zhang, Y., & Quan, D. (2017). A novel core-shell lipid nanoparticle for improving oral administration of water soluble chemotherapeutic agents: Inhibited intestinal hydrolysis and enhanced lymphatic absorption. Drug Delivery, 24(1), 1565-1573. https://doi.org/10.1080/10717544.2017.1386730

Yeh, S. D. J., & Shils, M. E. (1969a). Cycloheximide effect on vitamin B12 absorption and intrinsic factor production in the rat. Proceedings of the Society for Experimental Biology and Medicine, 130(4), 1260-1264. https://doi.org/10.3181/00379727-130-33768

Yeh, S. D. J., & Shils, M. E. (1969b). Cycloheximide inhibition of gastric secretion in the rat. Proceedings of the Society for Experimental Biology and Medicine, 130(3), 807-810. https://doi.org/10.3181/00379727-130-33660

Zhang, B., Xue, A., Zhang, C., Yu, J., Chen, W., & Sun, D. (2016). Bile salt liposomes for enhanced lymphatic transport and oral bioavailability of paclitaxel. Pharmazie, 71(6), 320-326. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27455550

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...