Carborane-thiol protected copper nanoclusters: stimuli-responsive materials with tunable phosphorescence

. 2023 Feb 08 ; 14 (6) : 1613-1626. [epub] 20221228

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36794193

Atomically precise nanomaterials with tunable solid-state luminescence attract global interest. In this work, we present a new class of thermally stable isostructural tetranuclear copper nanoclusters (NCs), shortly Cu4@oCBT, Cu4@mCBT and Cu4@ICBT, protected by nearly isomeric carborane thiols: ortho-carborane-9-thiol, meta-carborane-9-thiol and ortho-carborane 12-iodo 9-thiol, respectively. They have a square planar Cu4 core and a butterfly-shaped Cu4S4 staple, which is appended with four respective carboranes. For Cu4@ICBT, strain generated by the bulky iodine substituents on the carboranes makes the Cu4S4 staple flatter in comparison to other clusters. High-resolution electrospray ionization mass spectrometry (HR ESI-MS) and collision energy-dependent fragmentation, along with other spectroscopic and microscopic studies, confirm their molecular structure. Although none of these clusters show any visible luminescence in solution, bright μs-long phosphorescence is observed in their crystalline forms. The Cu4@oCBT and Cu4@mCBT NCs are green emitting with quantum yields (Φ) of 81 and 59%, respectively, whereas Cu4@ICBT is orange emitting with a Φ of 18%. Density functional theory (DFT) calculations reveal the nature of their respective electronic transitions. The green luminescence of Cu4@oCBT and Cu4@mCBT clusters gets shifted to yellow after mechanical grinding, but it is regenerated after exposure to solvent vapour, whereas the orange emission of Cu4@ICBT is not affected by mechanical grinding. Structurally flattened Cu4@ICBT didn't show mechanoresponsive luminescence in contrast to other clusters, having bent Cu4S4 structures. Cu4@oCBT and Cu4@mCBT are thermally stable up to 400 °C. Cu4@oCBT retained green emission even upon heating to 200 °C under ambient conditions, while Cu4@mCBT changed from green to yellow in the same window. This is the first report on structurally flexible carborane thiol appended Cu4 NCs having stimuli-responsive tunable solid-state phosphorescence.

Zobrazit více v PubMed

Jin R. Zeng C. Zhou M. Chen Y. Chem. Rev. 2016;116:10346–10413. doi: 10.1021/acs.chemrev.5b00703. PubMed DOI

Kang X. Zhu M. Chem. Soc. Rev. 2019;48:2422–2457. doi: 10.1039/C8CS00800K. PubMed DOI

Chakraborty I. Pradeep T. Chem. Rev. 2017;117:8208–8271. doi: 10.1021/acs.chemrev.6b00769. PubMed DOI

Jana A. Chakraborty P. Dar W. A. Chandra S. Khatun E. Kannan M. P. Ras R. H. A. Pradeep T. Chem. Commun. 2020;56:12550–12553. doi: 10.1039/D0CC03983G. PubMed DOI

Jena P. Sun Q. Chem. Rev. 2018;118:5755–5870. doi: 10.1021/acs.chemrev.7b00524. PubMed DOI

Jana A. Jash M. Poonia A. K. Paramasivam G. Islam M. R. Chakraborty P. Antharjanam S. Machacek J. Ghosh S. Adarsh K. N. V. D. Base T. Pradeep T. ACS Nano. 2021;15:15781–15793. doi: 10.1021/acsnano.1c02602. PubMed DOI

Xie M. Han C. Liang Q. Zhang J. Xie G. Xu H. Sci. Adv. 2019;5:1–9. PubMed PMC

Zhang L. L. M. Zhou G. Zhou G. Lee H. K. Zhao N. Prezhdo O. V. Mak T. C. W. Chem. Sci. 2019;10:10122–10128. doi: 10.1039/C9SC03455B. PubMed DOI PMC

Yu Y. Luo Z. Chevrier D. M. Leong D. T. Zhang P. Jiang D. E. Xie J. J. Am. Chem. Soc. 2014;136:1246–1249. doi: 10.1021/ja411643u. PubMed DOI

