Cluster versus coordination: the chemistry of cyclopentadienyl titanium and vanadium complexes with B- and C-functionalized carborane-thiols, [C2B10H12-n (SH) n ] (n = 2 or 3)
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40656526
PubMed Central
PMC12242837
DOI
10.1039/d5sc03562g
PII: d5sc03562g
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A series of B- and C-functionalized di- and trithiol chelating o-carborane ligands have been employed to explore the coordination chemistry with cyclopentadienyl titanium and vanadium complexes. Treatment of [Cp*TiCl3] with [LiBH4·THF], followed by thermolysis with a C-functionalized carborane-dithiol ligand [1,2-(SH)2-1,2-C2B10H10], yielded octacapped octahedral [(Cp*Ti)4{Ti(1,2-(S)2-1,2-C2B10H10)}2(μ3-S)6(μ3-O)2] (1) and hexacapped trigonal bipyramidal [(Cp*Ti)4{Ti(1,2-(S)2-1,2-C2B10H10)}(μ3-S)6] (2) clusters. One of the driving forces of these reactions is the cleavage of C-S bonds of carborane-dithiols that resulted in sulfide ligands and subsequently generated clusters 1 and 2. In contrast, a similar reaction with a B-functionalized carborane-dithiol [9,12-(SH)2-1,2-C2B10H10] led to B-B bond formation that yielded a κ2-hydridoborato complex, [(Cp*Ti){κ2-BH3(9,12-(S)2-1,2-C2B10H10)}] (3). To the best of our knowledge, complex 3 is the first example of a carborane-dithiol functionalized hydridoborato complex. Interestingly, when the reactions of [Cp*TiCl3] or [Cp2TiCl2] were carried out with a B-functionalized carborane-trithiol, [8,9,12-(SH)3-1,2-C2B10H9], they led to coordination complexes, [(Cp/Cp*Ti){8,9,12-(S)3-1,2-C2B10H9}] (Cp* (4a) and Cp (4b)). Similarly, when [(Cp*VCl2)3] was employed as a metal precursor, deboronation was observed at the icosahedral cage that resulted in a zwitterionic complex, [(Cp*V){1,5,6-(S)3-nido-7,8-C2B9H9}] (5). All the clusters have been characterized by NMR, IR, mass spectrometry, and X-ray diffraction analysis. Furthermore, the theoretical analyses provided valuable insights into the electronic structures of these unusual clusters.
Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
Institute of Inorganic Chemistry The Czech Academy of Science 25068 Rez Czech Republic
Institute of Physics The Czech Academy of Science 182 21 Prague 8 Czech Republic
Zobrazit více v PubMed
Coordination Chemistry: A Century of Progress, ed. G. B. Kauffman, American Chemical Society, Washington, DC, 1994, vol. 565
Trnka T. M. Grubbs R. H. Acc. Chem. Res. 2001;34:18–29. doi: 10.1021/ar000114f. PubMed DOI
Olenyuk B. Whiteford J. A. Fechtenkötter A. Stang P. J. Nature. 1999;398:796–799. doi: 10.1038/19740. PubMed DOI
Atwood J. D. Wovkulich M. J. Sonnenberger D. C. Acc. Chem. Res. 1983;16:350–355. doi: 10.1021/ar00093a006. DOI
