• This record comes from PubMed

Some Levels of Plasma Free Fatty Acids and Amino Acids in the Second Trimester Are Linked to Gestational Diabetes and Are Predictive of Persisting Impaired Glucose Tolerance After Delivery

. 2025 Jul 04 ; 14 (13) : . [epub] 20250704

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
LX22NPO5104 European Union

Background/Objectives: Gestational diabetes mellitus (GDM) represents an increased metabolic risk in future life for both mother and child. We hypothesize free fatty acids (FFAs) and amino acids (AAs) disturbances in plasma during second trimester might be indicating high risk of persisting glucose intolerance (PGI). The aim of study was to determine plasma FFAs and AAs during pregnancy in women with normal pregnancy and GDM and also in post-GDM women with PGI after delivery and to find potential association of altered FFAs and AAs profile with adverse peripartal outcomes and PGI after GDM. Material and Methods: A total of 54 pregnant women were included in the study. Of those 34 participants had GDM. PGI was diagnosed by oGTT up to one year after delivery. Plasma FFAs were determined using GC-FID and plasma AAs levels were determined using CE-MS method. Results: Decreased levels of tetradecanoic acid and several AAs were found in GDM group during pregnancy. Oleic and docosahexaenoic acid correlated positively while almost all AAs negatively correlated with oGTT values in the pregnancy (all p < 0.05, Spearman). Logistic regression model (using AAs, FFAs and BMI) identified higher citrulline and glutamate levels and lower tetradecenoic acid and choline as the best predictors for postpartum PGI. Some differences in AA levels were detected in women with macrosomic babies. Conclusions: Data support a possible link between GDM development and PGI after delivery and selected metabolite levels. The predictive potential of plasma FFAs and AAs levels on a diabetes risk in future life requires further validation.

See more in PubMed

Bellamy L., Casas J.P., Hingorani A.D., Williams D. Type 2 diabetes mellitus after gestational diabetes: A systematic review and meta-analysis. Lancet. 2009;373:1773–1779. doi: 10.1016/S0140-6736(09)60731-5. PubMed DOI

Standards of Medical Care in Diabetes—2014. Diabetes Care. 2014;37:S14. doi: 10.2337/dc14-S014. PubMed DOI

Barbour L.A., McCurdy C.E., Hernandez T.L., Kirwan J.P., Catalano P.M., Friedman J.E. Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes. Diabetes Care. 2007;30((Suppl. 2)):S112–S119. doi: 10.2337/dc07-s202. PubMed DOI

Bartáková V., Chalásová K., Pácal L., Ťápalová V., Máchal J., Janků P., Kaňková K. Metabolic Syndrome Prevalence in Women with Gestational Diabetes Mellitus in the Second Trimester of Gravidity. J. Clin. Med. 2024;13:1260. doi: 10.3390/jcm13051260. PubMed DOI PMC

Alesi S., Ghelani D., Rassie K., Mousa A. Metabolomic Biomarkers in Gestational Diabetes Mellitus: A Review of the Evidence. Int. J. Mol. Sci. 2021;22:5512. doi: 10.3390/ijms22115512. PubMed DOI PMC

Chen Q., Francis E., Hu G., Chen L. Metabolomic profiling of women with gestational diabetes mellitus and their offspring: Review of metabolomics studies. J. Diabetes Complicat. 2018;32:512–523. doi: 10.1016/j.jdiacomp.2018.01.007. PubMed DOI

Cetin I., de Santis M.S., Taricco E., Radaelli T., Teng C., Ronzoni S., Spada E., Milani S., Pardi G. Maternal and fetal amino acid concentrations in normal pregnancies and in pregnancies with gestational diabetes mellitus. Am. J. Obstet. Gynecol. 2005;192:610–617. doi: 10.1016/j.ajog.2004.08.011. PubMed DOI

Rahimi N., Razi F., Nasli-Esfahani E., Qorbani M., Shirzad N., Larijani B. Amino acid profiling in the gestational diabetes mellitus. J. Diabetes Metab. Disord. 2017;16:13. doi: 10.1186/s40200-016-0283-1. PubMed DOI PMC

