Carborane-thiol protected copper nanoclusters: stimuli-responsive materials with tunable phosphorescence
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36794193
PubMed Central
PMC9906781
DOI
10.1039/d2sc06578a
PII: d2sc06578a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Atomically precise nanomaterials with tunable solid-state luminescence attract global interest. In this work, we present a new class of thermally stable isostructural tetranuclear copper nanoclusters (NCs), shortly Cu4@oCBT, Cu4@mCBT and Cu4@ICBT, protected by nearly isomeric carborane thiols: ortho-carborane-9-thiol, meta-carborane-9-thiol and ortho-carborane 12-iodo 9-thiol, respectively. They have a square planar Cu4 core and a butterfly-shaped Cu4S4 staple, which is appended with four respective carboranes. For Cu4@ICBT, strain generated by the bulky iodine substituents on the carboranes makes the Cu4S4 staple flatter in comparison to other clusters. High-resolution electrospray ionization mass spectrometry (HR ESI-MS) and collision energy-dependent fragmentation, along with other spectroscopic and microscopic studies, confirm their molecular structure. Although none of these clusters show any visible luminescence in solution, bright μs-long phosphorescence is observed in their crystalline forms. The Cu4@oCBT and Cu4@mCBT NCs are green emitting with quantum yields (Φ) of 81 and 59%, respectively, whereas Cu4@ICBT is orange emitting with a Φ of 18%. Density functional theory (DFT) calculations reveal the nature of their respective electronic transitions. The green luminescence of Cu4@oCBT and Cu4@mCBT clusters gets shifted to yellow after mechanical grinding, but it is regenerated after exposure to solvent vapour, whereas the orange emission of Cu4@ICBT is not affected by mechanical grinding. Structurally flattened Cu4@ICBT didn't show mechanoresponsive luminescence in contrast to other clusters, having bent Cu4S4 structures. Cu4@oCBT and Cu4@mCBT are thermally stable up to 400 °C. Cu4@oCBT retained green emission even upon heating to 200 °C under ambient conditions, while Cu4@mCBT changed from green to yellow in the same window. This is the first report on structurally flexible carborane thiol appended Cu4 NCs having stimuli-responsive tunable solid-state phosphorescence.
Institute of Inorganic Chemistry The Czech Academy of Science 25068 Rez Czech Republic
Institute of Nanotechnology Karlsruhe Institute of Technology Eggenstein Leopoldshafen 76344 Germany
Institute of Physical Chemistry Karlsruhe Institute of Technology 76131 Karlsruhe Germany
Zobrazit více v PubMed
Jin R. Zeng C. Zhou M. Chen Y. Chem. Rev. 2016;116:10346–10413. doi: 10.1021/acs.chemrev.5b00703. PubMed DOI
Kang X. Zhu M. Chem. Soc. Rev. 2019;48:2422–2457. doi: 10.1039/C8CS00800K. PubMed DOI
Chakraborty I. Pradeep T. Chem. Rev. 2017;117:8208–8271. doi: 10.1021/acs.chemrev.6b00769. PubMed DOI
Jana A. Chakraborty P. Dar W. A. Chandra S. Khatun E. Kannan M. P. Ras R. H. A. Pradeep T. Chem. Commun. 2020;56:12550–12553. doi: 10.1039/D0CC03983G. PubMed DOI
Jena P. Sun Q. Chem. Rev. 2018;118:5755–5870. doi: 10.1021/acs.chemrev.7b00524. PubMed DOI
Jana A. Jash M. Poonia A. K. Paramasivam G. Islam M. R. Chakraborty P. Antharjanam S. Machacek J. Ghosh S. Adarsh K. N. V. D. Base T. Pradeep T. ACS Nano. 2021;15:15781–15793. doi: 10.1021/acsnano.1c02602. PubMed DOI
Xie M. Han C. Liang Q. Zhang J. Xie G. Xu H. Sci. Adv. 2019;5:1–9. PubMed PMC
Zhang L. L. M. Zhou G. Zhou G. Lee H. K. Zhao N. Prezhdo O. V. Mak T. C. W. Chem. Sci. 2019;10:10122–10128. doi: 10.1039/C9SC03455B. PubMed DOI PMC
Yu Y. Luo Z. Chevrier D. M. Leong D. T. Zhang P. Jiang D. E. Xie J. J. Am. Chem. Soc. 2014;136:1246–1249. doi: 10.1021/ja411643u. PubMed DOI
AbdulHalim L. G. Bootharaju M. S. Tang Q. Del Gobbo S. AbdulHalim R. G. Eddaoudi M. Jiang D. E. Bakr O. M. J. Am. Chem. Soc. 2015;137:11970–11975. doi: 10.1021/jacs.5b04547. PubMed DOI
Chen T. Yang S. Chai J. Song Y. Fan J. Rao B. Sheng H. Yu H. Zhu M. Sci. Adv. 2017;3:1–8. PubMed PMC
Chen L. Black A. Parak W. J. Klinke C. Chakraborty I. Aggregate. 2022;3:1–18.