Zhao D. Timmons D. J. Yuan D. Zhou H. Q. Acc. Chem. Res. 2011;44:123–133. doi: 10.1021/ar100112y. PubMed DOI
Crabtree R. H., The Organometallic Chemistry of the Transition Metals, Wiley, 3rd edn, 2001
Back O. Donnadieu B. Parameswaran P. Frenking G. Bertrand G. Nat. Chem. 2010;2:369–373. doi: 10.1038/nchem.617. PubMed DOI
Casey C. P. Paulsen E. L. Beuttenmueller E. W. Proft B. R. Petrovich L. M. Matter B. A. Powell D. R. J. Am. Chem. Soc. 1997;119:11817–11825. doi: 10.1021/ja9719440. DOI
Grimes R. N., Carboranes, Elsevier, Oxford, 3rd edn, 2016
Hawthorne M. F. Zink J. I. Skelton J. M. Bayer M. J. Liu C. Livshits E. Baer R. Neuhauser D. Science. 2004;303:1849–1851. doi: 10.1126/science.1093846. PubMed DOI
Crowther D. J. Baenziger N. C. Jordan R. F. J. Am. Chem. Soc. 1991;113:1455–1457. doi: 10.1021/ja00004a080. DOI
Saxena A. K. Hosmane N. S. Chem. Rev. 1993;93:1081–1124. doi: 10.1021/cr00019a011. DOI
Jin G.-X. Coord. Chem. Rev. 2004;248:587–602. doi: 10.1016/j.ccr.2004.01.002. DOI
Spokoyny A. M. Reuter M. G. Stern C. L. Ratner M. A. Seideman T. Mirkin C. A. J. Am. Chem. Soc. 2009;131:9482–9483. doi: 10.1021/ja902526k. PubMed DOI PMC
Vlugt J. L. Angew. Chem., Int. Ed. 2010;49:252–255. doi: 10.1002/anie.200904795. PubMed DOI
Spokoyny A. M. Machan C. W. Clingerman D. J. Rosen M. S. Wiester M. J. Kennedy R. D. Stern C. L. Sarjeant A. A. Mirkin C. A. Nat. Chem. 2011;3:590–596. doi: 10.1038/nchem.1088. PubMed DOI
Plesek J. Chem. Rev. 1992;92:269–278. doi: 10.1021/cr00010a005. DOI
Larsen A. S. Holbrey J. D. Tham F. S. Reed C. A. J. Am. Chem. Soc. 2000;122:7264–7272. doi: 10.1021/ja0007511. DOI
White K. E. Avery E. M. Cummings E. Hong Z. Langecker J. Vetushka A. Dušek M. Macháček J. Višnák J. Endres J. Bastl Z. Mete E. Alexandrova A. N. Baše T. Weiss P. S. Chem. Mater. 2024;36:2085–2095. doi: 10.1021/acs.chemmater.3c03210. DOI
Moxham G. L. Douglas T. M. Brayshaw S. K. Kociok-Köhn G. Lowe J. P. Weller A. S. Dalton Trans. 2006:5492–5505. doi: 10.1039/B612049K. PubMed DOI
Comprehensive Organometallic Chemistry III, ed. R. H. Crabtree and D. M. P. Mingos, Elsevier, Oxford, UK, 2007, vol. 3, pp. 175–264
Herberhold M. Jin G.-X. Yan H. Milius W. Wrackmeyer B. Eur. J. Inorg. Chem. 1999:873–875. doi: 10.1002/(SICI)1099-0682(199905)1999:5<873::AID-EJIC873>3.0.CO;2-M. DOI
Herberhold M. Jin G.-X. Yan H. Milius W. Wrackmeyer B. J. Organomet. Chem. 1999;587:252–257. doi: 10.1016/S0022-328X(99)00330-7. DOI
Kim D.-H. Ko J. Park K. Cho S. Kang S. O. Organometallics. 1999;18:2738–2740. doi: 10.1021/om990269v. DOI
Bae J.-Y. Park Y.-I. Ko J. Park K.-I. Cho S.-I. Kang S. O. Inorg. Chim. Acta. 1999;289:141–148. doi: 10.1016/S0020-1693(99)00064-X. DOI
Jin G.-X. Coord. Chem. Rev. 2013;257:2522–2535. doi: 10.1016/j.ccr.2013.02.004. DOI
