Acid-Base Control of Valency within Carboranedithiol Self-Assembled Monolayers: Molecules Do the Can-Can
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R25 GM055052
NIGMS NIH HHS - United States
PubMed
29393628
PubMed Central
PMC6350814
DOI
10.1021/acsnano.7b09011
Knihovny.cz E-zdroje
- Klíčová slova
- carborane, dipoles, molecular switch, nanoscience, scanning tunneling microscopy, self-assembled monolayer, self-assembly, two-dimensional,
- Publikační typ
- časopisecké články MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
We use simple acid-base chemistry to control the valency in self-assembled monolayers of two different carboranedithiol isomers on Au{111}. Monolayer formation proceeds via Au-S bonding, where manipulation of pH prior to or during deposition enables the assembly of dithiolate species, monothiol/monothiolate species, or combination. Scanning tunneling microscopy (STM) images identify two distinct binding modes in each unmodified monolayer, where simultaneous spectroscopic imaging confirms different dipole offsets for each binding mode. Density functional theory calculations and STM image simulations yield detailed understanding of molecular chemisorption modes and their relation with the STM images, including inverted contrast with respect to the geometric differences found for one isomer. Deposition conditions are modified with controlled equivalents of either acid or base, where the coordination of the molecules in the monolayers is controlled by protonating or deprotonating the second thiol/thiolate on each molecule. This control can be exercised during deposition to change the valency of the molecules in the monolayers, a process that we affectionately refer to as the "can-can." This control enables us to vary the density of molecule-substrate bonds by a factor of 2 without changing the molecular density of the monolayer.
Zobrazit více v PubMed
Love JC; Estroff LA; Kriebel JK; Nuzzo RG; Whitesides GM. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev 2005, 105, 1103–1170. PubMed
Weiss PS Functional Molecules and Assemblies in Controlled Environments: Formation and Measurements. Acc. Chem. Res 2008, 41, 1772–1781. PubMed
Claridge SA; Liao WS; Thomas JC; Zhao Y; Cao HH; Cheunkar S; Serino AC; Andrews AM; Weiss PS From the Bottom Up: Dimensional Control and Characterization in Molecular Monolayers. Chem. Soc. Rev 2013, 42, 2725–2745. PubMed PMC
Ulman A Formation and Structure of Self-Assembled Monolayers. Chem. Rev 1996, 96, 1533–1554. PubMed
Poirier GE Characterization of Organosulfur Molecular Monolayers on Au(111) using Scanning Tunneling Microscopy. Chem. Rev 1997, 97, 1117–1128. PubMed
Smith RK; Lewis PA; Weiss PS Patterning Self-Assembled Monolayers. Prog. Surf. Sci 2004, 75, 1–68.
Han P; Kurland AR; Giordano AN; Nanayakkara SU; Blake MM; Pochas CM; Weiss PS Heads and Tails: Simultaneous Exposed and Buried Interface Imaging of Monolayers. ACS Nano 2009, 3, 3115–3121. PubMed
Hohman JN; Thomas JC; Zhao Y; Auluck H; Kim M; Vijselaar W; Kommeren S; Terfort A; Weiss PS Exchange Reactions between Alkanethiolates and Alkaneselenols on Au{111}. J. Am. Chem. Soc 2014, 136, 8110–8121. PubMed
Salmeron M; Neubauer G; Folch A; Tomitori M; Ogletree DF; Sautet P Viscoelastic and Electrical Properties of Alkylthiol Monolayers on Gold(111) Films. Langmuir 1993, 9, 3600–3611.
Nuzzo RG; Allara DL Adsorption of Bifunctional Organic Disulfides on Gold Surfaces. J. Am. Chem. Soc 1983, 105, 4481–4483.
Takami T; Delamarche E; Michel B; Gerber Ch.; Wolf H; Ringsdorf H. Recognition of Individual Tail Groups in Self-Assembled Monolayers. Langmuir 1995, 11, 3876–3881.
Kim M; Hohman JN; Cao Y; Houk KN; Ma H; Jen AK; Weiss PS Creating Favorable Geometries for Directing Organic Photoreactions in Alkanethiolate Monolayers. Science 2011, 331, 1312–1315. PubMed
Hohman JN; Claridge SA; Kim M; Weiss PS Cage Molecules for Self-Assembly. Mater. Sci. Eng. R 2010, 70, 188–208.
