Macropolyhedral syn-B18H22, the "Forgotten" Isomer
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37532522
PubMed Central
PMC10436279
DOI
10.1021/jacs.3c05530
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The chemistry and physics of macropolyhedral B18H22 clusters have attracted significant attention due to the interesting photophysical properties of anti-B18H22 (blue emission, laser properties) and related potential applications. We have focused our attention on the "forgotten" syn-B18H22 isomer, which has received very little attention since its discovery compared to its anti-B18H22 isomer, presumably because numerous studies have reported this isomer as nonluminescent. In our study, we show that in crystalline form, syn-B18H22 exhibits blue fluorescence and becomes phosphorescent when substituted at various positions on the cluster, associated with peculiar microstructural-dependent effects. This work is a combined theoretical and experimental investigation that includes the synthesis, separation, structural characterization, and first elucidation of the photophysical properties of three different monothiol-substituted cluster isomers, [1-HS-syn-B18H21] 1, [3-HS-syn-B18H21] 3, and [4-HS-syn-B18H21] 4, of which isomers 1 and 4 have been proved to exist in two different polymorphic forms. All of these newly substituted macropolyhedral cluster derivatives (1, 3, and 4) have been fully characterized by NMR spectroscopy, mass spectrometry, single-crystal X-ray diffraction, IR spectroscopy, and luminescence spectroscopy. This study also presents the first report on the mechanochromic shift in the luminescence of a borane cluster and generally enriches the area of rather rare boron-based luminescent materials. In addition, we present the first results proving that they are useful constituents of carbon-free self-assembled monolayers.
Institute of Inorganic Chemistry The Czech Academy of Science 25068 Rez Czech Republic
Institute of Physical Chemistry Friedrich Schiller University Jena 07743 Jena Germany
Institute of Physics The Czech Academy of Science 182 21 Prague 8 Czech Republic
Zobrazit více v PubMed
Huang Z.; Wang S.; Dewhurst R. D.; Ignat’ev N. V.; Finze M.; Braunschweig H. Boron: Its Role in Energy-Related Processes and Applications. Angew. Chem., Int. Ed. 2020, 59, 8800–8816. 10.1002/anie.201911108. PubMed DOI PMC
Ochi J.; Tanaka K.; Chujo Y. Recent Progress in the Development of Solid-State Luminescent o-Carboranes with Stimuli Responsivity. Angew. Chem., Int. Ed. 2020, 59, 9841–9855. 10.1002/anie.201916666. PubMed DOI
Mukherjee S.; Thilagar P. Boron Clusters in Luminescent Materials. Chem. Commun. 2016, 52, 1070–1093. 10.1039/C5CC08213G. PubMed DOI
Horsky T. N.; Hahto S. K.; McIntyre E. K.; Sacco G. P.; Matsuo J.; Kase M.; Aoki T.; Seki T.. N- and P-Type Cluster Source; Kyoto, (Japan) 2011, 452–−455.10.1063/1.3548447. DOI
Dash B. P.; Satapathy R.; Maguire J. A.; Hosmane N. S. Polyhedral Boron Clusters in Materials Science. New J. Chem. 2011, 35, 1955.10.1039/c1nj20228f. DOI
