Macropolyhedral syn-B18H22, the "Forgotten" Isomer

. 2023 Aug 16 ; 145 (32) : 17975-17986. [epub] 20230802

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37532522

The chemistry and physics of macropolyhedral B18H22 clusters have attracted significant attention due to the interesting photophysical properties of anti-B18H22 (blue emission, laser properties) and related potential applications. We have focused our attention on the "forgotten" syn-B18H22 isomer, which has received very little attention since its discovery compared to its anti-B18H22 isomer, presumably because numerous studies have reported this isomer as nonluminescent. In our study, we show that in crystalline form, syn-B18H22 exhibits blue fluorescence and becomes phosphorescent when substituted at various positions on the cluster, associated with peculiar microstructural-dependent effects. This work is a combined theoretical and experimental investigation that includes the synthesis, separation, structural characterization, and first elucidation of the photophysical properties of three different monothiol-substituted cluster isomers, [1-HS-syn-B18H21] 1, [3-HS-syn-B18H21] 3, and [4-HS-syn-B18H21] 4, of which isomers 1 and 4 have been proved to exist in two different polymorphic forms. All of these newly substituted macropolyhedral cluster derivatives (1, 3, and 4) have been fully characterized by NMR spectroscopy, mass spectrometry, single-crystal X-ray diffraction, IR spectroscopy, and luminescence spectroscopy. This study also presents the first report on the mechanochromic shift in the luminescence of a borane cluster and generally enriches the area of rather rare boron-based luminescent materials. In addition, we present the first results proving that they are useful constituents of carbon-free self-assembled monolayers.

Zobrazit více v PubMed

Huang Z.; Wang S.; Dewhurst R. D.; Ignat’ev N. V.; Finze M.; Braunschweig H. Boron: Its Role in Energy-Related Processes and Applications. Angew. Chem., Int. Ed. 2020, 59, 8800–8816. 10.1002/anie.201911108. PubMed DOI PMC

Ochi J.; Tanaka K.; Chujo Y. Recent Progress in the Development of Solid-State Luminescent o-Carboranes with Stimuli Responsivity. Angew. Chem., Int. Ed. 2020, 59, 9841–9855. 10.1002/anie.201916666. PubMed DOI

Mukherjee S.; Thilagar P. Boron Clusters in Luminescent Materials. Chem. Commun. 2016, 52, 1070–1093. 10.1039/C5CC08213G. PubMed DOI

Horsky T. N.; Hahto S. K.; McIntyre E. K.; Sacco G. P.; Matsuo J.; Kase M.; Aoki T.; Seki T.. N- and P-Type Cluster Source; Kyoto, (Japan) 2011, 452–−455.10.1063/1.3548447. DOI

Dash B. P.; Satapathy R.; Maguire J. A.; Hosmane N. S. Polyhedral Boron Clusters in Materials Science. New J. Chem. 2011, 35, 1955.10.1039/c1nj20228f. DOI

Messina M. S.; Axtell J. C.; Wang Y.; Chong P.; Wixtrom A. I.; Kirlikovali K. O.; Upton B. M.; Hunter B. M.; Shafaat O. S.; Khan S. I.; Winkler J. R.; Gray H. B.; Alexandrova A. N.; Maynard H. D.; Spokoyny A. M. Visible-Light-Induced Olefin Activation Using 3D Aromatic Boron-Rich Cluster Photooxidants. J. Am. Chem. Soc. 2016, 138, 6952–6955. 10.1021/jacs.6b03568. PubMed DOI

Cerdán L.; Braborec J.; Garcia-Moreno I.; Costela A.; Londesborough M. G. S. A Borane Laser. Nat. Commun. 2015, 6, 595810.1038/ncomms6958. PubMed DOI

Sivaev I. B.; Bregadze V. I.; Sjöberg S. Chemistry of Closo-Dodecaborate Anion [B12H12]2–: A Review. Collect. Czech. Chem. Commun. 2002, 67, 679–727. 10.1135/cccc20020679. DOI

Wunderlich J. A.; Lipscomb W. N. Structure of B12H12- 2 Ion. J. Am. Chem. Soc. 1960, 82, 4427–4428. 10.1021/ja01501a076. DOI