Spokoyny AM; Machan CW; Clingerman DJ; Rosen MS; Wiester MJ; Kennedy RD; Stern CL; Sarjeant AA; Mirkin CA A Coordination Chemistry Dichotomy for Icosahedral Carborane-Based Ligands. Nat. Chem 2011, 3, 590–596. PubMed
Kim J; Rim YS; Liu Y; Serino AC; Thomas JC; Chen H; Yang Y; Weiss PS Interface Control in Organic Electronics Using Mixed Monolayers of Carboranethiol Isomers. Nano Lett. 2014, 14, 2946–2951. PubMed
Thomas JC; Schwartz JJ; Hohman JN; Claridge SA; Auluck HS; Serino AC; Spokoyny AM; Tran G; Kelly KF; Mirkin CA; Gilles J; Osher SJ; Weiss PS Defect-Tolerant Aligned Dipoles within Two-Dimensional Plastic Lattices. ACS Nano 2015, 9, 4734–4742. PubMed
Thomas JC; Boldog I; Auluck HS; Bereciartua P; Dušek M; Macháček J; Bastl Z; Weiss PS; Baše T Self-Assembled p-Carborane Analog of p-Mercaptobenzoic Acid on Au{111}. Chem. Mater 2015, 27, 5425–5435.
Kristiansen K; Stock P; Baimpos T; Raman S; Harada JK; Israelachvili JN; Valtiner M Influence of Molecular Dipole Orientations on Long-Range Exponential Interaction Forces at Hydrophobic Contacts in Aqueous Solutions. ACS Nano 2014, 8, 10870–10877. PubMed
Hohman JN; Zhang P; Morin EI; Han P; Kim M; Kurland AR; McClanahan PD; Balema VP; Weiss PS Self-Assembly of Carboranethiol Isomers on Au{111}: Intermolecular Interactions Determined by Molecular Dipole Orientations. ACS Nano 2009, 3, 527–536. PubMed
Serino AC; Anderson ME; Saleh LMA; Dziedzic RM; Mills H; Heidenreich LK; Spokoyny AM; Weiss PS Work Function Control of Germanium through Carborane-Carboxylic Acid Surface Passivation. ACS Appl. Mater. Interfaces 2017, 9, 34592–34596. PubMed
Baše T; Bastl Z; Plzák Z; Grygar T; Plešek J; Carr M; Malina V; Šubrt J; Boháček J; Večerníková E; Kříž O Carboranethiol-Modified Gold Surfaces. A Study and Comparison of Modified Cluster and Flat Surfaces. Langmuir 2005, 21, 7776–7785. PubMed
Baše T; Bastl Z; Šlouf M; Klementová M; Šubrt J; Vetushka A; Ledinský M; Fejfar A; Macháček J; Carr MJ; Londesborough MGS Gold Micrometer Crystals Modified with Carboranethiol Derivatives. J. Phys. Chem. C 2008, 112, 14446–14455.
Baše T; Bastl Z; Havránek V; Lang K; Bould J; Londesborough MGS; Macháček J; Plešek J Carborane-Thiol-Silver Interactions. A Comparative Study of the Molecular Protection of Silver Surfaces. Surf. Coat. Tech 2010, 204, 2639–2646.
Lübben JF; Baše T; Rupper P; Künniger T; Macháček J; Guimond S Tuning the Surface Potential of Ag Surfaces by Chemisorption of Oppositely-Oriented Thiolated Carborane Dipoles. J. Colloid Interface Sci 2011, 354, 168–174. PubMed
Langecker J; Fejfarová K; Dušek M; Rentsch D; Baše T Carbon-Substituted 9,12-Dimercapto-1,2-Dicarba-closo-Dodecaboranes via a 9,12-Bis(Methoxy-Methylthio)-1,2-Dicarba-closo-Dodecaborane Precursor. Polyhedron 2012, 45, 144–151.