AbdulHalim L. G. Bootharaju M. S. Tang Q. Del Gobbo S. AbdulHalim R. G. Eddaoudi M. Jiang D. E. Bakr O. M. J. Am. Chem. Soc. 2015;137:11970–11975. doi: 10.1021/jacs.5b04547. PubMed DOI

Chen T. Yang S. Chai J. Song Y. Fan J. Rao B. Sheng H. Yu H. Zhu M. Sci. Adv. 2017;3:1–8. PubMed PMC

Chen L. Black A. Parak W. J. Klinke C. Chakraborty I. Aggregate. 2022;3:1–18.

Jana A. Unnikrishnan P. M. Poonia A. K. Roy J. Jash M. Paramasivam G. Machacek J. Adarsh K. N. V. D. Base T. Pradeep T. Inorg. Chem. 2022;61:8593–8603. doi: 10.1021/acs.inorgchem.2c00186. PubMed DOI

Ford P. C. Cariati E. Bourassa J. Chem. Rev. 1999;99:3625–3647. doi: 10.1021/cr960109i. PubMed DOI

Liu X. Astruc D. Coord. Chem. Rev. 2018;359:112–126. doi: 10.1016/j.ccr.2018.01.001. DOI

Smolentsev G. Milne C. J. Guda A. Haldrup K. Szlachetko J. Azzaroli N. Cirelli C. Knopp G. Bohinc R. Menzi S. Pamfilidis G. Gashi D. Beck M. Mozzanica A. James D. Bacellar C. Mancini G. F. Tereshchenko A. Shapovalov V. Kwiatek W. M. Czapla-Masztafiak J. Cannizzo A. Gazzetto M. Sander M. Levantino M. Kabanova V. Rychagova E. Ketkov S. Olaru M. Beckmann J. Vogt M. Nat. Commun. 2020;11:1–9. doi: 10.1038/s41467-019-13993-7. PubMed DOI PMC

Liu G. N. Xu R. D. Guo J. S. Miao J. L. Zhang M. J. Li C. J. Mater. Chem. C. 2021;9:8589–8595. doi: 10.1039/D1TC00964H. DOI

Ai L. Jiang W. Liu Z. Liu J. Gao Y. Zou H. Wu Z. Wang Z. Liu Y. Zhang H. Yang B. Nanoscale. 2017;9:12618–12627. doi: 10.1039/C7NR03985A. PubMed DOI

Olaru M. Rychagova E. Ketkov S. Shynkarenko Y. Yakunin S. Kovalenko M. V. Yablonskiy A. Andreev B. Kleemiss F. Beckmann J. Vogt M. J. Am. Chem. Soc. 2020;142:373–381. doi: 10.1021/jacs.9b10829. PubMed DOI

Wang J. J. Zhou H. T. Yang J. N. Feng L. Z. Yao J. S. Song K. H. Zhou M. M. Jin S. Zhang G. Bin Yao H. J. Am. Chem. Soc. 2021;143:10860–10864. doi: 10.1021/jacs.1c05476. PubMed DOI

Kirakci K. Fejfarová K. Martinčík J. Nikl M. Lang K. Inorg. Chem. 2017;56:4609–4614. doi: 10.1021/acs.inorgchem.7b00240. PubMed DOI

Yam V. W. W. Au V. K. M. Leung S. Y. L. Chem. Rev. 2015;115:7589–7728. doi: 10.1021/acs.chemrev.5b00074. PubMed DOI

Zhang K. Y. Yu Q. Wei H. Liu S. Zhao Q. Huang W. Chem. Rev. 2018;118:1770–1839. doi: 10.1021/acs.chemrev.7b00425. PubMed DOI

Kenry Chen C. Liu B. Nat. Commun. 2019;10:1–15. doi: 10.1038/s41467-018-07882-8. PubMed DOI PMC

Bolton O. Lee D. Jung J. Kim J. Chem. Mater. 2014;26:6644–6649. doi: 10.1021/cm503678r. DOI

