Cluster versus coordination: the chemistry of cyclopentadienyl titanium and vanadium complexes with B- and C-functionalized carborane-thiols, [C2B10H12-n (SH) n ] (n = 2 or 3)

. 2025 Aug 06 ; 16 (31) : 14127-14139. [epub] 20250710

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40656526

A series of B- and C-functionalized di- and trithiol chelating o-carborane ligands have been employed to explore the coordination chemistry with cyclopentadienyl titanium and vanadium complexes. Treatment of [Cp*TiCl3] with [LiBH4·THF], followed by thermolysis with a C-functionalized carborane-dithiol ligand [1,2-(SH)2-1,2-C2B10H10], yielded octacapped octahedral [(Cp*Ti)4{Ti(1,2-(S)2-1,2-C2B10H10)}2(μ3-S)6(μ3-O)2] (1) and hexacapped trigonal bipyramidal [(Cp*Ti)4{Ti(1,2-(S)2-1,2-C2B10H10)}(μ3-S)6] (2) clusters. One of the driving forces of these reactions is the cleavage of C-S bonds of carborane-dithiols that resulted in sulfide ligands and subsequently generated clusters 1 and 2. In contrast, a similar reaction with a B-functionalized carborane-dithiol [9,12-(SH)2-1,2-C2B10H10] led to B-B bond formation that yielded a κ2-hydridoborato complex, [(Cp*Ti){κ2-BH3(9,12-(S)2-1,2-C2B10H10)}] (3). To the best of our knowledge, complex 3 is the first example of a carborane-dithiol functionalized hydridoborato complex. Interestingly, when the reactions of [Cp*TiCl3] or [Cp2TiCl2] were carried out with a B-functionalized carborane-trithiol, [8,9,12-(SH)3-1,2-C2B10H9], they led to coordination complexes, [(Cp/Cp*Ti){8,9,12-(S)3-1,2-C2B10H9}] (Cp* (4a) and Cp (4b)). Similarly, when [(Cp*VCl2)3] was employed as a metal precursor, deboronation was observed at the icosahedral cage that resulted in a zwitterionic complex, [(Cp*V){1,5,6-(S)3-nido-7,8-C2B9H9}] (5). All the clusters have been characterized by NMR, IR, mass spectrometry, and X-ray diffraction analysis. Furthermore, the theoretical analyses provided valuable insights into the electronic structures of these unusual clusters.

Zobrazit více v PubMed

Coordination Chemistry: A Century of Progress, ed. G. B. Kauffman, American Chemical Society, Washington, DC, 1994, vol. 565

Trnka T. M. Grubbs R. H. Acc. Chem. Res. 2001;34:18–29. doi: 10.1021/ar000114f. PubMed DOI

Olenyuk B. Whiteford J. A. Fechtenkötter A. Stang P. J. Nature. 1999;398:796–799. doi: 10.1038/19740. PubMed DOI

Atwood J. D. Wovkulich M. J. Sonnenberger D. C. Acc. Chem. Res. 1983;16:350–355. doi: 10.1021/ar00093a006. DOI

Zhao D. Timmons D. J. Yuan D. Zhou H. Q. Acc. Chem. Res. 2011;44:123–133. doi: 10.1021/ar100112y. PubMed DOI

Crabtree R. H., The Organometallic Chemistry of the Transition Metals, Wiley, 3rd edn, 2001

Back O. Donnadieu B. Parameswaran P. Frenking G. Bertrand G. Nat. Chem. 2010;2:369–373. doi: 10.1038/nchem.617. PubMed DOI

Casey C. P. Paulsen E. L. Beuttenmueller E. W. Proft B. R. Petrovich L. M. Matter B. A. Powell D. R. J. Am. Chem. Soc. 1997;119:11817–11825. doi: 10.1021/ja9719440. DOI

Grimes R. N., Carboranes, Elsevier, Oxford, 3rd edn, 2016

Hawthorne M. F. Zink J. I. Skelton J. M. Bayer M. J. Liu C. Livshits E. Baer R. Neuhauser D. Science. 2004;303:1849–1851. doi: 10.1126/science.1093846. PubMed DOI