Baše T; Bastl Z; Havránek V; Macháček J; Langecker J; Malina V Carboranedithiols: Building Blocks for Self-Assembled Monolayers on Copper Surfaces. Langmuir 2012, 28, 12518–12526. PubMed
Schwartz JJ; Mendoza AM; Wattanatorn N; Zhao Y; Nguyen VT; Spokoyny AM; Mirkin CA; Base T; Weiss PS Surface Dipole Control of Liquid Crystal Alignment. J. Am. Chem. Soc 2016, 49, 5957–5967. PubMed
Nuzzo RG; Dubois LH; Allara DL Fundamental Studies of Microscopic Wetting on Organic-Surfaces. 1. Formation and Structural Characterization of a Self-Consistent Series of Polyfunctional Organic Monolayers. J. Am. Chem. Soc 1990, 112, 558–569.
Liao WS; Cheunkar S; Cao HH; Bednar HR; Weiss PS; Andrews AM Subractive Patterning via Chemical Lift-off Lithography. Science 2012, 337, 1517–1521. PubMed
Kim J; Rim YS; Chen H; Cao HH; Nakatsuka N; Hinton HL; Zhao C; Andrews AM; Yang Y; Weiss PS. Fabrication of High-Performance Ultrathin In2O3 Film Field-Effect Transistors and Biosensors Using Chemical Lift-Off Lithography. ACS Nano 2015, 9, 4572–4582. PubMed
Andrews AM; Liao W-S; Weiss PS Double-Sided Opportunities Using Chemical Lift-Off Lithography, Acc. Chem. Res 2016, 49, 1449–1457. PubMed
Monnell JD; Stapleton JJ; Dirk SM; Reinerth WA; Tour JM; Allara DL; Weiss PS Relative Conductances of Alkaneselenolate and Alkanethiolate Monolayers on Au{111}. J. Phys. Chem. B 2005, 109, 20343–20349. PubMed
Zheng YB; Pathem BK; Hohman JN; Thomas JC; Kim M; Weiss PS Photoresponsive Molecules in Well-Defined Nanoscale Environments. Adv. Mater 2013, 25, 302–312. PubMed
He H-X; Huang W; Zhang H; Li QG; Li SFY; Liu ZF Demonstration of High-Resolution Capability of Chemical Force Titration via Study of Acid/Base Properties of a Patterned Self-Assembled Monolayer. Langmuir 2000, 16, 517–521.
Saavedra HM; Thompson CM; Hohman JN; Crespi VH; Weiss PS. Reversible Lability by in Situ Reaction of Self-Assembled Monolayers. J. Am. Chem. Soc 2009, 131, 2252–2259. PubMed
Saavedra HM; Mullen TJ; Zhang P; Dewey DC; Claridge SA; Weiss PS Hybrid Strategies in Nanolithography. Rep. Prog. Phys 2010, 73, 036501–036600.
Saadi FH; Carim AI; Verlage E; Hemminger JC; Lewis NS; Soriaga MP CoP as an Acid-Stable Active Electrocatalyst for the Hydrogen-Evolution Reaction: Electrochemical Synthesis, Interfacial Characterization and Performance Evaluation. J. Phys. Chem. C 2014, 118, 29294–29300.
Katano S; Kim Y; Matsubara H; Kitagawa T; Kawai M Hierarchical Chiral Framework Based on a Rigid Adamantane Tripod on Au(111). J. Am. Chem. Soc 2007, 129, 2511–2515. PubMed
Hatzor A; McCarty GS; D’Onofrio TG; Fuchs DJ; Allara DL; Tour JM; Weiss PS Scanning Tunneling Microscopy and Spectroscopy of Caltrops on Au{111}. Unpublished.
