Spindle-localized F-actin regulates polar MTOC organization and the fidelity of meiotic spindle formation
Status PubMed-not-MEDLINE Language English Country United States Media electronic
Document type Journal Article, Preprint
Grant support
R35 GM142537
NIGMS NIH HHS - United States
PubMed
40654736
PubMed Central
PMC12247952
DOI
10.1101/2025.05.07.652730
PII: 2025.05.07.652730
Knihovny.cz E-resources
- Keywords
- Aneuploidy, F-actin, MTOC, Meiosis, Oocyte, Spindle,
- Publication type
- Journal Article MeSH
- Preprint MeSH
Mammalian oocytes are notoriously prone to chromosome segregation errors leading to aneuploidy. The spindle provides the machinery for accurate chromosome segregation during cell division. Mammalian oocytes lack centrioles and, therefore, the meiotic spindle relies on the organization of numerous acentriolar microtubule organizing centers into two poles (polar MTOCs, pMTOCs). The traditional view is that, in mammalian oocytes, microtubules are the sole cytoskeletal component responsible for regulating pMTOC organization and spindle assembly. We identified a novel F-actin pool that surrounds pMTOCs, forming F-actin cage-like structure. We demonstrated that F-actin localization on the spindle depends on unconventional myosins X and VIIb. Selective disruption of spindle-localized F-actin, using myosin X/VIIb knockdown oocytes or photoswitchable Optojasp-1, perturbed pMTOC organization, leading to unfocused spindle poles and chromosome missegregation. Here, we unveil an important function of F-actin in regulating pMTOC organization, a critical process for ensuring the fidelity of meiotic spindle formation and proper chromosome segregation.
Animal Sciences Research Center University of Missouri Columbia MO 65211 USA
Department of Chemistry University of Pennsylvania Philadelphia PA 19104 6323 USA
Department of Zoology Faculty of Science Charles University Vinicna 7 128 44 Prague Czech Republic
Division of Biology and Biological Engineering California Institute of Technology Pasadena CA USA
See more in PubMed
Hassold T. & Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2, 280–291 (2001). PubMed
Nagaoka S. I. et al. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat. Rev. Genet. 13, 493–504 (2012). PubMed PMC
Loane M. et al. Twenty-year trends in the prevalence of Down syndrome and other trisomies in Europe: impact of maternal age and prenatal screening. Eur. J. Hum. Genet. EJHG 21, 27–33 (2013). PubMed PMC
Robinson W. P. et al. Maternal meiosis I non-disjunction of chromosome 15: dependence of the maternal age effect on level of recombination. Hum. Mol. Genet. 7, 1011–1019 (1998). PubMed
Lamb N. E. et al. Association between maternal age and meiotic recombination for trisomy 21. Am. J. Hum. Genet. 76, 91–99 (2005). PubMed PMC
Oliver T. R. et al. New insights into human nondisjunction of chromosome 21 in oocytes. PLoS Genet. 4, e1000033 (2008). PubMed PMC
Ghosh S. et al. Etiology of Down syndrome: Evidence for consistent association among altered meiotic recombination, nondisjunction, and maternal age across populations. Am. J. Med. Genet. A. 149A, 1415–1420 (2009). PubMed PMC
Von Stetina J. R. & Orr-Weaver T. L. Developmental control of oocyte maturation and egg activation in metazoan models. Cold Spring Harb. Perspect. Biol. 3, a005553 (2011). PubMed PMC
Simerly C. et al. Separation and Loss of Centrioles From Primordidal Germ Cells To Mature Oocytes In The Mouse. Sci. Rep. 8, 12791 (2018). PubMed PMC
Wu T. et al. The mechanism of acentrosomal spindle assembly in human oocytes. Science 378, eabq7361 (2022). PubMed
Holubcová. et al. Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science 348, 1143–1147 (2015). PubMed PMC
So C. et al. Mechanism of spindle pole organization and instability in human oocytes. Science 375, eabj3944 (2022). PubMed