Crowther D. J. Baenziger N. C. Jordan R. F. J. Am. Chem. Soc. 1991;113:1455–1457. doi: 10.1021/ja00004a080. DOI

Saxena A. K. Hosmane N. S. Chem. Rev. 1993;93:1081–1124. doi: 10.1021/cr00019a011. DOI

Jin G.-X. Coord. Chem. Rev. 2004;248:587–602. doi: 10.1016/j.ccr.2004.01.002. DOI

Spokoyny A. M. Reuter M. G. Stern C. L. Ratner M. A. Seideman T. Mirkin C. A. J. Am. Chem. Soc. 2009;131:9482–9483. doi: 10.1021/ja902526k. PubMed DOI PMC

Vlugt J. L. Angew. Chem., Int. Ed. 2010;49:252–255. doi: 10.1002/anie.200904795. PubMed DOI

Spokoyny A. M. Machan C. W. Clingerman D. J. Rosen M. S. Wiester M. J. Kennedy R. D. Stern C. L. Sarjeant A. A. Mirkin C. A. Nat. Chem. 2011;3:590–596. doi: 10.1038/nchem.1088. PubMed DOI

Plesek J. Chem. Rev. 1992;92:269–278. doi: 10.1021/cr00010a005. DOI

Larsen A. S. Holbrey J. D. Tham F. S. Reed C. A. J. Am. Chem. Soc. 2000;122:7264–7272. doi: 10.1021/ja0007511. DOI

White K. E. Avery E. M. Cummings E. Hong Z. Langecker J. Vetushka A. Dušek M. Macháček J. Višnák J. Endres J. Bastl Z. Mete E. Alexandrova A. N. Baše T. Weiss P. S. Chem. Mater. 2024;36:2085–2095. doi: 10.1021/acs.chemmater.3c03210. DOI

Moxham G. L. Douglas T. M. Brayshaw S. K. Kociok-Köhn G. Lowe J. P. Weller A. S. Dalton Trans. 2006:5492–5505. doi: 10.1039/B612049K. PubMed DOI

Comprehensive Organometallic Chemistry III, ed. R. H. Crabtree and D. M. P. Mingos, Elsevier, Oxford, UK, 2007, vol. 3, pp. 175–264

Herberhold M. Jin G.-X. Yan H. Milius W. Wrackmeyer B. Eur. J. Inorg. Chem. 1999:873–875. doi: 10.1002/(SICI)1099-0682(199905)1999:5<873::AID-EJIC873>3.0.CO;2-M. DOI

Herberhold M. Jin G.-X. Yan H. Milius W. Wrackmeyer B. J. Organomet. Chem. 1999;587:252–257. doi: 10.1016/S0022-328X(99)00330-7. DOI

Kim D.-H. Ko J. Park K. Cho S. Kang S. O. Organometallics. 1999;18:2738–2740. doi: 10.1021/om990269v. DOI

Bae J.-Y. Park Y.-I. Ko J. Park K.-I. Cho S.-I. Kang S. O. Inorg. Chim. Acta. 1999;289:141–148. doi: 10.1016/S0020-1693(99)00064-X. DOI

Jin G.-X. Coord. Chem. Rev. 2013;257:2522–2535. doi: 10.1016/j.ccr.2013.02.004. DOI

Herberhold M. Yan H. Milius W. Wrackmeyer B. Angew. Chem., Int. Ed. 1999;38:3689–3691. doi: 10.1002/(SICI)1521-3773(19991216)38:24<3689::AID-ANIE3689>3.0.CO;2-T. PubMed DOI

Herberhold M. Yan H. Milius W. Wrackmeyer B. Chem.–Eur. J. 2002;8:388–395. doi: 10.1002/1521-3765(20020118)8:2<388::AID-CHEM388>3.0.CO;2-U. PubMed DOI

Yaoa Z.-J. Deng W. Coord. Chem. Rev. 2016;309:21–35. doi: 10.1016/j.ccr.2015.10.008. DOI

Herberhold M. Yan H. Milius W. Wrackmeyer B. Organometallics. 2000;19:4289–4294. doi: 10.1021/om0003077. DOI