Chen C. Chi Z. Chong K. C. Batsanov A. S. Yang Z. Mao Z. Yang Z. Liu B. Nat. Mater. 2021;20:175–180. doi: 10.1038/s41563-020-0797-2. PubMed DOI

Wang J. Wang C. Gong Y. Liao Q. Han M. Jiang T. Dang Q. Li Y. Li Q. Li Z. Angew. Chem., Int. Ed. 2018;57:16821–16826. doi: 10.1002/anie.201811660. PubMed DOI

Shoji Y. Ikabata Y. Wang Q. Nemoto D. Sakamoto A. Tanaka N. Seino J. Nakai H. Fukushima T. J. Am. Chem. Soc. 2017;139:2728–2733. doi: 10.1021/jacs.6b11984. PubMed DOI

Penfold T. J. Gindensperger E. Daniel C. Marian C. M. Chem. Rev. 2018;118:6975–7025. doi: 10.1021/acs.chemrev.7b00617. PubMed DOI

He Z. Zhao W. Lam J. W. Y. Peng Q. Ma H. Liang G. Shuai Z. Tang B. Z. Nat. Commun. 2017;8:1–7. doi: 10.1038/s41467-016-0009-6. PubMed DOI PMC

Cuttell D. G. Kuang S. M. Fanwick P. E. McMillin D. R. Walton R. A. J. Am. Chem. Soc. 2002;124:6–7. doi: 10.1021/ja012247h. PubMed DOI

Lu T. Wang J. Y. Tu D. Chen Z. N. Chen X. T. Xue Z. L. Inorg. Chem. 2018;57:13618–13630. doi: 10.1021/acs.inorgchem.8b02217. PubMed DOI

Schinabeck A. Leitl M. J. Yersin H. J. Phys. Chem. Lett. 2018;9:2848–2856. doi: 10.1021/acs.jpclett.8b00957. PubMed DOI

Dias H. V. R. Diyabalanage H. V. K. Rawashdeh-Omary M. A. Franzman M. A. Omary M. A. J. Am. Chem. Soc. 2003;125:12072–12073. doi: 10.1021/ja036736o. PubMed DOI

Roppolo I. Celasco E. Fargues A. Garcia A. Revaux A. Dantelle G. Maroun F. Gacoin T. Boilot J. P. Sangermano M. Perruchas S. J. Mater. Chem. 2011;21:19106–19113. doi: 10.1039/C1JM13600C. DOI

Ai P. Mauro M. De Cola L. Danopoulos A. A. Braunstein P. Angew. Chem., Int. Ed. 2016;55:3338–3341. doi: 10.1002/anie.201510150. PubMed DOI

Baghdasaryan A. Bürgi T. Nanoscale. 2021;13:6283–6340. doi: 10.1039/D0NR08489A. PubMed DOI

Lu Y. Chen W. Chem. Soc. Rev. 2012;41:3594–3623. doi: 10.1039/C2CS15325D. PubMed DOI

Wang J. Gu X. Ma H. Peng Q. Huang X. Zheng X. Sung S. H. P. Shan G. Lam J. W. Y. Shuai Z. Tang B. Z. Nat. Commun. 2018;9:1–9. doi: 10.1038/s41467-017-02088-w. PubMed DOI PMC

Ai Y. Li Y. Chan M. H. Y. Xiao G. Zou B. Yam V. W. W. J. Am. Chem. Soc. 2021;143:10659–10667. doi: 10.1021/jacs.1c04200. PubMed DOI

Mei J. Leung N. L. C. Kwok R. T. K. Lam J. W. Y. Tang B. Z. Chem. Rev. 2015;115:11718–11940. doi: 10.1021/acs.chemrev.5b00263. PubMed DOI

Zhang Z. Y. Liu Y. Chem. Sci. 2019;10:7773–7778. doi: 10.1039/C9SC02633A. PubMed DOI PMC

Cai S. Ma H. Shi H. Wang H. Wang X. Xiao L. Ye W. Huang K. Cao X. Gan N. Ma C. Gu M. Song L. Xu H. Tao Y. Zhang C. Yao W. An Z. Huang W. Nat. Commun. 2019;10:1–8. PubMed PMC