King R. B. Three-Dimensional Aromaticity in Polyhedral Boranes and Related Molecules. Chem. Rev. 2001, 101, 1119–1152. 10.1021/cr000442t. PubMed DOI

Jemmis E. D.; Balakrishnarajan M. M.; Pancharatna P. D. Electronic Requirements for Macropolyhedral Boranes. Chem. Rev. 2002, 102, 93–144. 10.1021/cr990356x. PubMed DOI

Pitochelli A. R.; Hawthorne M. F. The Preparation of a New Boron Hydride B18H22. J. Am. Chem. Soc. 1962, 84, 3218.10.1021/ja00875a058. DOI

Li Y.; Sneddon L. G. Improved Synthetic Route to n-B18H22. Inorg. Chem. 2006, 45, 470–471. 10.1021/ic051712z. PubMed DOI

Simpson P. G.; Lipscomb W. N. Molecular, Crystal, and Valence Structures of B18H22. J. Chem. Phys. 1963, 39, 26–34. 10.1063/1.1734029. DOI

Olsen F. P.; Vasavada R. C.; Hawthorne M. F. The Chemistry of n-B18H22 and i-B18H22. J. Am. Chem. Soc. 1968, 90, 3946–3951. 10.1021/ja01017a007. DOI

Simpson P. G.; Lipscomb W. N. Molecular Structure of B18H22. Proc. Natl. Acad. Sci. U.S.A. 1962, 48, 1490–1491. 10.1073/pnas.48.9.1490. PubMed DOI PMC

Henke D.; Jakubowski F.; Deichler J.; Venezia V. C.; Ameen M. S.; Harris M. A.. P-Type Gate Electrode Formation Using B18H22 Ion Implantation. AIP Conf. Proc., AIP: Marseille (France), 2006; 866, 202–205.

Heo S.; Lee D.; Cho H. T.; Krull W. A.; Hwang H.. Ultrashallow P+/n Junction Formed by B18H22 Ion Implantation and Excimer Laser Annealing, In AIP Conference Proceedings, AIP: Marseille (France), 2006; pp 171–173.

Kawasaki Y.; Kuroi T.; Yamashita T.; Horita K.; Hayashi T.; Ishibashi M.; Togawa M.; Ohno Y.; Yoneda M.; Horsky T.; Jacobson D.; Krull W. Ultra-Shallow Junction Formation by B18H22 Ion Implantation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2005, 237, 25–29. 10.1016/j.nimb.2005.04.073. DOI

Marqués L. A.; Pelaz L.; Santos I. Molecular Dynamics Study of B18H22 Cluster Implantation into Silicon. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2007, 255, 242–246. 10.1016/j.nimb.2006.11.038. DOI

Harris M. A.; Rubin L.; Tieger D.; Venezia V.; Hsieh T. J.; Miranda J.; Jacobson D.. Dose Retention Effects in Atomic Boron and ClusterBoron (B18H22) Implant Processes, In AIP Conf. Proc., AIP: Marseille (France), 2006; pp 155–158.

Lee J.; Choi J.; An J.; Ryu S.; Lee K. W.; Kim J.; Ra G. J.; Kim S.; Cho H. T.; Seebauer E. G.; Felch S. B.; Jain A.; Kondratenko Y. V.. Investigation of PMOS Device Matching and Characteristics Using B18H22 Implantation, In AIP Conf. Proc., AIP: Monterey (California), 2008; pp 438–441.

John A.; Bolte M.; Lerner H.-W.; Meng G.; Wang S.; Peng T.; Wagner M. Doubly Boron-Doped Pentacenes as Emitters for OLEDs. J. Mater. Chem. C 2018, 6, 10881–10887. 10.1039/C8TC03954B. DOI

Simpson P. G.; Lipscomb W. N. Molecular, Crystal, and Valence Structures of B18H22. J. Chem. Phys. 1963, 39, 26–34. 10.1063/1.1734029. DOI

Londesborough M. G. S.; Dolanský J.; Jelínek T.; Kennedy J. D.; Císařová I.; Kennedy R. D.; Roca-Sanjuán D.; Francés-Monerris A.; Lang K.; Clegg W. Substitution of the Laser Borane anti-B18H22 with Pyridine: A Structural and Photophysical Study of Some Unusually Structured Macropolyhedral Boron Hydrides. Dalton Trans. 2018, 47, 1709–1725. 10.1039/C7DT03823B. PubMed DOI