Jiang Q. Wang Z. Li Y. Yan H. Chem. Commun. 2013;49:5880–5882. doi: 10.1039/C3CC42554A. PubMed DOI

Wang Z. Ye H. Li Y. Li Y. Yan H. J. Am. Chem. Soc. 2013;135:11289–11298. doi: 10.1021/ja4047075. PubMed DOI

Liu S. Han Y.-F. Jin G.-X. Chem. Soc. Rev. 2007;36:1543–1560. doi: 10.1039/B701869J. PubMed DOI

Jin G.-X. Wang J.-Q. Zhang C. Weng L.-H. Herberhold M. Angew. Chem., Int. Ed. 2005;44:259–262. doi: 10.1002/anie.200461348. PubMed DOI

Wang J.-Q. Ren C.-X. Jin G.-X. Chem. Commun. 2006:162–164. doi: 10.1039/B512416F. PubMed DOI

Wedge T. J. Hawthorne M. F. Coord. Chem. Rev. 2003;240:111–128. doi: 10.1016/S0010-8545(02)00259-X. DOI

Wu D.-H. Xu B.-H. Li Y.-Z. Yan H. Organometallics. 2007;26:6300–6306. doi: 10.1021/om7008556. DOI

Wang J.-H. Zheng C. Maguire J. A. Hosmane N. S. Organometallics. 2003;22:4839–4841. doi: 10.1021/om0340802. DOI

Cai S. Jin G.-X. Organometallics. 2005;24:5280–5286. doi: 10.1021/om050598p. DOI

Cai S. Wang J. Jin G.-X. Organometallics. 2005;24:4226–4231. doi: 10.1021/om0503949. DOI

Herberhold M. Jin G.-X. Yan H. Milius W. Wrackmeyer B. J. Organomet. Chem. 1999;587:252–257. doi: 10.1016/S0022-328X(99)00330-7. DOI

Wang J. Q. Ren C. X. Weng L. H. Jin G.-X. Chem. Commun. 2006:162–164. doi: 10.1039/B512416F. PubMed DOI

Jin G.-X. Wang J.-Q. Zhang Z. Weng L. H. Herberhold M. Angew. Chem., Int. Ed. 2005;44:259–262. doi: 10.1002/anie.200461348. PubMed DOI

Jin G.-X. Wang J.-Q. Dalton Trans. 2006:86–90. doi: 10.1039/B512027F. PubMed DOI

Olid D. Núñez R. Viñas C. Teixidor F. Chem. Soc. Rev. 2013;42:3318–3336. doi: 10.1039/C2CS35441A. PubMed DOI

Zhang X. Zou X. Yan H. Organometallics. 2014;33:2661–2666. doi: 10.1021/om500411b. DOI

Zhang X. Tang X. Yang J. Li Y. Yan H. Bregadze V. I. Organometallics. 2013;32:2014–2018. doi: 10.1021/om400097m. DOI

Mannix A. J. Zhou X.-F. Kiraly B. Wood J. D. Alducin D. Myers B. D. Liu X. Fisher B. L. Santiago U. Guest J. R. Yacaman M. J. Ponce A. Oganov A. R. Hersam M. C. Guisinger N. P. Science. 2015;350:1513–1516. doi: 10.1126/science.aad1080. PubMed DOI PMC

Tina C. L. Spokoyny A. M. She C. Farha O. K. Mirkin C. A. Marks T. J. Hupp J. T. J. Am. Chem. Soc. 2010;132:4580–4582. doi: 10.1021/ja100396n. PubMed DOI

Olsen F. P. Vasavada R. C. Hawthorne M. F. J. Am. Chem. Soc. 1968;95:3946–3951. doi: 10.1021/ja01017a007. DOI

Miller N. E. Muetterties E. L. J. Am. Chem. Soc. 1963;85:3506. doi: 10.1021/ja00904a049. DOI