Bentley-Lewis R., Huynh J., Xiong G., Lee H., Wenger J., Clish C., Nathan D., Thadhani R., Gerszten R. Metabolomic profiling in the prediction of gestational diabetes mellitus. Diabetologia. 2015;58:1329–1332. doi: 10.1007/s00125-015-3553-4. PubMed DOI PMC

Pappa K.I., Vlachos G., Theodora M., Roubelaki M., Angelidou K., Antsaklis A. Intermediate metabolism in association with the amino acid profile during the third trimester of normal pregnancy and diet-controlled gestational diabetes. Am. J. Obstet. Gynecol. 2007;196:e61–e65. doi: 10.1016/j.ajog.2006.06.094. PubMed DOI

Chorell E., Hall U.A., Gustavsson C., Berntorp K., Puhkala J., Luoto R., Olsson T., Holmäng A. Pregnancy to postpartum transition of serum metabolites in women with gestational diabetes. Metabolism. 2017;72:27–36. doi: 10.1016/j.metabol.2016.12.018. PubMed DOI

Bomba-Opon D., Wielgos M., Szymanska M., Bablok L. Effects of free fatty acids on the course of gestational diabetes mellitus. Neuro Endocrinol. Lett. 2006;27:277–280. PubMed

Meyer B., Calvert D., Moses R. Free fatty acids and gestational diabetes mellitus. Aust. N. Z. J. Obstet. Gynaecol. 1996;36:255–257. doi: 10.1111/j.1479-828X.1996.tb02705.x. PubMed DOI

Huang L., Zhang T., Zhu Y., Lai X., Tao H., Xing Y., Li Z. Deciphering the Role of CD36 in Gestational Diabetes Mellitus: Linking Fatty Acid Metabolism and Inflammation in Disease Pathogenesis. J. Inflamm. Res. 2025;18:1575–1588. doi: 10.2147/JIR.S502314. PubMed DOI PMC

Son N.H., Basu D., Samovski D., Pietka T.A., Peche V.S., Willecke F., Fang X., Yu S.Q., Scerbo D., Chang H.R., et al. Endothelial cell CD36 optimizes tissue fatty acid uptake. J. Clin. Investig. 2018;128:4329–4342. doi: 10.1172/JCI99315. PubMed DOI PMC

Yi L.Z., He J., Liang Y.Z., Yuan D.L., Chau F.T. Plasma fatty acid metabolic profiling and biomarkers of type 2 diabetes mellitus based on GC/MS and PLS-LDA. FEBS Lett. 2006;580:6837–6845. doi: 10.1016/j.febslet.2006.11.043. PubMed DOI

Matthews J.N., Altman D.G., Campbell M.J., Royston P. Analysis of serial measurements in medical research. BMJ. 1990;300:230–235. doi: 10.1136/bmj.300.6719.230. PubMed DOI PMC

Spiller S., Blüher M., Hoffmann R. Plasma levels of free fatty acids correlate with type 2 diabetes mellitus. Diabetes Obes. Metab. 2018;20:2661–2669. doi: 10.1111/dom.13449. PubMed DOI

Lai M., Liu Y., Ronnett G.V., Wu A., Cox B.J., Dai F.F., Röst H.L., Gunderson E.P., Wheeler M.B. Amino acid and lipid metabolism in post-gestational diabetes and progression to type 2 diabetes: A metabolic profiling study. PLoS Med. 2020;17:e1003112. doi: 10.1371/journal.pmed.1003112. PubMed DOI PMC

Ortega-Senovilla H., Schaefer-Graf U., Herrera E. Pregnant women with gestational diabetes and with well controlled glucose levels have decreased concentrations of individual fatty acids in maternal and cord serum. Diabetologia. 2020;63:864–874. doi: 10.1007/s00125-019-05054-x. PubMed DOI

Layton J., Powe C., Allard C., Battista M.C., Doyon M., Bouchard L., Perron P., Wessel J., Hivert M.F. Maternal lipid profile differs by gestational diabetes physiologic subtype. Metabolism. 2019;91:39–42. doi: 10.1016/j.metabol.2018.11.008. PubMed DOI PMC

Chen X., Stein T.P., Steer R.A., Scholl T.O. Individual free fatty acids have unique associations with inflammatory biomarkers, insulin resistance and insulin secretion in healthy and gestational diabetic pregnant women. BMJ Open Diabetes Res. Care. 2019;7:e000632. doi: 10.1136/bmjdrc-2018-000632. PubMed DOI PMC