Messina M. S.; Axtell J. C.; Wang Y.; Chong P.; Wixtrom A. I.; Kirlikovali K. O.; Upton B. M.; Hunter B. M.; Shafaat O. S.; Khan S. I.; Winkler J. R.; Gray H. B.; Alexandrova A. N.; Maynard H. D.; Spokoyny A. M. Visible-Light-Induced Olefin Activation Using 3D Aromatic Boron-Rich Cluster Photooxidants. J. Am. Chem. Soc. 2016, 138, 6952–6955. 10.1021/jacs.6b03568. PubMed DOI
Cerdán L.; Braborec J.; Garcia-Moreno I.; Costela A.; Londesborough M. G. S. A Borane Laser. Nat. Commun. 2015, 6, 595810.1038/ncomms6958. PubMed DOI
Sivaev I. B.; Bregadze V. I.; Sjöberg S. Chemistry of Closo-Dodecaborate Anion [B12H12]2–: A Review. Collect. Czech. Chem. Commun. 2002, 67, 679–727. 10.1135/cccc20020679. DOI
Wunderlich J. A.; Lipscomb W. N. Structure of B12H12- 2 Ion. J. Am. Chem. Soc. 1960, 82, 4427–4428. 10.1021/ja01501a076. DOI
King R. B. Three-Dimensional Aromaticity in Polyhedral Boranes and Related Molecules. Chem. Rev. 2001, 101, 1119–1152. 10.1021/cr000442t. PubMed DOI
Jemmis E. D.; Balakrishnarajan M. M.; Pancharatna P. D. Electronic Requirements for Macropolyhedral Boranes. Chem. Rev. 2002, 102, 93–144. 10.1021/cr990356x. PubMed DOI
Pitochelli A. R.; Hawthorne M. F. The Preparation of a New Boron Hydride B18H22. J. Am. Chem. Soc. 1962, 84, 3218.10.1021/ja00875a058. DOI
Li Y.; Sneddon L. G. Improved Synthetic Route to n-B18H22. Inorg. Chem. 2006, 45, 470–471. 10.1021/ic051712z. PubMed DOI
Simpson P. G.; Lipscomb W. N. Molecular, Crystal, and Valence Structures of B18H22. J. Chem. Phys. 1963, 39, 26–34. 10.1063/1.1734029. DOI
Olsen F. P.; Vasavada R. C.; Hawthorne M. F. The Chemistry of n-B18H22 and i-B18H22. J. Am. Chem. Soc. 1968, 90, 3946–3951. 10.1021/ja01017a007. DOI
Simpson P. G.; Lipscomb W. N. Molecular Structure of B18H22. Proc. Natl. Acad. Sci. U.S.A. 1962, 48, 1490–1491. 10.1073/pnas.48.9.1490. PubMed DOI PMC
Henke D.; Jakubowski F.; Deichler J.; Venezia V. C.; Ameen M. S.; Harris M. A.. P-Type Gate Electrode Formation Using B18H22 Ion Implantation. AIP Conf. Proc., AIP: Marseille (France), 2006; 866, 202–205.
Heo S.; Lee D.; Cho H. T.; Krull W. A.; Hwang H.. Ultrashallow P+/n Junction Formed by B18H22 Ion Implantation and Excimer Laser Annealing, In AIP Conference Proceedings, AIP: Marseille (France), 2006; pp 171–173.
Kawasaki Y.; Kuroi T.; Yamashita T.; Horita K.; Hayashi T.; Ishibashi M.; Togawa M.; Ohno Y.; Yoneda M.; Horsky T.; Jacobson D.; Krull W. Ultra-Shallow Junction Formation by B18H22 Ion Implantation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2005, 237, 25–29. 10.1016/j.nimb.2005.04.073. DOI
Marqués L. A.; Pelaz L.; Santos I. Molecular Dynamics Study of B18H22 Cluster Implantation into Silicon. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2007, 255, 242–246. 10.1016/j.nimb.2006.11.038. DOI
Harris M. A.; Rubin L.; Tieger D.; Venezia V.; Hsieh T. J.; Miranda J.; Jacobson D.. Dose Retention Effects in Atomic Boron and ClusterBoron (B18H22) Implant Processes, In AIP Conf. Proc., AIP: Marseille (France), 2006; pp 155–158.
Lee J.; Choi J.; An J.; Ryu S.; Lee K. W.; Kim J.; Ra G. J.; Kim S.; Cho H. T.; Seebauer E. G.; Felch S. B.; Jain A.; Kondratenko Y. V.. Investigation of PMOS Device Matching and Characteristics Using B18H22 Implantation, In AIP Conf. Proc., AIP: Monterey (California), 2008; pp 438–441.