Anderson K. P.; Waddington M. A.; Balaich G. J.; Stauber J. M.; Bernier N. A.; Caram J. R.; Djurovich P. I.; Spokoyny A. M. A Molecular Boron Cluster-Based Chromophore with Dual Emission. Dalton Trans. 2020, 49, 16245–16251. 10.1039/D0DT00826E. PubMed DOI

Kolská Z.; Matoušek J.; Čapková P.; Braborec J.; Benkocká M.; Černá H.; Londesborough M. G. S. A New Luminescent Montmorillonite/Borane Nanocomposite. Appl. Clay Sci. 2015, 118, 295–300. 10.1016/j.clay.2015.10.009. DOI

Bould J.; Lang K.; Kirakci K.; Cerdán L.; Roca-Sanjuán D.; Francés-Monerris A.; Clegg W.; Waddell P. G.; Fuciman M.; Polívka T.; Londesborough M. G. S. A Series of Ultra-Efficient Blue Borane Fluorophores. Inorg. Chem. 2020, 59, 17058–17070. 10.1021/acs.inorgchem.0c02277. PubMed DOI

Londesborough M. G. S.; Hnyk D.; Bould J.; Serrano-Andrés L.; Sauri V.; Oliva J. M.; Kubát P.; Polívka T.; Lang K. Distinct Photophysics of the Isomers of B18 H22 Explained. Inorg. Chem. 2012, 51, 1471–1479. 10.1021/ic201726k. PubMed DOI

Londesborough M. G. S.; Dolanský J.; Bould J.; Braborec J.; Kirakci K.; Lang K.; Císařová I.; Kubát P.; Roca-Sanjuán D.; Francés-Monerris A.; Slušná L.; Noskovičová E.; Lorenc D. Effect of Iodination on the Photophysics of the Laser Borane anti-B18H22: Generation of Efficient Photosensitizers of Oxygen. Inorg. Chem. 2019, 58, 10248–10259. 10.1021/acs.inorgchem.9b01358. PubMed DOI

Anderson K. P.; Hua A. S.; Plumley J. B.; Ready A. D.; Rheingold A. L.; Peng T. L.; Djurovich P. I.; Kerestes C.; Snyder N. A.; Andrews A.; Caram J. R.; Spokoyny A. M. Benchmarking the Dynamic Luminescence Properties and UV Stability of B18H22 -Based Materials. Dalton Trans. 2022, 51, 9223–9228. 10.1039/D2DT01225A. PubMed DOI

Londesborough M. G. S.; Lang K.; Clegg W.; Waddell P. G.; Bould J. Swollen Polyhedral Volume of the anti-B18H22 Cluster via Extensive Methylation: anti-B18H8 Cl 2 Me 12. Inorg. Chem. 2020, 59, 2651–2654. 10.1021/acs.inorgchem.0c00179. PubMed DOI

Anderson K. P.; Rheingold A. L.; Djurovich P. I.; Soman O.; Spokoyny A. M. Synthesis and Luminescence of Monohalogenated B18H22 Clusters. Polyhedron 2022, 227, 11609910.1016/j.poly.2022.116099. DOI

Chen J.; Xiong L.; Zhang L.; Huang X.; Meng H.; Tan C. Synthesis, Aggregation-Induced Emission of a New anti-B18H22-Isoquinoline Hybrid. Chem. Phys. Lett. 2020, 747, 13732810.1016/j.cplett.2020.137328. DOI

Ševčík J.; Urbánek P.; Hanulíková B.; Čapková T.; Urbánek M.; Antoš J.; Londesborough M. G. S.; Bould J.; Ghasemi B.; Petřkovský L.; Kuřitka I. The Photostability of Novel Boron Hydride Blue Emitters in Solution and Polystyrene Matrix. Materials 2021, 14, 589.10.3390/ma14030589. PubMed DOI PMC

Londesborough M. G. S.; Dolanský J.; Cerdán L.; Lang K.; Jelínek T.; Oliva J. M.; Hnyk D.; Roca-Sanjuán D.; Francés-Monerris A.; Martinčík J.; Nikl M.; Kennedy J. D. Thermochromic Fluorescence from B18H20(NC5H5)2: An Inorganic-Organic Composite Luminescent Compound with an Unusual Molecular Geometry. Adv. Opt. Mater. 2017, 5, 160069410.1002/adom.201600694. DOI