Jana A. Unnikrishnan P. M. Poonia A. K. Roy J. Jash M. Paramasivam G. Machacek J. Adarsh K. N. V. D. Base T. Pradeep T. Inorg. Chem. 2022;61:8593–8603. doi: 10.1021/acs.inorgchem.2c00186. PubMed DOI
Ford P. C. Cariati E. Bourassa J. Chem. Rev. 1999;99:3625–3647. doi: 10.1021/cr960109i. PubMed DOI
Liu X. Astruc D. Coord. Chem. Rev. 2018;359:112–126. doi: 10.1016/j.ccr.2018.01.001. DOI
Smolentsev G. Milne C. J. Guda A. Haldrup K. Szlachetko J. Azzaroli N. Cirelli C. Knopp G. Bohinc R. Menzi S. Pamfilidis G. Gashi D. Beck M. Mozzanica A. James D. Bacellar C. Mancini G. F. Tereshchenko A. Shapovalov V. Kwiatek W. M. Czapla-Masztafiak J. Cannizzo A. Gazzetto M. Sander M. Levantino M. Kabanova V. Rychagova E. Ketkov S. Olaru M. Beckmann J. Vogt M. Nat. Commun. 2020;11:1–9. doi: 10.1038/s41467-019-13993-7. PubMed DOI PMC
Liu G. N. Xu R. D. Guo J. S. Miao J. L. Zhang M. J. Li C. J. Mater. Chem. C. 2021;9:8589–8595. doi: 10.1039/D1TC00964H. DOI
Ai L. Jiang W. Liu Z. Liu J. Gao Y. Zou H. Wu Z. Wang Z. Liu Y. Zhang H. Yang B. Nanoscale. 2017;9:12618–12627. doi: 10.1039/C7NR03985A. PubMed DOI
Olaru M. Rychagova E. Ketkov S. Shynkarenko Y. Yakunin S. Kovalenko M. V. Yablonskiy A. Andreev B. Kleemiss F. Beckmann J. Vogt M. J. Am. Chem. Soc. 2020;142:373–381. doi: 10.1021/jacs.9b10829. PubMed DOI
Wang J. J. Zhou H. T. Yang J. N. Feng L. Z. Yao J. S. Song K. H. Zhou M. M. Jin S. Zhang G. Bin Yao H. J. Am. Chem. Soc. 2021;143:10860–10864. doi: 10.1021/jacs.1c05476. PubMed DOI
Kirakci K. Fejfarová K. Martinčík J. Nikl M. Lang K. Inorg. Chem. 2017;56:4609–4614. doi: 10.1021/acs.inorgchem.7b00240. PubMed DOI
Yam V. W. W. Au V. K. M. Leung S. Y. L. Chem. Rev. 2015;115:7589–7728. doi: 10.1021/acs.chemrev.5b00074. PubMed DOI
Zhang K. Y. Yu Q. Wei H. Liu S. Zhao Q. Huang W. Chem. Rev. 2018;118:1770–1839. doi: 10.1021/acs.chemrev.7b00425. PubMed DOI
Kenry Chen C. Liu B. Nat. Commun. 2019;10:1–15. doi: 10.1038/s41467-018-07882-8. PubMed DOI PMC
Bolton O. Lee D. Jung J. Kim J. Chem. Mater. 2014;26:6644–6649. doi: 10.1021/cm503678r. DOI
Chen C. Chi Z. Chong K. C. Batsanov A. S. Yang Z. Mao Z. Yang Z. Liu B. Nat. Mater. 2021;20:175–180. doi: 10.1038/s41563-020-0797-2. PubMed DOI
Wang J. Wang C. Gong Y. Liao Q. Han M. Jiang T. Dang Q. Li Y. Li Q. Li Z. Angew. Chem., Int. Ed. 2018;57:16821–16826. doi: 10.1002/anie.201811660. PubMed DOI
Shoji Y. Ikabata Y. Wang Q. Nemoto D. Sakamoto A. Tanaka N. Seino J. Nakai H. Fukushima T. J. Am. Chem. Soc. 2017;139:2728–2733. doi: 10.1021/jacs.6b11984. PubMed DOI