John A.; Bolte M.; Lerner H.-W.; Meng G.; Wang S.; Peng T.; Wagner M. Doubly Boron-Doped Pentacenes as Emitters for OLEDs. J. Mater. Chem. C 2018, 6, 10881–10887. 10.1039/C8TC03954B. DOI
Simpson P. G.; Lipscomb W. N. Molecular, Crystal, and Valence Structures of B18H22. J. Chem. Phys. 1963, 39, 26–34. 10.1063/1.1734029. DOI
Londesborough M. G. S.; Dolanský J.; Jelínek T.; Kennedy J. D.; Císařová I.; Kennedy R. D.; Roca-Sanjuán D.; Francés-Monerris A.; Lang K.; Clegg W. Substitution of the Laser Borane anti-B18H22 with Pyridine: A Structural and Photophysical Study of Some Unusually Structured Macropolyhedral Boron Hydrides. Dalton Trans. 2018, 47, 1709–1725. 10.1039/C7DT03823B. PubMed DOI
Anderson K. P.; Waddington M. A.; Balaich G. J.; Stauber J. M.; Bernier N. A.; Caram J. R.; Djurovich P. I.; Spokoyny A. M. A Molecular Boron Cluster-Based Chromophore with Dual Emission. Dalton Trans. 2020, 49, 16245–16251. 10.1039/D0DT00826E. PubMed DOI
Kolská Z.; Matoušek J.; Čapková P.; Braborec J.; Benkocká M.; Černá H.; Londesborough M. G. S. A New Luminescent Montmorillonite/Borane Nanocomposite. Appl. Clay Sci. 2015, 118, 295–300. 10.1016/j.clay.2015.10.009. DOI
Bould J.; Lang K.; Kirakci K.; Cerdán L.; Roca-Sanjuán D.; Francés-Monerris A.; Clegg W.; Waddell P. G.; Fuciman M.; Polívka T.; Londesborough M. G. S. A Series of Ultra-Efficient Blue Borane Fluorophores. Inorg. Chem. 2020, 59, 17058–17070. 10.1021/acs.inorgchem.0c02277. PubMed DOI
Londesborough M. G. S.; Hnyk D.; Bould J.; Serrano-Andrés L.; Sauri V.; Oliva J. M.; Kubát P.; Polívka T.; Lang K. Distinct Photophysics of the Isomers of B18 H22 Explained. Inorg. Chem. 2012, 51, 1471–1479. 10.1021/ic201726k. PubMed DOI
Londesborough M. G. S.; Dolanský J.; Bould J.; Braborec J.; Kirakci K.; Lang K.; Císařová I.; Kubát P.; Roca-Sanjuán D.; Francés-Monerris A.; Slušná L.; Noskovičová E.; Lorenc D. Effect of Iodination on the Photophysics of the Laser Borane anti-B18H22: Generation of Efficient Photosensitizers of Oxygen. Inorg. Chem. 2019, 58, 10248–10259. 10.1021/acs.inorgchem.9b01358. PubMed DOI
Anderson K. P.; Hua A. S.; Plumley J. B.; Ready A. D.; Rheingold A. L.; Peng T. L.; Djurovich P. I.; Kerestes C.; Snyder N. A.; Andrews A.; Caram J. R.; Spokoyny A. M. Benchmarking the Dynamic Luminescence Properties and UV Stability of B18H22 -Based Materials. Dalton Trans. 2022, 51, 9223–9228. 10.1039/D2DT01225A. PubMed DOI
Londesborough M. G. S.; Lang K.; Clegg W.; Waddell P. G.; Bould J. Swollen Polyhedral Volume of the anti-B18H22 Cluster via Extensive Methylation: anti-B18H8 Cl 2 Me 12. Inorg. Chem. 2020, 59, 2651–2654. 10.1021/acs.inorgchem.0c00179. PubMed DOI
Anderson K. P.; Rheingold A. L.; Djurovich P. I.; Soman O.; Spokoyny A. M. Synthesis and Luminescence of Monohalogenated B18H22 Clusters. Polyhedron 2022, 227, 11609910.1016/j.poly.2022.116099. DOI
Chen J.; Xiong L.; Zhang L.; Huang X.; Meng H.; Tan C. Synthesis, Aggregation-Induced Emission of a New anti-B18H22-Isoquinoline Hybrid. Chem. Phys. Lett. 2020, 747, 13732810.1016/j.cplett.2020.137328. DOI
Ševčík J.; Urbánek P.; Hanulíková B.; Čapková T.; Urbánek M.; Antoš J.; Londesborough M. G. S.; Bould J.; Ghasemi B.; Petřkovský L.; Kuřitka I. The Photostability of Novel Boron Hydride Blue Emitters in Solution and Polystyrene Matrix. Materials 2021, 14, 589.10.3390/ma14030589. PubMed DOI PMC