Hou W., Meng X., Zhao A., Zhao W., Pan J., Tang J., Huang Y., Li H., Jia W., Liu F. Development of Multimarker Diagnostic Models from Metabolomics Analysis for Gestational Diabetes Mellitus (GDM) Mol. Cell Proteom. 2018;17:431–441. doi: 10.1074/mcp.RA117.000121. PubMed DOI PMC

He Q., Zhu S., Lin M., Yang Q., Wei L., Zhang J., Jiang X., Zhu D., Lu X., Chen Y.Q. Increased GPR120 level is associated with gestational diabetes mellitus. Biochem. Biophys. Res. Commun. 2019;512:196–201. doi: 10.1016/j.bbrc.2019.03.034. PubMed DOI

Zhu Y., Tsai M.Y., Sun Q., Hinkle S.N., Rawal S., Mendola P., Ferrara A., Albert P.S., Zhang C. A prospective and longitudinal study of plasma phospholipid saturated fatty acid profile in relation to cardiometabolic biomarkers and the risk of gestational diabetes. Am. J. Clin. Nutr. 2018;107:1017–1026. doi: 10.1093/ajcn/nqy051. PubMed DOI PMC

Bukowiecka-Matusiak M., Burzynska-Pedziwiatr I., Sansone A., Malachowska B., Zurawska-Klis M., Ferreri C., Chatgilialoglu C., Ochedalski T., Cypryk K., Wozniak L.A. Lipid profile changes in erythrocyte membranes of women with diagnosed GDM. PLoS ONE. 2018;13:e0203799. doi: 10.1371/journal.pone.0203799. PubMed DOI PMC

Burlina S., Dalfrà M.G., Barison A., Marin R., Ragazzi E., Sartore G., Lapolla A. Plasma phospholipid fatty acid composition and desaturase activity in women with gestational diabetes mellitus before and after delivery. Acta Diabetol. 2017;54:45–51. doi: 10.1007/s00592-016-0901-x. PubMed DOI

Villafan-Bernal J.R., Acevedo-Alba M., Reyes-Pavon R., Diaz-Parra G.A., Lip-Sosa D.L., Vazquez-Delfin H.I., Hernandez-Muñoz M., Bravo-Aguirre D.E., Figueras F., Martinez-Portilla R.J. Plasma Levels of Free Fatty Acids in Women with Gestational Diabetes and Its Intrinsic and Extrinsic Determinants: Systematic Review and Meta-Analysis. J. Diabetes Res. 2019;2019:7098470. doi: 10.1155/2019/7098470. PubMed DOI PMC

Kalkhoff R.K. Impact of maternal fuels and nutritional state on fetal growth. Diabetes. 1991;40((Suppl. 2)):61–65. doi: 10.2337/diab.40.2.S61. PubMed DOI

Bartáková V., Malúšková D., Mužík J., Bělobrádková J., Kaňková K. Possibility to predict early postpartum glucose abnormality following gestational diabetes mellitus based on the results of routine mid-gestational screening. Biochem. Med. 2015;25:460–468. doi: 10.11613/BM.2015.047. PubMed DOI PMC

Bartáková V., Barátová B., Pácal L., Ťápalová V., Šebestová S., Janků P., Kaňková K. Development of a New Risk Score for Stratification of Women with Gestational Diabetes Mellitus at High Risk of Persisting Postpartum Glucose Intolerance Using Routinely Assessed Parameters. Life. 2021;11:464. doi: 10.3390/life11060464. PubMed DOI PMC

Qiu J., Hu P., Li F., Huang Y., Yang Y., Sun F., Wu P., Lai Y., Wang Y., He X., et al. Circulating linoleic acid and its interplay with gut microbiota during pregnancy for gestational diabetes mellitus. BMC Med. 2025;23:245. doi: 10.1186/s12916-025-04061-7. PubMed DOI PMC

Li H., Liu S., Chen H., Zhou L., Chen B., Wang M., Zhang D., Han T.L., Zhang H. Gut dysbiosis contributes to SCFAs reduction-associated adipose tissue macrophage polarization in gestational diabetes mellitus. Life Sci. 2024;350:122744. doi: 10.1016/j.lfs.2024.122744. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...