Zheng F. Yui T. H. Zhang J. Xie Z. Nat. Chem. 2020;11:5943–5947. PubMed PMC

Xie Z. Coord. Chem. Rev. 2006;250:259–272. doi: 10.1016/j.ccr.2005.05.009. DOI

Deng L. Xie Z. Coord. Chem. Rev. 2007;251:2452–2476. doi: 10.1016/j.ccr.2007.02.009. DOI

Qiu Z. Ren S. Xie Z. Acc. Chem. Res. 2013;44:299–309. doi: 10.1021/ar100156f. PubMed DOI

Kar S. and Ghosh S., Borane Polyhedra beyond Icosahedron, in 50th Anniversary of Electron Counting Paradigms for Polyhedral Molecules. Structure and Bonding, ed. D. M. P. Mingos, Springer, Berlin, 2021, vol. 187, pp. 109–138

Kar S., Pradhan A. N. and Ghosh S., in Comprehensive Organometallic Chemistry IV, ed. G. Parkin, K. Meyer and D. O’hare, Elsevier, Amsterdam, 2022, vol. 9, pp. 263–369

Kar S. Bairagi S. Halet J.-F. Ghosh S. Chem. Commun. 2023;59:11676–11679. doi: 10.1039/D3CC03952H. PubMed DOI

Saha K. Roy D. K. Dewhurst R. D. Ghosh S. Braunschweig H. Acc. Chem. Res. 2021;54:1260–1273. doi: 10.1021/acs.accounts.0c00819. PubMed DOI

Kar S. Bairagi S. Joshi G. Jemmis E. D. Himmel H. Ghosh S. Acc. Chem. Res. 2024;57:2901–2914. doi: 10.1021/acs.accounts.4c00497. PubMed DOI

Bag R., Bairagi S., Rout B. K. and Ghosh S., in Encyclopedia of Inorganic and Bioinorganic Chemistry, ed. R. Melen, Wiley, 2022

Kar S. Bairagi S. Haridas A. Joshi G. Jemmis E. D. Ghosh S. Angew. Chem., Int. Ed. 2022;61:e202208293. doi: 10.1002/anie.202208293. PubMed DOI

Pathak K. Nandi C. Ghosh S. Coord. Chem. Rev. 2022;453:214303. doi: 10.1016/j.ccr.2021.214303. DOI

Bairagi S. Giri S. Joshi G. Jemmis E. D. Ghosh S. Angew. Chem., Int. Ed. 2025;64:e202417170. doi: 10.1002/anie.202417170. PubMed DOI

Bairagi S. Chatterjee D. Giri S. Ghosh S. Chem. Commun. 2025;61:3696–3699. doi: 10.1039/D4CC06535B. PubMed DOI

Baše T. Macháček J. Hájková Z. Langecker J. Kennedy J. D. Carr M. J. J. Organomet. Chem. 2015;798:132–140. doi: 10.1016/j.jorganchem.2015.06.020. DOI

Gayen S. Assanar F. Shymal S. Dorairaj D. P. Ghosh S. Chem. Sci. 2024;15:15913–15924. doi: 10.1039/D4SC05092D. PubMed DOI PMC

Roy D. K. Mondal B. Shankhari P. Anju R. S. Geetharani K. Mobin S. M. Ghosh S. Inorg. Chem. 2013;52:6705–6712. doi: 10.1021/ic400761z. PubMed DOI

Ditzel E. J. Fontaine X. L. R. Fowkes H. Greenwood N. N. Kennedy J. D. MacKinnon P. Sisan Z. Thornton-Pett M. J. Chem. Soc., Chem. Commun. 1990:1692–1694. doi: 10.1039/C39900001692. DOI

Huffman J. C. Stone J. G. Krussel W. C. Caulton K. G. J. Am. Chem. Soc. 1977;99:5829–5831. doi: 10.1021/ja00459a066. DOI

Gyepes R. Císarová I. Pinkas J. Kubista J. Horácek M. Mach K. Eur. J. Inorg. Chem. 2013;2013:3316–3322. doi: 10.1002/ejic.201300391. DOI

Bottomley F. Day R. W. Can. J. Chem. 1992;70:1250–1259. doi: 10.1139/v92-161. DOI

Gindelberger D. E. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1996;52:2493–2495. doi: 10.1107/S0108270196004854. DOI