Penfold T. J. Gindensperger E. Daniel C. Marian C. M. Chem. Rev. 2018;118:6975–7025. doi: 10.1021/acs.chemrev.7b00617. PubMed DOI
He Z. Zhao W. Lam J. W. Y. Peng Q. Ma H. Liang G. Shuai Z. Tang B. Z. Nat. Commun. 2017;8:1–7. doi: 10.1038/s41467-016-0009-6. PubMed DOI PMC
Cuttell D. G. Kuang S. M. Fanwick P. E. McMillin D. R. Walton R. A. J. Am. Chem. Soc. 2002;124:6–7. doi: 10.1021/ja012247h. PubMed DOI
Lu T. Wang J. Y. Tu D. Chen Z. N. Chen X. T. Xue Z. L. Inorg. Chem. 2018;57:13618–13630. doi: 10.1021/acs.inorgchem.8b02217. PubMed DOI
Schinabeck A. Leitl M. J. Yersin H. J. Phys. Chem. Lett. 2018;9:2848–2856. doi: 10.1021/acs.jpclett.8b00957. PubMed DOI
Dias H. V. R. Diyabalanage H. V. K. Rawashdeh-Omary M. A. Franzman M. A. Omary M. A. J. Am. Chem. Soc. 2003;125:12072–12073. doi: 10.1021/ja036736o. PubMed DOI
Roppolo I. Celasco E. Fargues A. Garcia A. Revaux A. Dantelle G. Maroun F. Gacoin T. Boilot J. P. Sangermano M. Perruchas S. J. Mater. Chem. 2011;21:19106–19113. doi: 10.1039/C1JM13600C. DOI
Ai P. Mauro M. De Cola L. Danopoulos A. A. Braunstein P. Angew. Chem., Int. Ed. 2016;55:3338–3341. doi: 10.1002/anie.201510150. PubMed DOI
Baghdasaryan A. Bürgi T. Nanoscale. 2021;13:6283–6340. doi: 10.1039/D0NR08489A. PubMed DOI
Lu Y. Chen W. Chem. Soc. Rev. 2012;41:3594–3623. doi: 10.1039/C2CS15325D. PubMed DOI
Wang J. Gu X. Ma H. Peng Q. Huang X. Zheng X. Sung S. H. P. Shan G. Lam J. W. Y. Shuai Z. Tang B. Z. Nat. Commun. 2018;9:1–9. doi: 10.1038/s41467-017-02088-w. PubMed DOI PMC
Ai Y. Li Y. Chan M. H. Y. Xiao G. Zou B. Yam V. W. W. J. Am. Chem. Soc. 2021;143:10659–10667. doi: 10.1021/jacs.1c04200. PubMed DOI
Mei J. Leung N. L. C. Kwok R. T. K. Lam J. W. Y. Tang B. Z. Chem. Rev. 2015;115:11718–11940. doi: 10.1021/acs.chemrev.5b00263. PubMed DOI
Zhang Z. Y. Liu Y. Chem. Sci. 2019;10:7773–7778. doi: 10.1039/C9SC02633A. PubMed DOI PMC
Cai S. Ma H. Shi H. Wang H. Wang X. Xiao L. Ye W. Huang K. Cao X. Gan N. Ma C. Gu M. Song L. Xu H. Tao Y. Zhang C. Yao W. An Z. Huang W. Nat. Commun. 2019;10:1–8. PubMed PMC
Sun L. Zhu W. Yang F. Li B. Ren X. Zhang X. Hu W. Phys. Chem. Chem. Phys. 2018;20:6009–6023. doi: 10.1039/C7CP07167A. PubMed DOI
Wu Z. Liu J. Gao Y. Liu H. Li T. Zou H. Wang Z. Zhang K. Wang Y. Zhang H. Yang B. J. Am. Chem. Soc. 2015;137:12906–12913. doi: 10.1021/jacs.5b06550. PubMed DOI