Clift D. & Schuh M. A three-step MTOC fragmentation mechanism facilitates bipolar spindle assembly in mouse oocytes. Nat. Commun. 6, 7217 (2015). PubMed PMC
Luksza M. et al. Rebuilding MTOCs upon centriole loss during mouse oogenesis. Dev. Biol. 382, 48–56 (2013). PubMed
Bury L. et al. Plk4 and Aurora A cooperate in the initiation of acentriolar spindle assembly in mammalian oocytes. J. Cell Biol. 216, 3571–3590 (2017). PubMed PMC
Londoño-Vásquez D. et al. Microtubule organizing centers regulate spindle positioning in mouse oocytes. Dev. Cell 57, 197–211.e3 (2022). PubMed PMC
Balboula A. Z. et al. Haspin kinase regulates microtubule-organizing center clustering and stability through Aurora kinase C in mouse oocytes. J. Cell Sci. 129, 3648–3660 (2016). PubMed PMC
Schuh M. & Ellenberg J. Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130, 484–498 (2007). PubMed
Breuer M. et al. HURP permits MTOC sorting for robust meiotic spindle bipolarity, similar to extra centrosome clustering in cancer cells. J. Cell Biol. 191, 1251–1260 (2010). PubMed PMC
Almonacid M. et al. Active diffusion positions the nucleus in mouse oocytes. Nat. Cell Biol. 17, 470–479 (2015). PubMed
Almonacid M. et al. Control of nucleus positioning in mouse oocytes. Semin. Cell Dev. Biol. 82, 34–40 (2018). PubMed
Colin A. et al. Active Diffusion in Oocytes Nonspecifically Centers Large Objects during Prophase I and Meiosis I. J Cell Biol. 219, e201908195 (2020). PubMed PMC
Harasimov K. et al. Actin-driven chromosome clustering facilitates fast and complete chromosome capture in mammalian oocytes. Nat. Cell Biol. 25, 439–452 (2023). PubMed PMC
Schuh M. & Ellenberg J. A new model for asymmetric spindle positioning in mouse oocytes. Curr. Biol. CB 18, 1986–1992 (2008). PubMed
Azoury J. et al. Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments. Curr. Biol. CB 18, 1514–1519 (2008). PubMed
Li H. et al. Actin-driven chromosomal motility leads to symmetry breaking in mammalian meiotic oocytes. Nat. Cell Biol. 10, 1301–1308 (2008). PubMed
Longo F. J. & Chen D. Y. Development of cortical polarity in mouse eggs: involvement of the meiotic apparatus. Dev. Biol. 107, 382–394 (1985). PubMed
Mogessie B. & Schuh M. Actin protects mammalian eggs against chromosome segregation errors. Science 357, eaal1647 (2017). PubMed
Roeles J. & Tsiavaliaris G. Actin-microtubule interplay coordinates spindle assembly in human oocytes. Nat. Commun. 10, 4651 (2019). PubMed PMC
Plessner M. et al. Centrosomal Actin Assembly Is Required for Proper Mitotic Spindle Formation and Chromosome Congression. iScience 15, 274–281 (2019). PubMed PMC
Kita A. M. et al. Spindle-F-actin interactions in mitotic spindles in an intact vertebrate epithelium. Mol. Biol. Cell 30, 1645–1654 (2019). PubMed PMC
Ma W. & Viveiros M. M. Depletion of pericentrin in mouse oocytes disrupts microtubule organizing center function and meiotic spindle organization. Mol. Reprod. Dev. 81, 1019–1029 (2014). PubMed PMC
Carabatsos M. J. et al. Sorting and reorganization of centrosomes during oocyte maturation in the mouse. Microsc. Res. Tech. 49, 435–444 (2000). PubMed
Nabi D. et al. CENP-V is required for proper chromosome segregation through interaction with spindle microtubules in mouse oocytes. Nat. Commun. 12, 6547 (2021). PubMed PMC
Joukov V. et al. The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell 127, 539–552 (2006). PubMed
Silk A. D. et al. Requirements for NuMA in maintenance and establishment of mammalian spindle poles. J. Cell Biol. 184, 677–690 (2009). PubMed PMC
Haren L. et al. NuMA is required for proper spindle assembly and chromosome alignment in prometaphase. BMC Res. Notes 2, 64 (2009). PubMed PMC