Saurí V.; Oliva J. M.; Hnyk D.; Bould J.; Braborec J.; Merchán M.; Kubát P.; Císařová I.; Lang K.; Londesborough M. G. S. Tuning the Photophysical Properties of anti-B18H22: Efficient Intersystem Crossing between Excited Singlet and Triplet States in New 4,4′-(HS)2-anti-B18H20. Inorg. Chem. 2013, 52, 9266–9274. 10.1021/ic4004559. PubMed DOI

Cerdán L.; Francés-Monerris A.; Roca-Sanjuán D.; Bould J.; Dolanský J.; Fuciman M.; Londesborough M. G. S. Unveiling the Role of Upper Excited Electronic States in the Photochemistry and Laser Performance of anti-B18H22. J. Mater. Chem. C 2020, 8, 12806–12818. 10.1039/D0TC02309D. DOI

Richard-Lacroix M.; Küllmer M.; Gaus A.; Neumann C.; Tontsch C.; Delius M.; Deckert V.; Turchanin A. Synthesis and Nanoscale Characterization of Hierarchically Assembled Molecular Nanosheets. Adv. Mater. Interfaces 2022, 9, 210238910.1002/admi.202102389. DOI

Jana A.; Jash M.; Poonia A. K.; Paramasivam G.; Islam M. R.; Chakraborty P.; Antharjanam S.; Machacek J.; Ghosh S.; Adarsh K. N. V. D.; Base T.; Pradeep T. Light-Activated Intercluster Conversion of an Atomically Precise Silver Nanocluster. ACS Nano 2021, 15, 15781–15793. 10.1021/acsnano.1c02602. PubMed DOI

Jana A.; Jash M.; Dar W. A.; Roy J.; Chakraborty P.; Paramasivam G.; Lebedkin S.; Kirakci K.; Manna S.; Antharjanam S.; Machacek J.; Kucerakova M.; Ghosh S.; Lang K.; Kappes M. M.; Base T.; Pradeep T. Carborane-Thiol Protected Copper Nanoclusters: Stimuli-Responsive Materials with Tunable Phosphorescence. Chem. Sci. 2023, 14, 1613–1626. 10.1039/D2SC06578A. PubMed DOI PMC

Bould J.; Macháček J.; Londesborough M. G. S.; Macías R.; Kennedy J. D.; Bastl Z.; Rupper P.; Baše T. Decaborane Thiols as Building Blocks for Self-Assembled Monolayers on Metal Surfaces. Inorg. Chem. 2012, 51, 1685–1694. 10.1021/ic202000b. PubMed DOI

Wang S.; Goronzy D. P.; Young T. D.; Wattanatorn N.; Stewart L.; Baše T.; Weiss P. S. Formation of Highly Ordered Terminal Alkyne Self-Assembled Monolayers on the Au{111} Surface through Substitution of 1-Decaboranethiolate. J. Phys. Chem. C 2019, 123, 1348–1353. 10.1021/acs.jpcc.8b11033. DOI

Claridge S. A.; Liao W.-S.; Thomas J. C.; Zhao Y.; Cao H. H.; Cheunkar S.; Serino A. C.; Andrews A. M.; Weiss P. S. From the Bottom up: Dimensional Control and Characterization in Molecular Monolayers. Chem. Soc. Rev. 2013, 42, 2725–2745. 10.1039/C2CS35365B. PubMed DOI PMC

Baše T.; Bastl Z.; Havránek V.; Macháček J.; Langecker J.; Malina V. Carboranedithiols: Building Blocks for Self-Assembled Monolayers on Copper Surfaces. Langmuir 2012, 28, 12518–12526. 10.1021/la302334x. PubMed DOI

Mills H. A.; Jones C. G.; Anderson K. P.; Ready A. D.; Djurovich P. I.; Khan S. I.; Hohman J. N.; Nelson H. M.; Spokoyny A. M. Sterically Invariant Carborane-Based Ligands for the Morphological and Electronic Control of Metal–Organic Chalcogenolate Assemblies. Chem. Mater. 2022, 34, 6933–6943. 10.1021/acs.chemmater.2c01319. DOI