Perruchas S. Goff X. F. L. Maron S. Maurin I. Guillen F. Garcia A. Gacoin T. Boilot J. P. J. Am. Chem. Soc. 2010;132:10967–10969. doi: 10.1021/ja103431d. PubMed DOI
Wei W. Lu Y. Chen W. Chen S. J. Am. Chem. Soc. 2011;133:2060–2063. doi: 10.1021/ja109303z. PubMed DOI
Perruchas S. Tard C. Le Goff X. F. Fargues A. Garcia A. Kahlal S. Saillard J. Y. Gacoin T. Boilot J. P. Inorg. Chem. 2011;50:10682–10692. doi: 10.1021/ic201128a. PubMed DOI
Shi S. Jung M. C. Coburn C. Tadle A. Sylvinson D. M. R. Djurovich P. I. Forrest S. R. Thompson M. E. J. Am. Chem. Soc. 2019;141:3576–3588. doi: 10.1021/jacs.8b12397. PubMed DOI
Basu K. Paul S. Jana R. Datta A. Banerjee A. ACS Sustainable Chem. Eng. 2019;7:1998–2007. doi: 10.1021/acssuschemeng.8b04301. DOI
Lin Y. J. Chen P. C. Yuan Z. Ma J. Y. Chang H. T. Chem. Commun. 2015;51:11983–11986. doi: 10.1039/C5CC02342D. PubMed DOI
Núñez R. Tarrés M. Ferrer-Ugalde A. De Biani F. F. Teixidor F. Chem. Rev. 2016;116:14307–14378. doi: 10.1021/acs.chemrev.6b00198. PubMed DOI
Poater J. Viñas C. Bennour I. Escayola S. Solà M. Teixidor F. J. Am. Chem. Soc. 2020;142:9396–9407. doi: 10.1021/jacs.0c02228. PubMed DOI
Spokoyny A. M. MacHan C. W. Clingerman D. J. Rosen M. S. Wiester M. J. Kennedy R. D. Stern C. L. Sarjeant A. A. Mirkin C. A. Nat. Chem. 2011;3:590–596. doi: 10.1038/nchem.1088. PubMed DOI
Furue R. Nishimoto T. Park I. S. Lee J. Yasuda T. Angew. Chem., Int. Ed. 2016;55:7171–7175. doi: 10.1002/anie.201603232. PubMed DOI
Kodr D. Yenice C. P. Simonova A. Saftić D. P. Pohl R. Sýkorová V. Ortiz M. Havran L. Fojta M. Lesnikowski Z. J. O'Sullivan C. K. Hocek M. J. Am. Chem. Soc. 2021;143:7124–7134. doi: 10.1021/jacs.1c02222. PubMed DOI
Wang Q. Wang J. Wang S. Wang Z. Cao M. He C. Yang J. Zang S. Mak T. C. W. J. Am. Chem. Soc. 2020;142:12010–12014. doi: 10.1021/jacs.0c04638. PubMed DOI
Li J. Ma H. Z. Reid G. E. Edwards A. J. Hong Y. White J. M. Mulder R. J. O'Hair R. A. J. Chem.–Eur. J. 2018;24:2070–2074. doi: 10.1002/chem.201705448. PubMed DOI
Kang X. Zhu M. Chem. Mater. 2019;31:9939–9969. doi: 10.1021/acs.chemmater.9b03674. DOI
Kang X. Wei X. Wang S. Zhu M. Chem. Sci. 2021;12:11080–11088. doi: 10.1039/D1SC00632K. PubMed DOI PMC
Kang X. Huang L. Liu W. Xiong L. Pei Y. Sun Z. Wang S. Wei S. Zhu M. Chem. Sci. 2019;10:8685–8693. doi: 10.1039/C9SC02667C. PubMed DOI PMC
Yan H. Yang F. Pan D. Lin Y. Hohman J. N. Solis-Ibarra D. Li F. H. Dahl J. E. P. Carlson R. M. K. Tkachenko B. A. Fokin A. A. Schreiner P. R. Galli G. Mao W. L. Shen Z. X. Melosh N. A. Nature. 2018;554:505–510. doi: 10.1038/nature25765. PubMed DOI