Moore AM; Dameron AA; Mantooth BA; Smith RK; Fuchs DJ; Ciszek JW; Maya F; Yao Y; Tour JM; Weiss PS Molecular Engineering and Measurements to Test Hypothesized Mechanisms in Single Molecule Conductance Switching. J. Am. Chem. Soc 2006, 128, 1959–1967. PubMed
Yao Y; Tour JM Facile Convergent Route to Molecular Caltrops. J. Org. Chem 1999, 64, 1968–1971. PubMed
Jian H; Tour JM En Route to Surface-Bound Electric Field-Driven Molecular Motors. J. Org. Chem 2003, 68, 5091–5103. PubMed
van Delden RA; ter Wiel MKJ; Pollard MM; Vicario J; Koumura N; Feringa BL Unidirectional Molecular Motor on a Gold Surface. Nature 2005, 437, 1337–1340. PubMed
Ye T; Kumar AS; Saha S; Takami T; Huang TJ; Stoddart JF; Weiss PS Changing Stations in Single Bistable Rotaxane Molecules under Electrochemical Control. ACS Nano 2010, 4, 3697–3701. PubMed
Donhauser ZJ; Mantooth BA; Kelly KF; Bumm LA; Monnell JD; Stapleton JJ; Price DW Jr.; Rawlett AM; Allara DL; Tour JM; Weiss PS Conductance Switching in Single Molecules through Conformational Changes. Science 2001, 292, 2303–2307. PubMed
Lewis PA; Inman CE; Maya F; Tour JM; Hutchison JE; Weiss PS Molecular Engineering of the Polarity and Interactions of Molecular Electronics Switches. J. Am. Chem. Soc 2005, 127, 17421–17426. PubMed
Tersoff J; Hamann DR Theory and Application for the Scanning Tunneling Microscope. Phys. Rev. Lett 1998, 50, 1998–2001.
McCarty GS; Weiss PS Scanning Probe Studies of Single Nanostructures. Chem. Rev 1999, 99, 1983–1990. PubMed
Claridge SA; Schwartz JJ; Weiss PS Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology. ACS Nano 2011, 5, 693–729. PubMed PMC
Bonnell DA; Basov DN; Bode M; Diebold U; Kalinin SV; Madhavan V; Novotny L; Salmeron M; Schwarz UD; Weiss PS Imaging Physical Phenomena with Local Probes: From Electrons to Photons. Rev. Mod. Phys 2012, 84, 1343–1381.
Bumm LA; Arnold JJ; Cygan MT; Dunbar TD; Burgin TP; Jones L II; Allara DL; Tour JM; Weiss PS Are Single Molecular Wires Conducting? Science 1996, 271, 1705–1707.
Claridge SA; Thomas JC; Silverman MA; Schwartz JJ; Yang Y; Wang C; Weiss PS Differentiating Amino Acid Residues and Side Chain Orientations in Peptides Using Scanning Tunneling Microscopy. J. Am. Chem. Soc 2013, 135, 18528–18535. PubMed PMC
Thomas JC; Schwartz JJ; Hohman JN; Claridge SA; Auluck HS; Serino AC; Spokoyny AM; Tran G; Kelly KF; Mirkin CA; Gilles J; Osher SJ; Weiss PS Defect-Tolerant Aligned Dipoles within Two-Dimensional Plastic Lattices. ACS Nano 2015, 9, 4734–4742. PubMed
Thomas JC; Goronzy DP; Dragomeritskiy K; Zosso D; Gilles J; Osher SJ; Bertozzi A; Weiss PS Mapping Buried Hydrogen-Bonding Networks, ACS Nano 2016, 10, 5446–5451. PubMed
Yugay D; Goronzy DP; Kawakami LM; Claridge SA; Song T-B; Yan Z; Xie Y-H; Gilles J; Yang Y; Weiss PS Copper Ion Binding Site in β-Amyloid Peptide. Nano Lett. 2016, 16, 6282–6289. PubMed
Fujii S; Akiba U; Fujihira M Geometry for Self-Assembling of Spherical Hydrocarbon Cages with Methane Thiolates on Au(111). J. Am. Chem. Soc 2002, 124, 13629–13635. PubMed
Wade K The Structural Significance of the Number of Skeletal Bonding Electron-Pairs in Carboranes, the Higher Boranes and Borane Anions, and Various Transition-Metal Carbonyl Cluster Compounds. J. Chem. Soc. D 1971, 792–793.
Wiesendanger R; Eng L; Hidber HR; Oelhafen P; Rosenthaler L; Staufer U; Guntherodt HJ Local Tunneling Barrier Height Images Obtained with the Scanning Tunneling Microscope. Surf Sci. 1987, 189–190, 24–28.