Yeager L. J.; Saeki F.; Shelly K.; Hawthorne M. F.; Garrell R. L. A New Class of Self-Assembled Monolayers: closo-B12H11S3 - on Gold. J. Am. Chem. Soc. 1998, 120, 9961–9962. 10.1021/ja9809253. DOI

Hohman J. N.; Claridge S. A.; Kim M.; Weiss P. S. Cage Molecules for Self-Assembly. Mater. Sci. Eng. R Rep. 2010, 70, 188–208. 10.1016/j.mser.2010.06.008. DOI

Kristiansen K.; Stock P.; Baimpos T.; Raman S.; Harada J. K.; Israelachvili J. N.; Valtiner M. Influence of Molecular Dipole Orientations on Long-Range Exponential Interaction Forces at Hydrophobic Contacts in Aqueous Solutions. ACS Nano 2014, 8, 10870–10877. 10.1021/nn504687b. PubMed DOI

Todd L. J.; Siedle A. R. NMR Studies of Boranes, Carboranes and Hetero-Atom Boranes. Prog. Nucl. Magn. Reson. Spectrosc. 1979, 13, 87–176. 10.1016/0079-6565(79)80001-1. DOI

Braunschweig H.; Herbst T.; Rais D.; Ghosh S.; Kupfer T.; Radacki K.; Crawford A. G.; Ward R. M.; Marder T. B.; Fernández I.; Frenking G. Borylene-Based Direct Functionalization of Organic Substrates: Synthesis, Characterization, and Photophysical Properties of Novel π-Conjugated Borirenes. J. Am. Chem. Soc. 2009, 131, 8989–8999. 10.1021/ja902198z. PubMed DOI

Benito Q.; Le Goff X. F.; Maron S.; Fargues A.; Garcia A.; Martineau C.; Taulelle F.; Kahlal S.; Gacoin T.; Boilot J.-P.; Perruchas S. Polymorphic Copper Iodide Clusters: Insights into the Mechanochromic Luminescence Properties. J. Am. Chem. Soc. 2014, 136, 11311–11320. 10.1021/ja500247b. PubMed DOI

Neumann C.; Szwed M.; Frey M.; Tang Z.; Kozieł K.; Cyganik P.; Turchanin A. Preparation of Carbon Nanomembranes without Chemically Active Groups. ACS Appl. Mater. Interfaces 2019, 11, 31176–31181. 10.1021/acsami.9b09603. PubMed DOI

Thomas J. C.; Goronzy D. P.; Serino A. C.; Auluck H. S.; Irving O. R.; Jimenez-Izal E.; Deirmenjian J. M.; Macháček J.; Sautet P.; Alexandrova A. N.; Baše T.; Weiss P. S. Acid–Base Control of Valency within Carboranedithiol Self-Assembled Monolayers: Molecules Do the Can-Can. ACS Nano 2018, 12, 2211–2221. 10.1021/acsnano.7b09011. PubMed DOI PMC

Chai J.-D.; Head-Gordon M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615.10.1039/b810189b. PubMed DOI

Weigend F.; Ahlrichs R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297.10.1039/b508541a. PubMed DOI

Cheeseman J. R.; Trucks G. W.; Keith T. A.; Frisch M. J. A Comparison of Models for Calculating Nuclear Magnetic Resonance Shielding Tensors. J. Chem. Phys. 1996, 104, 5497–5509. 10.1063/1.471789. DOI

Palatinus L.; Chapuis G. SUPERFLIP – a Computer Program for the Solution of Crystal Structures by Charge Flipping in Arbitrary Dimensions. J. Appl. Crystallogr. 2007, 40, 786–790. 10.1107/S0021889807029238. DOI

Petříček V.; Palatinus L.; Plášil J.; Dušek M.. Jana2020 – a New Version of the Crystallographic Computing System Jana Z. Krist. - Cryst. Mater. 2023, 0 (0), 10.1515/zkri-2023-0005. DOI

Lamont C. L. A.; Wilkes J. Attenuation Length of Electrons in Self-Assembled Monolayers of n-Alkanethiols on Gold. Langmuir 1999, 15, 2037–2042. 10.1021/la981168p. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Carborane Nanomembranes

. 2025 Mar 04 ; 19 (8) : 8131-8141. [epub] 20250219

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...