Bottomley F. Grein F. Inorg. Chem. 1982;21:4170–4178. doi: 10.1021/ic00142a013. DOI

Roth A. Floriani C. Chiesi-Villa A. Guastini C. J. Am. Chem. Soc. 1986;108:6823–6825. doi: 10.1021/ja00281a071. DOI

Bottomley F. Egharevba G. O. White P. S. J. Am. Chem. Soc. 1985;107:4353–4354. doi: 10.1021/ja00300a058. DOI

Wade K. Inorg. Nucl. Chem. Lett. 1972;8:559–562. doi: 10.1016/0020-1650(72)80141-7. DOI

Wade K. Adv. Inorg. Chem. Radiochem. 1976;18:1–66. doi: 10.1016/S0065-2792(08)60027-8. DOI

Gillespie R. Chem. Soc. Rev. 1979;8:315–352. doi: 10.1039/CS9790800315. DOI

Mealli C. Lopez J. A. Sun Y. Clahorda M. J. Inorg. Chim. Acta. 1993;213:199–212. doi: 10.1016/S0020-1693(00)83831-1. DOI

Li X.-W. Pennington W. T. Robinson G. H. J. Am. Chem. Soc. 1995;117:7578–7579. doi: 10.1021/ja00133a045. DOI

Boronski J. T. Seed J. A. Hunger D. Woodward A. W. van Slageren J. Wooles A. J. Natrajan L. S. Kaltsoyannis N. Liddle S. T. Nature. 2021;598:72–75. doi: 10.1038/s41586-021-03888-3. PubMed DOI

McClain K. R. Kwon H. Chakarawet K. Nabi R. Kragskow J. G. C. Chilton N. F. Britt R. D. Long J. R. Harvey B. G. J. Am. Chem. Soc. 2023;145:8996–9002. doi: 10.1021/jacs.3c00182. PubMed DOI PMC

Kar S. Chatterjee D. Halet J.-F. Ghosh S. Molecules. 2022;27:7473–7485. doi: 10.3390/molecules27217473. PubMed DOI PMC

Thomas J. C. Goronzy D. P. Serino A. C. Auluck H. S. Irving O. R. Jimenez-Izal E. Deirmenjian J. M. Macháček J. Sautet P. Alexandrova A. N. Baše T. Weiss P. S. ACS Nano. 2018;12:2211–2221. doi: 10.1021/acsnano.7b09011. PubMed DOI PMC

Molina A. C. Horno E. Jover J. -Redondo A. P. Yélamos C. Zapata R. Organometallics. 2023;42:1360–1372. doi: 10.1021/acs.organomet.2c00580. DOI

Fischer P. J. Young Jr V. G. Ellis J. E. Angew. Chem. 2000;112:195–197. doi: 10.1002/(SICI)1521-3757(20000103)112:1<195::AID-ANGE195>3.0.CO;2-J. PubMed DOI

Bolinger C. M. Rauchfuss T. B. Rheingold A. L. J. Am. Chem. Soc. 1983;105:6321–6323. doi: 10.1021/ja00358a028. DOI

Huo X.-K. Su G. Jin G.-X. Dalton Trans. 2010;39:1954–1961. doi: 10.1039/B918272A. PubMed DOI

Wiesboeck R. A. Hawthorne M. F. J. Am. Chem. Soc. 1964;86:1642–1643. doi: 10.1021/ja01062a042. DOI

Fox M. A. Wade K. J. Organomet. Chem. 1999;57:279–291. doi: 10.1016/S0022-328X(98)00881-X. DOI

Taoda Y. Sawabe T. Endo Y. Yamaguchi K. Fujii S. Kagechika H. Chem. Commun. 2008:2049–2051. doi: 10.1039/B716079H. PubMed DOI

Brown H. C. Krishnamurthy S. J. Am. Chem. Soc. 1972;94:7159–7161. doi: 10.1021/ja00775a053. DOI

Clayden J., Greeves N. and Warren S., Organic Chemistry, Oxford University Press, Oxford, 2nd edn, 2012, pp. 125–140

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...