Sun L. Zhu W. Yang F. Li B. Ren X. Zhang X. Hu W. Phys. Chem. Chem. Phys. 2018;20:6009–6023. doi: 10.1039/C7CP07167A. PubMed DOI

Wu Z. Liu J. Gao Y. Liu H. Li T. Zou H. Wang Z. Zhang K. Wang Y. Zhang H. Yang B. J. Am. Chem. Soc. 2015;137:12906–12913. doi: 10.1021/jacs.5b06550. PubMed DOI

Perruchas S. Goff X. F. L. Maron S. Maurin I. Guillen F. Garcia A. Gacoin T. Boilot J. P. J. Am. Chem. Soc. 2010;132:10967–10969. doi: 10.1021/ja103431d. PubMed DOI

Wei W. Lu Y. Chen W. Chen S. J. Am. Chem. Soc. 2011;133:2060–2063. doi: 10.1021/ja109303z. PubMed DOI

Perruchas S. Tard C. Le Goff X. F. Fargues A. Garcia A. Kahlal S. Saillard J. Y. Gacoin T. Boilot J. P. Inorg. Chem. 2011;50:10682–10692. doi: 10.1021/ic201128a. PubMed DOI

Shi S. Jung M. C. Coburn C. Tadle A. Sylvinson D. M. R. Djurovich P. I. Forrest S. R. Thompson M. E. J. Am. Chem. Soc. 2019;141:3576–3588. doi: 10.1021/jacs.8b12397. PubMed DOI

Basu K. Paul S. Jana R. Datta A. Banerjee A. ACS Sustainable Chem. Eng. 2019;7:1998–2007. doi: 10.1021/acssuschemeng.8b04301. DOI

Lin Y. J. Chen P. C. Yuan Z. Ma J. Y. Chang H. T. Chem. Commun. 2015;51:11983–11986. doi: 10.1039/C5CC02342D. PubMed DOI

Núñez R. Tarrés M. Ferrer-Ugalde A. De Biani F. F. Teixidor F. Chem. Rev. 2016;116:14307–14378. doi: 10.1021/acs.chemrev.6b00198. PubMed DOI

Poater J. Viñas C. Bennour I. Escayola S. Solà M. Teixidor F. J. Am. Chem. Soc. 2020;142:9396–9407. doi: 10.1021/jacs.0c02228. PubMed DOI

Spokoyny A. M. MacHan C. W. Clingerman D. J. Rosen M. S. Wiester M. J. Kennedy R. D. Stern C. L. Sarjeant A. A. Mirkin C. A. Nat. Chem. 2011;3:590–596. doi: 10.1038/nchem.1088. PubMed DOI

Furue R. Nishimoto T. Park I. S. Lee J. Yasuda T. Angew. Chem., Int. Ed. 2016;55:7171–7175. doi: 10.1002/anie.201603232. PubMed DOI

Kodr D. Yenice C. P. Simonova A. Saftić D. P. Pohl R. Sýkorová V. Ortiz M. Havran L. Fojta M. Lesnikowski Z. J. O'Sullivan C. K. Hocek M. J. Am. Chem. Soc. 2021;143:7124–7134. doi: 10.1021/jacs.1c02222. PubMed DOI

Wang Q. Wang J. Wang S. Wang Z. Cao M. He C. Yang J. Zang S. Mak T. C. W. J. Am. Chem. Soc. 2020;142:12010–12014. doi: 10.1021/jacs.0c04638. PubMed DOI

Li J. Ma H. Z. Reid G. E. Edwards A. J. Hong Y. White J. M. Mulder R. J. O'Hair R. A. J. Chem.–Eur. J. 2018;24:2070–2074. doi: 10.1002/chem.201705448. PubMed DOI

Kang X. Zhu M. Chem. Mater. 2019;31:9939–9969. doi: 10.1021/acs.chemmater.9b03674. DOI

Kang X. Wei X. Wang S. Zhu M. Chem. Sci. 2021;12:11080–11088. doi: 10.1039/D1SC00632K. PubMed DOI PMC