Londesborough M. G. S.; Dolanský J.; Cerdán L.; Lang K.; Jelínek T.; Oliva J. M.; Hnyk D.; Roca-Sanjuán D.; Francés-Monerris A.; Martinčík J.; Nikl M.; Kennedy J. D. Thermochromic Fluorescence from B18H20(NC5H5)2: An Inorganic-Organic Composite Luminescent Compound with an Unusual Molecular Geometry. Adv. Opt. Mater. 2017, 5, 160069410.1002/adom.201600694. DOI
Saurí V.; Oliva J. M.; Hnyk D.; Bould J.; Braborec J.; Merchán M.; Kubát P.; Císařová I.; Lang K.; Londesborough M. G. S. Tuning the Photophysical Properties of anti-B18H22: Efficient Intersystem Crossing between Excited Singlet and Triplet States in New 4,4′-(HS)2-anti-B18H20. Inorg. Chem. 2013, 52, 9266–9274. 10.1021/ic4004559. PubMed DOI
Cerdán L.; Francés-Monerris A.; Roca-Sanjuán D.; Bould J.; Dolanský J.; Fuciman M.; Londesborough M. G. S. Unveiling the Role of Upper Excited Electronic States in the Photochemistry and Laser Performance of anti-B18H22. J. Mater. Chem. C 2020, 8, 12806–12818. 10.1039/D0TC02309D. DOI
Richard-Lacroix M.; Küllmer M.; Gaus A.; Neumann C.; Tontsch C.; Delius M.; Deckert V.; Turchanin A. Synthesis and Nanoscale Characterization of Hierarchically Assembled Molecular Nanosheets. Adv. Mater. Interfaces 2022, 9, 210238910.1002/admi.202102389. DOI
Jana A.; Jash M.; Poonia A. K.; Paramasivam G.; Islam M. R.; Chakraborty P.; Antharjanam S.; Machacek J.; Ghosh S.; Adarsh K. N. V. D.; Base T.; Pradeep T. Light-Activated Intercluster Conversion of an Atomically Precise Silver Nanocluster. ACS Nano 2021, 15, 15781–15793. 10.1021/acsnano.1c02602. PubMed DOI
Jana A.; Jash M.; Dar W. A.; Roy J.; Chakraborty P.; Paramasivam G.; Lebedkin S.; Kirakci K.; Manna S.; Antharjanam S.; Machacek J.; Kucerakova M.; Ghosh S.; Lang K.; Kappes M. M.; Base T.; Pradeep T. Carborane-Thiol Protected Copper Nanoclusters: Stimuli-Responsive Materials with Tunable Phosphorescence. Chem. Sci. 2023, 14, 1613–1626. 10.1039/D2SC06578A. PubMed DOI PMC
Bould J.; Macháček J.; Londesborough M. G. S.; Macías R.; Kennedy J. D.; Bastl Z.; Rupper P.; Baše T. Decaborane Thiols as Building Blocks for Self-Assembled Monolayers on Metal Surfaces. Inorg. Chem. 2012, 51, 1685–1694. 10.1021/ic202000b. PubMed DOI
Wang S.; Goronzy D. P.; Young T. D.; Wattanatorn N.; Stewart L.; Baše T.; Weiss P. S. Formation of Highly Ordered Terminal Alkyne Self-Assembled Monolayers on the Au{111} Surface through Substitution of 1-Decaboranethiolate. J. Phys. Chem. C 2019, 123, 1348–1353. 10.1021/acs.jpcc.8b11033. DOI
Claridge S. A.; Liao W.-S.; Thomas J. C.; Zhao Y.; Cao H. H.; Cheunkar S.; Serino A. C.; Andrews A. M.; Weiss P. S. From the Bottom up: Dimensional Control and Characterization in Molecular Monolayers. Chem. Soc. Rev. 2013, 42, 2725–2745. 10.1039/C2CS35365B. PubMed DOI PMC
Baše T.; Bastl Z.; Havránek V.; Macháček J.; Langecker J.; Malina V. Carboranedithiols: Building Blocks for Self-Assembled Monolayers on Copper Surfaces. Langmuir 2012, 28, 12518–12526. 10.1021/la302334x. PubMed DOI