van Heesbeen R. et al. Balanced activity of three mitotic motors is required for bipolar spindle assembly and chromosome segregation. Cell Rep. 8, 948–956 (2014). PubMed
Mullen T. J. & Wignall S. M. Interplay between microtubule bundling and sorting factors ensures acentriolar spindle stability during C. elegans oocyte meiosis. PLoS Genet. 13, e1006986 (2017). PubMed PMC
Kolano A. et al. Error-prone mammalian female meiosis from silencing the spindle assembly checkpoint without normal interkinetochore tension. Proc. Natl. Acad. Sci. U. S. A. 109, E1858–1867 (2012). PubMed PMC
Connolly A. A. et al. Caenorhabditis elegans oocyte meiotic spindle pole assembly requires microtubule severing and the calponin homology domain protein ASPM-1. Mol. Biol. Cell 25, 1298–1311 (2014). PubMed PMC
Sun S. C. et al. Arp2/3 complex regulates asymmetric division and cytokinesis in mouse oocytes. PloS One 6, e18392 (2011). PubMed PMC
Yi K. et al. Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3-complex-driven cytoplasmic streaming in mouse oocytes. Nat. Cell Biol. 13, 1252–1258 (2011). PubMed PMC
Dumont J. et al. Formin-2 is required for spindle migration and for the late steps of cytokinesis in mouse oocytes. Dev. Biol. 301, 254–265 (2007). PubMed
Pfender S. et al. Spire-type actin nucleators cooperate with Formin-2 to drive asymmetric oocyte division. Curr. Biol. CB 21, 955–960 (2011). PubMed PMC
Quinlan M. E. et al. Drosophila Spire is an actin nucleation factor. Nature 433, 382–388 (2005). PubMed
Nolen B. J. et al. Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nature 460, 1031–1034 (2009). PubMed PMC
Nishimura Y. et al. The formin inhibitor SMIFH2 inhibits members of the myosin superfamily. J. Cell Sci. 134, (2021). PubMed PMC
Kerber M. L. & Cheney R. E. Myosin-X: a MyTH-FERM myosin at the tips of filopodia. J. Cell Sci. 124, 3733–3741 (2011). PubMed PMC
Wei Z. et al. Cargo recognition mechanism of myosin X revealed by the structure of its tail MyTH4-FERM tandem in complex with the DCC P3 domain. Proc. Natl. Acad. Sci. U. S. A. 108, 3572–3577 (2011). PubMed PMC
Woolner S. et al. Myosin-10 and actin filaments are essential for mitotic spindle function. J. Cell Biol. 182, 77–88 (2008). PubMed PMC
Weber K. L. et al. A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 431, 325–329 (2004). PubMed
Yim Y. I. et al. Mechanisms underlying Myosin 10’s contribution to the maintenance of mitotic spindle bipolarity. Mol. Biol. Cell 35, ar14 (2024). PubMed PMC
Kwon M. et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev. 22, 2189–2203 (2008). PubMed PMC
Brieño-Enríquez M. A. et al. NIMA-related kinase 1 (NEK1) regulates meiosis I spindle assembly by altering the balance between α-Adducin and Myosin X. PloS One 12, e0185780 (2017). PubMed PMC
So C. et al. A liquid-like spindle domain promotes acentrosomal spindle assembly in mammalian oocytes. Science 364, (2019). PubMed PMC
Baumann C. et al. Error-prone meiotic division and subfertility in mice with oocyte-conditional knockdown of pericentrin. J. Cell Sci. 130, 1251–1262 (2017). PubMed PMC
Hirano Y. et al. Structural basis of cargo recognition by the myosin-X MyTH4-FERM domain. EMBO J. 30, 2734–2747 (2011). PubMed PMC
Lu Q. et al. Antiparallel coiled-coil-mediated dimerization of myosin X. Proc. Natl. Acad. Sci. U. S. A. 109, 17388–17393 (2012). PubMed PMC
Burkel B. M. et al. Versatile fluorescent probes for actin filaments based on the actin-binding domain of utrophin. Cell Motil. Cytoskeleton 64, 822–832 (2007). PubMed PMC
Azoury J. et al. Symmetry breaking in mouse oocytes requires transient F-actin meshwork destabilization. Dev. Camb. Engl. 138, 2903–2908 (2011). PubMed
Sandquist J. C. et al. Myosin-10 independently influences mitotic spindle structure and mitotic progression. Cytoskelet. Hoboken NJ 73, 351–364 (2016). PubMed PMC