Kang X. Huang L. Liu W. Xiong L. Pei Y. Sun Z. Wang S. Wei S. Zhu M. Chem. Sci. 2019;10:8685–8693. doi: 10.1039/C9SC02667C. PubMed DOI PMC

Yan H. Yang F. Pan D. Lin Y. Hohman J. N. Solis-Ibarra D. Li F. H. Dahl J. E. P. Carlson R. M. K. Tkachenko B. A. Fokin A. A. Schreiner P. R. Galli G. Mao W. L. Shen Z. X. Melosh N. A. Nature. 2018;554:505–510. doi: 10.1038/nature25765. PubMed DOI

Baše T. Bastl Z. Šlouf M. Klementová M. Šubrt J. Vetushka A. Ledinský M. Fejfar A. Macháček J. Carr M. J. Londesborough M. G. S. J. Phys. Chem. C. 2008;112:14446–14455. doi: 10.1021/jp802281s. DOI

Schwartz J. J. Mendoza A. M. Wattanatorn N. Zhao Y. Nguyen V. T. Spokoyny A. M. Mirkin C. A. Baše T. Weiss P. S. J. Am. Chem. Soc. 2016;138:5957–5967. doi: 10.1021/jacs.6b02026. PubMed DOI

Mills H. A. Jones C. G. Anderson K. P. Ready A. D. Djurovich P. I. Khan S. I. Hohman J. N. Nelson H. M. Spokoyny A. M. Chem. Mater. 2022;34(15):6933–6943. doi: 10.1021/acs.chemmater.2c01319. DOI

Ford C. P. Coord. Chem. Rev. 1994;132:129–140. doi: 10.1016/0010-8545(94)80032-4. DOI

Troyano J. Zamora F. Delgado S. Chem. Soc. Rev. 2021;50:4606–4628. doi: 10.1039/D0CS01470B. PubMed DOI

Zhu C. Xin J. Li J. Li H. Kang X. Pei Y. Zhu M. Angew. Chem., Int. Ed. 2022;61:1–6. PubMed

Khatun E. Ghosh A. Chakraborty P. Singh P. Bodiuzzaman M. Ganesan P. Nataranjan G. Ghosh J. Pal S. K. Pradeep T. Nanoscale. 2018;10:20033–20042. doi: 10.1039/C8NR05989F. PubMed DOI

Perruchas S. Goff X. F. L. Maron S. Maurin I. Guillen F. Garcia A. Gacoin T. Boilot J. P. J. Am. Chem. Soc. 2010;132:10967–10969. doi: 10.1021/ja103431d. PubMed DOI

Utrera-Melero R. Huitorel B. Cordier M. Mevellec J. Y. Massuyeau F. Latouche C. Martineau-Corcos C. Perruchas S. Inorg. Chem. 2020;59:13607–13620. doi: 10.1021/acs.inorgchem.0c01967. PubMed DOI

Huitorel B. El Moll H. Cordier M. Fargues A. Garcia A. Massuyeau F. Martineau-Corcos C. Gacoin T. Perruchas S. Inorg. Chem. 2017;56:12379–12388. doi: 10.1021/acs.inorgchem.7b01870. PubMed DOI

Benito Q. Le Goff X. F. Maron S. Fargues A. Garcia A. Martineau C. Taulelle F. Kahlal S. Gacoin T. Boilot J. P. Perruchas S. J. Am. Chem. Soc. 2014;136:11311–11320. doi: 10.1021/ja500247b. PubMed DOI

Huitorel B. El Moll H. Utrera-Melero R. Cordier M. Fargues A. Garcia A. Massuyeau F. Martineau-Corcos C. Fayon F. Rakhmatullin A. Kahlal S. Saillard J. Y. Gacoin T. Perruchas S. Inorg. Chem. 2018;57:4328–4339. doi: 10.1021/acs.inorgchem.7b03160. PubMed DOI

Plešek J. Hermanek S. Collect. Czech. Chem. Commun. 1981;46:687–692. doi: 10.1135/cccc19810687. DOI

Plešek J. Janoušek Z. Hermanek S. Collect. Czech. Chem. Commun. 1978;43:1332–1338. doi: 10.1135/cccc19781332. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...