Mills H. A.; Jones C. G.; Anderson K. P.; Ready A. D.; Djurovich P. I.; Khan S. I.; Hohman J. N.; Nelson H. M.; Spokoyny A. M. Sterically Invariant Carborane-Based Ligands for the Morphological and Electronic Control of Metal–Organic Chalcogenolate Assemblies. Chem. Mater. 2022, 34, 6933–6943. 10.1021/acs.chemmater.2c01319. DOI
Yeager L. J.; Saeki F.; Shelly K.; Hawthorne M. F.; Garrell R. L. A New Class of Self-Assembled Monolayers: closo-B12H11S3 - on Gold. J. Am. Chem. Soc. 1998, 120, 9961–9962. 10.1021/ja9809253. DOI
Hohman J. N.; Claridge S. A.; Kim M.; Weiss P. S. Cage Molecules for Self-Assembly. Mater. Sci. Eng. R Rep. 2010, 70, 188–208. 10.1016/j.mser.2010.06.008. DOI
Kristiansen K.; Stock P.; Baimpos T.; Raman S.; Harada J. K.; Israelachvili J. N.; Valtiner M. Influence of Molecular Dipole Orientations on Long-Range Exponential Interaction Forces at Hydrophobic Contacts in Aqueous Solutions. ACS Nano 2014, 8, 10870–10877. 10.1021/nn504687b. PubMed DOI
Todd L. J.; Siedle A. R. NMR Studies of Boranes, Carboranes and Hetero-Atom Boranes. Prog. Nucl. Magn. Reson. Spectrosc. 1979, 13, 87–176. 10.1016/0079-6565(79)80001-1. DOI
Braunschweig H.; Herbst T.; Rais D.; Ghosh S.; Kupfer T.; Radacki K.; Crawford A. G.; Ward R. M.; Marder T. B.; Fernández I.; Frenking G. Borylene-Based Direct Functionalization of Organic Substrates: Synthesis, Characterization, and Photophysical Properties of Novel π-Conjugated Borirenes. J. Am. Chem. Soc. 2009, 131, 8989–8999. 10.1021/ja902198z. PubMed DOI
Benito Q.; Le Goff X. F.; Maron S.; Fargues A.; Garcia A.; Martineau C.; Taulelle F.; Kahlal S.; Gacoin T.; Boilot J.-P.; Perruchas S. Polymorphic Copper Iodide Clusters: Insights into the Mechanochromic Luminescence Properties. J. Am. Chem. Soc. 2014, 136, 11311–11320. 10.1021/ja500247b. PubMed DOI
Neumann C.; Szwed M.; Frey M.; Tang Z.; Kozieł K.; Cyganik P.; Turchanin A. Preparation of Carbon Nanomembranes without Chemically Active Groups. ACS Appl. Mater. Interfaces 2019, 11, 31176–31181. 10.1021/acsami.9b09603. PubMed DOI
Thomas J. C.; Goronzy D. P.; Serino A. C.; Auluck H. S.; Irving O. R.; Jimenez-Izal E.; Deirmenjian J. M.; Macháček J.; Sautet P.; Alexandrova A. N.; Baše T.; Weiss P. S. Acid–Base Control of Valency within Carboranedithiol Self-Assembled Monolayers: Molecules Do the Can-Can. ACS Nano 2018, 12, 2211–2221. 10.1021/acsnano.7b09011. PubMed DOI PMC
Chai J.-D.; Head-Gordon M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615.10.1039/b810189b. PubMed DOI
Weigend F.; Ahlrichs R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297.10.1039/b508541a. PubMed DOI
Cheeseman J. R.; Trucks G. W.; Keith T. A.; Frisch M. J. A Comparison of Models for Calculating Nuclear Magnetic Resonance Shielding Tensors. J. Chem. Phys. 1996, 104, 5497–5509. 10.1063/1.471789. DOI
Palatinus L.; Chapuis G. SUPERFLIP – a Computer Program for the Solution of Crystal Structures by Charge Flipping in Arbitrary Dimensions. J. Appl. Crystallogr. 2007, 40, 786–790. 10.1107/S0021889807029238. DOI
Petříček V.; Palatinus L.; Plášil J.; Dušek M.. Jana2020 – a New Version of the Crystallographic Computing System Jana Z. Krist. - Cryst. Mater. 2023, 0 (0), 10.1515/zkri-2023-0005. DOI
Lamont C. L. A.; Wilkes J. Attenuation Length of Electrons in Self-Assembled Monolayers of n-Alkanethiols on Gold. Langmuir 1999, 15, 2037–2042. 10.1021/la981168p. DOI