Herberhold M. Yan H. Milius W. Wrackmeyer B. Angew. Chem., Int. Ed. 1999;38:3689–3691. doi: 10.1002/(SICI)1521-3773(19991216)38:24<3689::AID-ANIE3689>3.0.CO;2-T. PubMed DOI
Herberhold M. Yan H. Milius W. Wrackmeyer B. Chem.–Eur. J. 2002;8:388–395. doi: 10.1002/1521-3765(20020118)8:2<388::AID-CHEM388>3.0.CO;2-U. PubMed DOI
Yaoa Z.-J. Deng W. Coord. Chem. Rev. 2016;309:21–35. doi: 10.1016/j.ccr.2015.10.008. DOI
Herberhold M. Yan H. Milius W. Wrackmeyer B. Organometallics. 2000;19:4289–4294. doi: 10.1021/om0003077. DOI
Jiang Q. Wang Z. Li Y. Yan H. Chem. Commun. 2013;49:5880–5882. doi: 10.1039/C3CC42554A. PubMed DOI
Wang Z. Ye H. Li Y. Li Y. Yan H. J. Am. Chem. Soc. 2013;135:11289–11298. doi: 10.1021/ja4047075. PubMed DOI
Liu S. Han Y.-F. Jin G.-X. Chem. Soc. Rev. 2007;36:1543–1560. doi: 10.1039/B701869J. PubMed DOI
Jin G.-X. Wang J.-Q. Zhang C. Weng L.-H. Herberhold M. Angew. Chem., Int. Ed. 2005;44:259–262. doi: 10.1002/anie.200461348. PubMed DOI
Wang J.-Q. Ren C.-X. Jin G.-X. Chem. Commun. 2006:162–164. doi: 10.1039/B512416F. PubMed DOI
Wedge T. J. Hawthorne M. F. Coord. Chem. Rev. 2003;240:111–128. doi: 10.1016/S0010-8545(02)00259-X. DOI
Wu D.-H. Xu B.-H. Li Y.-Z. Yan H. Organometallics. 2007;26:6300–6306. doi: 10.1021/om7008556. DOI
Wang J.-H. Zheng C. Maguire J. A. Hosmane N. S. Organometallics. 2003;22:4839–4841. doi: 10.1021/om0340802. DOI
Cai S. Jin G.-X. Organometallics. 2005;24:5280–5286. doi: 10.1021/om050598p. DOI
Cai S. Wang J. Jin G.-X. Organometallics. 2005;24:4226–4231. doi: 10.1021/om0503949. DOI
Herberhold M. Jin G.-X. Yan H. Milius W. Wrackmeyer B. J. Organomet. Chem. 1999;587:252–257. doi: 10.1016/S0022-328X(99)00330-7. DOI
Wang J. Q. Ren C. X. Weng L. H. Jin G.-X. Chem. Commun. 2006:162–164. doi: 10.1039/B512416F. PubMed DOI
Jin G.-X. Wang J.-Q. Zhang Z. Weng L. H. Herberhold M. Angew. Chem., Int. Ed. 2005;44:259–262. doi: 10.1002/anie.200461348. PubMed DOI
Jin G.-X. Wang J.-Q. Dalton Trans. 2006:86–90. doi: 10.1039/B512027F. PubMed DOI
Olid D. Núñez R. Viñas C. Teixidor F. Chem. Soc. Rev. 2013;42:3318–3336. doi: 10.1039/C2CS35441A. PubMed DOI
Zhang X. Zou X. Yan H. Organometallics. 2014;33:2661–2666. doi: 10.1021/om500411b. DOI
Zhang X. Tang X. Yang J. Li Y. Yan H. Bregadze V. I. Organometallics. 2013;32:2014–2018. doi: 10.1021/om400097m. DOI
Mannix A. J. Zhou X.-F. Kiraly B. Wood J. D. Alducin D. Myers B. D. Liu X. Fisher B. L. Santiago U. Guest J. R. Yacaman M. J. Ponce A. Oganov A. R. Hersam M. C. Guisinger N. P. Science. 2015;350:1513–1516. doi: 10.1126/science.aad1080. PubMed DOI PMC
Tina C. L. Spokoyny A. M. She C. Farha O. K. Mirkin C. A. Marks T. J. Hupp J. T. J. Am. Chem. Soc. 2010;132:4580–4582. doi: 10.1021/ja100396n. PubMed DOI
Olsen F. P. Vasavada R. C. Hawthorne M. F. J. Am. Chem. Soc. 1968;95:3946–3951. doi: 10.1021/ja01017a007. DOI