Baše T. Bastl Z. Šlouf M. Klementová M. Šubrt J. Vetushka A. Ledinský M. Fejfar A. Macháček J. Carr M. J. Londesborough M. G. S. J. Phys. Chem. C. 2008;112:14446–14455. doi: 10.1021/jp802281s. DOI
Schwartz J. J. Mendoza A. M. Wattanatorn N. Zhao Y. Nguyen V. T. Spokoyny A. M. Mirkin C. A. Baše T. Weiss P. S. J. Am. Chem. Soc. 2016;138:5957–5967. doi: 10.1021/jacs.6b02026. PubMed DOI
Mills H. A. Jones C. G. Anderson K. P. Ready A. D. Djurovich P. I. Khan S. I. Hohman J. N. Nelson H. M. Spokoyny A. M. Chem. Mater. 2022;34(15):6933–6943. doi: 10.1021/acs.chemmater.2c01319. DOI
Ford C. P. Coord. Chem. Rev. 1994;132:129–140. doi: 10.1016/0010-8545(94)80032-4. DOI
Troyano J. Zamora F. Delgado S. Chem. Soc. Rev. 2021;50:4606–4628. doi: 10.1039/D0CS01470B. PubMed DOI
Zhu C. Xin J. Li J. Li H. Kang X. Pei Y. Zhu M. Angew. Chem., Int. Ed. 2022;61:1–6. PubMed
Khatun E. Ghosh A. Chakraborty P. Singh P. Bodiuzzaman M. Ganesan P. Nataranjan G. Ghosh J. Pal S. K. Pradeep T. Nanoscale. 2018;10:20033–20042. doi: 10.1039/C8NR05989F. PubMed DOI
Perruchas S. Goff X. F. L. Maron S. Maurin I. Guillen F. Garcia A. Gacoin T. Boilot J. P. J. Am. Chem. Soc. 2010;132:10967–10969. doi: 10.1021/ja103431d. PubMed DOI
Utrera-Melero R. Huitorel B. Cordier M. Mevellec J. Y. Massuyeau F. Latouche C. Martineau-Corcos C. Perruchas S. Inorg. Chem. 2020;59:13607–13620. doi: 10.1021/acs.inorgchem.0c01967. PubMed DOI
Huitorel B. El Moll H. Cordier M. Fargues A. Garcia A. Massuyeau F. Martineau-Corcos C. Gacoin T. Perruchas S. Inorg. Chem. 2017;56:12379–12388. doi: 10.1021/acs.inorgchem.7b01870. PubMed DOI
Benito Q. Le Goff X. F. Maron S. Fargues A. Garcia A. Martineau C. Taulelle F. Kahlal S. Gacoin T. Boilot J. P. Perruchas S. J. Am. Chem. Soc. 2014;136:11311–11320. doi: 10.1021/ja500247b. PubMed DOI
Huitorel B. El Moll H. Utrera-Melero R. Cordier M. Fargues A. Garcia A. Massuyeau F. Martineau-Corcos C. Fayon F. Rakhmatullin A. Kahlal S. Saillard J. Y. Gacoin T. Perruchas S. Inorg. Chem. 2018;57:4328–4339. doi: 10.1021/acs.inorgchem.7b03160. PubMed DOI
Plešek J. Hermanek S. Collect. Czech. Chem. Commun. 1981;46:687–692. doi: 10.1135/cccc19810687. DOI
Plešek J. Janoušek Z. Hermanek S. Collect. Czech. Chem. Commun. 1978;43:1332–1338. doi: 10.1135/cccc19781332. DOI
Multicolor photoluminescence of Cu14 clusters modulated using surface ligands
Macropolyhedral syn-B18H22, the "Forgotten" Isomer