Heimsath E. G. J. et al. Myosin-X knockout is semi-lethal and demonstrates that myosin-X functions in neural tube closure, pigmentation, hyaloid vasculature regression, and filopodia formation. Sci. Rep. 7, 17354 (2017). PubMed PMC
Crozet F. et al. Myosin-X is dispensable for spindle morphogenesis and positioning in the mouse oocyte. Dev. Camb. Engl. 148, (2021). PubMed PMC
Yang Y. et al. Myosin VIIB from Drosophila is a high duty ratio motor. J. Biol. Chem. 280, 32061–32068 (2005). PubMed
Chen Z. Y. et al. Myosin-VIIb, a novel unconventional myosin, is a constituent of microvilli in transporting epithelia. Genomics 72, 285–296 (2001). PubMed
Liang Y. et al. Characterization of the human and mouse unconventional myosin XV genes responsible for hereditary deafness DFNB3 and shaker 2. Genomics 61, 243–258 (1999). PubMed
Delprat B. et al. Myosin XVa and whirlin, two deafness gene products required for hair bundle growth, are located at the stereocilia tips and interact directly. Hum. Mol. Genet. 14, 401–410 (2005). PubMed
Moen R. J. et al. Characterization of a myosin VII MyTH/FERM domain. J. Mol. Biol. 413, 17–23 (2011). PubMed PMC
Borowiak M. et al. Optical Manipulation of F-Actin with Photoswitchable Small Molecules. J. Am. Chem. Soc. 142, 9240–9249 (2020). PubMed PMC
Pospich S. et al. Cryo-EM Resolves Molecular Recognition Of An Optojasp Photoswitch Bound To Actin Filaments In Both Switch States. Angew. Chem. Int. Ed Engl. 60, 8678–8682 (2021). PubMed PMC
Kroon J. et al. Inflammation-Sensitive Myosin-X Functionally Supports Leukocyte Extravasation by Cdc42-Mediated ICAM-1-Rich Endothelial Filopodia Formation. J. Immunol. Baltim. Md 1950 200, 1790–1801 (2018). PubMed
Sousa A. D. et al. Myo10 in brain: developmental regulation, identification of a headless isoform and dynamics in neurons. J. Cell Sci. 119, 184–194 (2006). PubMed
Feng J. et al. Adverse PFAS effects on mouse oocyte in vitro maturation are associated with carbon-chain length and inclusion of a sulfonate group. Cell Prolif. 56, e13353 (2023). PubMed PMC
Kim H.-C. et al. Small molecule inhibitor of formin homology 2 domains (SMIFH2) reveals the roles of the formin family of proteins in spindle assembly and asymmetric division in mouse oocytes. PloS One 10, e0123438 (2015). PubMed PMC
Jo Y.-J. et al. WHAMM is essential for spindle formation and spindle actin polymerization in maturing mouse oocytes. Cell Cycle Georget. Tex 20, 225–235 (2021). PubMed PMC
Zhang Y. et al. Formin mDia1, a downstream molecule of FMNL1, regulates Profilin1 for actin assembly and spindle organization during mouse oocyte meiosis. Biochim. Biophys. Acta 1853, 317–327 (2015). PubMed
Wang F. et al. RhoA-mediated FMNL1 regulates GM130 for actin assembly and phosphorylates MAPK for spindle formation in mouse oocyte meiosis. Cell Cycle Georget. Tex 14, 2835–2843 (2015). PubMed PMC
Farina F. et al. Local actin nucleation tunes centrosomal microtubule nucleation during passage through mitosis. EMBO J. 38, (2019). PubMed PMC
Aquino-Perez C. et al. FAM110A promotes mitotic spindle formation by linking microtubules with actin cytoskeleton. Proc. Natl. Acad. Sci. U. S. A. 121, e2321647121 (2024). PubMed PMC
Conduit P. T. et al. Centrosome function and assembly in animal cells. Nat. Rev. Mol. Cell Biol. 16, 611–624 (2015). PubMed
Chatot C. L. et al. An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J. Reprod. Fertil. 86, 679–688 (1989). PubMed
Tsafriri A. et al. Oocyte maturation involves compartmentalization and opposing changes of cAMP levels in follicular somatic and germ cells: studies using selective phosphodiesterase inhibitors. Dev. Biol. 178, 393–402 (1996). PubMed
Bourdais A. et al. Cofilin regulates actin network homeostasis and microvilli length in mouse oocytes. J. Cell Sci. 134, jcs259237 (2021). PubMed