Miller N. E. Muetterties E. L. J. Am. Chem. Soc. 1963;85:3506. doi: 10.1021/ja00904a049. DOI
Zheng F. Yui T. H. Zhang J. Xie Z. Nat. Chem. 2020;11:5943–5947. PubMed PMC
Xie Z. Coord. Chem. Rev. 2006;250:259–272. doi: 10.1016/j.ccr.2005.05.009. DOI
Deng L. Xie Z. Coord. Chem. Rev. 2007;251:2452–2476. doi: 10.1016/j.ccr.2007.02.009. DOI
Qiu Z. Ren S. Xie Z. Acc. Chem. Res. 2013;44:299–309. doi: 10.1021/ar100156f. PubMed DOI
Kar S. and Ghosh S., Borane Polyhedra beyond Icosahedron, in 50th Anniversary of Electron Counting Paradigms for Polyhedral Molecules. Structure and Bonding, ed. D. M. P. Mingos, Springer, Berlin, 2021, vol. 187, pp. 109–138
Kar S., Pradhan A. N. and Ghosh S., in Comprehensive Organometallic Chemistry IV, ed. G. Parkin, K. Meyer and D. O’hare, Elsevier, Amsterdam, 2022, vol. 9, pp. 263–369
Kar S. Bairagi S. Halet J.-F. Ghosh S. Chem. Commun. 2023;59:11676–11679. doi: 10.1039/D3CC03952H. PubMed DOI
Saha K. Roy D. K. Dewhurst R. D. Ghosh S. Braunschweig H. Acc. Chem. Res. 2021;54:1260–1273. doi: 10.1021/acs.accounts.0c00819. PubMed DOI
Kar S. Bairagi S. Joshi G. Jemmis E. D. Himmel H. Ghosh S. Acc. Chem. Res. 2024;57:2901–2914. doi: 10.1021/acs.accounts.4c00497. PubMed DOI
Bag R., Bairagi S., Rout B. K. and Ghosh S., in Encyclopedia of Inorganic and Bioinorganic Chemistry, ed. R. Melen, Wiley, 2022
Kar S. Bairagi S. Haridas A. Joshi G. Jemmis E. D. Ghosh S. Angew. Chem., Int. Ed. 2022;61:e202208293. doi: 10.1002/anie.202208293. PubMed DOI
Pathak K. Nandi C. Ghosh S. Coord. Chem. Rev. 2022;453:214303. doi: 10.1016/j.ccr.2021.214303. DOI
Bairagi S. Giri S. Joshi G. Jemmis E. D. Ghosh S. Angew. Chem., Int. Ed. 2025;64:e202417170. doi: 10.1002/anie.202417170. PubMed DOI
Bairagi S. Chatterjee D. Giri S. Ghosh S. Chem. Commun. 2025;61:3696–3699. doi: 10.1039/D4CC06535B. PubMed DOI
Baše T. Macháček J. Hájková Z. Langecker J. Kennedy J. D. Carr M. J. J. Organomet. Chem. 2015;798:132–140. doi: 10.1016/j.jorganchem.2015.06.020. DOI
Gayen S. Assanar F. Shymal S. Dorairaj D. P. Ghosh S. Chem. Sci. 2024;15:15913–15924. doi: 10.1039/D4SC05092D. PubMed DOI PMC
Roy D. K. Mondal B. Shankhari P. Anju R. S. Geetharani K. Mobin S. M. Ghosh S. Inorg. Chem. 2013;52:6705–6712. doi: 10.1021/ic400761z. PubMed DOI
Ditzel E. J. Fontaine X. L. R. Fowkes H. Greenwood N. N. Kennedy J. D. MacKinnon P. Sisan Z. Thornton-Pett M. J. Chem. Soc., Chem. Commun. 1990:1692–1694. doi: 10.1039/C39900001692. DOI
Huffman J. C. Stone J. G. Krussel W. C. Caulton K. G. J. Am. Chem. Soc. 1977;99:5829–5831. doi: 10.1021/ja00459a066. DOI
Gyepes R. Císarová I. Pinkas J. Kubista J. Horácek M. Mach K. Eur. J. Inorg. Chem. 2013;2013:3316–3322. doi: 10.1002/ejic.201300391. DOI