Olesen L; Brandbyge M; S0rensen MR; Jacobsen KW; Laegsgaard E; Stensgaard I; Besenbacher F. Apparent Barrier Height in Scanning Tunneling Microscopy Revisited. Phys. Rev. Lett 1996, 76, 1485–1488. PubMed
Lang ND Apparent Barrier Height in Scanning Tunneling Microscopy. Phys. Rev. B 1988, 37, 10395–10398. PubMed
Jain J; Jain A Displacement Measurement and Its Application in Interframe Image Coding. IEEE Trans. Comm 1981, 29, 1799–1808.
Love NS; Kamath C An Empirical Study of Block Matching Techniques for the Detection of Moving Objects. CASC, LLNL. Livermore 2006, 1–36.
Slaughter LS; Cheung KM; Kaappa S; Cao HH; Yang Q; Young TD; Serino AC; Malola S; Olson JM; Link S; Hakkinen H; Andrews AM; Weiss PS Patterning Supported Gold Monolayers via Chemical Lift-Off Lithography. Beilstein J. Nanotechnol 2017, 8, in press. PubMed PMC
Leites LA Vibrational Spectroscopy of Carboranes and Parent Boranes and its Capabilities in Carborane Chemistry. Chem. Rev 1992, 92, 279–323.
Stranick SJ; Parikh AN; Allara DL; Weiss PS A New Mechanism for Surface Diffusion: Motion of a Substrate-Adsorbate Complex. J. Phys. Chem 1994, 98, 11136–11142.
Poirier GE; Tarlov MJ Molecular Ordering and Gold Migration Observed in Butanethiol Self-Assembled Monolayers using Scanning Tunneling Micrscopy. J. Phys. Chem 1995, 99, 10966–10970.
Shimizu TK; Jung J; Otani T; Han Y-K; Kawai M; Kim Y Two-Dimensional Superstructure Formation of Fluorinated Fullerene on Au(111): A Scanning Tunneling Microscopy Study. ACS Nano 2012, 6, 2679–2685. PubMed
Wiesboeck RA; Hawthorne MF Dicarbaundecaborane(13) and Derivatives. J. Am. Chem. Soc 1964, 86, 1642–1643.
Bumm LA; Arnold JJ; Charles LF; Dunbar TD; Allara DL; Weiss PS Directed Self-Assembly to Create Molecular Terraces with Molecularly Sharp Boundaries in Organic Monolayers. J. Am. Chem. Soc 1999, 121, 8017–8021.
Ferris JH; Kushmerick JG; Johnson JA; Yoshikawa Youngquist MG; Kessinger RB; Kingsbury HF; Weiss PS Design, Operation, and Housing of an Ultrastable, Low Temperature, Ultrahigh Vacuum Scanning Tunneling Microscope. Rev. Sci. Instrum 1998, 69, 2691–2695.
Moulder JF Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Idenfication and Interpretation of XPS Data; Perkin-Elmer Corporation, Physical Electronics Division: Eden Prairie, MN, 1992.
Kresse G; Hafner J Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47, 558–561. PubMed
Kresse G; Hafner J Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal-Amorphous-Semiconductor Transition in Germanium. Phys. Rev. B 1994, 49,14251–14269. PubMed
Kresse G; Furthmüller J Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mat. Sci 1996, 6, 15–50. PubMed
Kresse G; Furthmüller J Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. PubMed
Perdew JP; Burke K; Ernzerhof M Generalized Gradient Approximation Made Simple Phys. Rev. Lett 1997, 78, 1396–3868. PubMed
Kresse G; Joubert D From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775.
Grimme S; Antony J; Ehrlich S; Krieg S A consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys 2010, 132, 154104–154122. PubMed
Dunnington BD; & Schmidt JR Generalization of Natural Bond Orbital Analysis to Periodic Systems: Applications to Solids and Surfaces via Plane-Wave Density Functional Theory. J. Chem. Theory Comput 2012, 8, 1902–1911. PubMed
Weigend F Accurate Coulomb-Fitting Basis Sets for H to Rn, Phys. Chem. Chem. Phys 2006, 8, 1057–1065. PubMed
Weigend F; Ahlrichs R Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy, Phys. Chem. Chem. Phys 2005, 7, 3297–3305. PubMed
Macropolyhedral syn-B18H22, the "Forgotten" Isomer