Bottomley F. Day R. W. Can. J. Chem. 1992;70:1250–1259. doi: 10.1139/v92-161. DOI
Gindelberger D. E. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1996;52:2493–2495. doi: 10.1107/S0108270196004854. DOI
Bottomley F. Grein F. Inorg. Chem. 1982;21:4170–4178. doi: 10.1021/ic00142a013. DOI
Roth A. Floriani C. Chiesi-Villa A. Guastini C. J. Am. Chem. Soc. 1986;108:6823–6825. doi: 10.1021/ja00281a071. DOI
Bottomley F. Egharevba G. O. White P. S. J. Am. Chem. Soc. 1985;107:4353–4354. doi: 10.1021/ja00300a058. DOI
Wade K. Inorg. Nucl. Chem. Lett. 1972;8:559–562. doi: 10.1016/0020-1650(72)80141-7. DOI
Wade K. Adv. Inorg. Chem. Radiochem. 1976;18:1–66. doi: 10.1016/S0065-2792(08)60027-8. DOI
Gillespie R. Chem. Soc. Rev. 1979;8:315–352. doi: 10.1039/CS9790800315. DOI
Mealli C. Lopez J. A. Sun Y. Clahorda M. J. Inorg. Chim. Acta. 1993;213:199–212. doi: 10.1016/S0020-1693(00)83831-1. DOI
Li X.-W. Pennington W. T. Robinson G. H. J. Am. Chem. Soc. 1995;117:7578–7579. doi: 10.1021/ja00133a045. DOI
Boronski J. T. Seed J. A. Hunger D. Woodward A. W. van Slageren J. Wooles A. J. Natrajan L. S. Kaltsoyannis N. Liddle S. T. Nature. 2021;598:72–75. doi: 10.1038/s41586-021-03888-3. PubMed DOI
McClain K. R. Kwon H. Chakarawet K. Nabi R. Kragskow J. G. C. Chilton N. F. Britt R. D. Long J. R. Harvey B. G. J. Am. Chem. Soc. 2023;145:8996–9002. doi: 10.1021/jacs.3c00182. PubMed DOI PMC
Kar S. Chatterjee D. Halet J.-F. Ghosh S. Molecules. 2022;27:7473–7485. doi: 10.3390/molecules27217473. PubMed DOI PMC
Thomas J. C. Goronzy D. P. Serino A. C. Auluck H. S. Irving O. R. Jimenez-Izal E. Deirmenjian J. M. Macháček J. Sautet P. Alexandrova A. N. Baše T. Weiss P. S. ACS Nano. 2018;12:2211–2221. doi: 10.1021/acsnano.7b09011. PubMed DOI PMC
Molina A. C. Horno E. Jover J. -Redondo A. P. Yélamos C. Zapata R. Organometallics. 2023;42:1360–1372. doi: 10.1021/acs.organomet.2c00580. DOI
Fischer P. J. Young Jr V. G. Ellis J. E. Angew. Chem. 2000;112:195–197. doi: 10.1002/(SICI)1521-3757(20000103)112:1<195::AID-ANGE195>3.0.CO;2-J. PubMed DOI
Bolinger C. M. Rauchfuss T. B. Rheingold A. L. J. Am. Chem. Soc. 1983;105:6321–6323. doi: 10.1021/ja00358a028. DOI
Huo X.-K. Su G. Jin G.-X. Dalton Trans. 2010;39:1954–1961. doi: 10.1039/B918272A. PubMed DOI
Wiesboeck R. A. Hawthorne M. F. J. Am. Chem. Soc. 1964;86:1642–1643. doi: 10.1021/ja01062a042. DOI
Fox M. A. Wade K. J. Organomet. Chem. 1999;57:279–291. doi: 10.1016/S0022-328X(98)00881-X. DOI
Taoda Y. Sawabe T. Endo Y. Yamaguchi K. Fujii S. Kagechika H. Chem. Commun. 2008:2049–2051. doi: 10.1039/B716079H. PubMed DOI
Brown H. C. Krishnamurthy S. J. Am. Chem. Soc. 1972;94:7159–7161. doi: 10.1021/ja00775a053. DOI
Clayden J., Greeves N. and Warren S., Organic Chemistry, Oxford University Press, Oxford, 2nd edn, 2012, pp. 125–140