Site-specific substitution in atomically precise carboranethiol-protected nanoclusters and concomitant changes in electronic properties
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
39885129
PubMed Central
PMC11782596
DOI
10.1038/s41467-025-56385-w
PII: 10.1038/s41467-025-56385-w
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
We report the synthesis of [Ag17(o1-CBT)12]3- abbreviated as Ag17, a stable 8e⁻ anionic cluster with a unique Ag@Ag12@Ag4 core-shell structure, where o1-CBT is ortho-carborane-1-thiol. By substituting Ag atoms with Au and/or Cu at specific sites we created isostructural clusters [AuAg16(o1-CBT)12]3- (AuAg16), [Ag13Cu4(o1-CBT)12]3- (Ag13Cu4) and [AuAg12Cu4(o1-CBT)12]3- (AuAg12Cu4). These substitutions make systematic modulation of their structural and electronic properties. We show that Au preferentially occupies the core, while Cu localizes in the tetrahedral shell, influencing stability and structural diversity of the clusters. The band gap expands systematically (2.09 eV for Ag17 to 2.28 eV for AuAg12Cu4), altering optical absorption and emission. Ultrafast optical measurements reveal longer excited-state lifetimes for Cu-containing clusters, highlighting the effect of heteroatom incorporation. These results demonstrate a tunable platform for designing nanoclusters with tailored electronic properties, with implications for optoelectronics and catalysis.
See more in PubMed
Chakraborty, I. & Pradeep, T. Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chem. Rev.117, 8208–8271 (2017). PubMed
Takano, S. & Tsukuda, T. Chemically Modified Gold/Silver Superatoms as Artificial Elements at Nanoscale: Design Principles and Synthesis Challenges. J. Am. Chem. Soc.143, 1683–1698 (2021). PubMed
Lee, S. et al. [Pt2Cu34(PET)22Cl4]2–: An Atomically Precise, 10-Electron PtCu Bimetal Nanocluster with a Direct Pt–Pt Bond. J. Am. Chem. Soc.143, 12100–12107 (2021). PubMed
Jin, R., Zeng, C., Zhou, M. & Chen, Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem. Rev.116, 10346–10413 (2016). PubMed
Desireddy, A. et al. Ultrastable silver nanoparticles. Nature501, 399–402 (2013). PubMed
Gan, Z., Xia, N. & Wu, Z. Discovery, Mechanism, and Application of Antigalvanic Reaction. Acc. Chem. Res.51, 2774–2783 (2018). PubMed
Bootharaju, M. S., Joshi, C. P., Parida, M. R., Mohammed, O. F. & Bakr, O. M. Templated Atom-Precise Galvanic Synthesis and Structure Elucidation of a [Ag24Au(SR)18]− Nanocluster. Angew. Chem. Int. Ed55, 922–926 (2016). PubMed
Takano, S., Ito, S. & Tsukuda, T. Efficient and Selective Conversion of Phosphine-Protected (MAu8)2+ (M = Pd, Pt) Superatoms to Thiolate-Protected (MAu12)6+ or Alkynyl-Protected (MAu12)4+ Superatoms via Hydride Doping. J. Am. Chem. Soc.141, 15994–16002 (2019). PubMed
Fan, X. et al. Structural Isomerization in Cu(I) Clusters: Tracing the Cu Thermal Migration Paths and Unveiling the Structure-Dependent Photoluminescence. CCS Chem. 10.31635/ccschem.022.202101741 (2023).
Han, B.-L. et al. Polymorphism in Atomically Precise Cu23 Nanocluster Incorporating Tetrahedral [Cu4]0 Kernel. J. Am. Chem. Soc.142, 5834–5841 (2020). PubMed
Sakthivel, N. A. & Dass, A. Aromatic Thiolate-Protected Series of Gold Nanomolecules and a Contrary Structural Trend in Size Evolution. Acc. Chem. Res.51, 1774–1783 (2018). PubMed
Gell, L., Lehtovaara, L. & Häkkinen, H. Superatomic S2 Silver Clusters Stabilized by a Thiolate–Phosphine Monolayer: Insight into Electronic and Optical Properties of Ag14(SC6H3F2)12(PPh3)8 and Ag16(SC6H3F2)14(DPPE)4. J. Phys. Chem. A118, 8351–8355 (2014). PubMed
Kang, X. & Zhu, M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev.48, 2422–2457 (2019). PubMed
Abbas, M. A., Kamat, P. V. & Bang, J. H. Thiolated Gold Nanoclusters for Light Energy Conversion. ACS Energy Lett3, 840–854 (2018).
Huang, R.-W. et al. Radioluminescent Cu–Au Metal Nanoclusters: Synthesis and Self-Assembly for Efficient X-ray Scintillation and Imaging. J. Am. Chem. Soc.145, 13816–13827 (2023). PubMed
Russier-Antoine, I. et al. Ligand-core NLO-phores: a combined experimental and theoretical approach to the two-photon absorption and two-photon excited emission properties of small-ligated silver nanoclusters. Nanoscale9, 1221–1228 (2017). PubMed
Zhang, C., Si, W.-D., Wang, Z., Tung, C.-H. & Sun, D. Chiral Ligand-Concentration Mediating Asymmetric Transformations of Silver Nanoclusters: NIR-II Circularly Polarized Phosphorescence Lighting. Angew. Chem. Int. Ed.63, e202404545 (2024). PubMed
Zhang, M.-M. et al. Chiral Hydride Cu18 Clusters Transform to Superatomic Cu15Ag4 Clusters: Circularly Polarized Luminescence Lighting. J. Am. Chem. Soc.145, 22310–22316 (2023). PubMed
Qian, S. et al. Engineering luminescent metal nanoclusters for sensing applications. Coord. Chem. Rev.451, 214268 (2022).
Liu, C. et al. Chiral Ag23 nanocluster with open shell electronic structure and helical face-centered cubic framework. Nat. Commun.9, 744 (2018). PubMed PMC
Nguyen, T.-A. D. et al. A Cu25 Nanocluster with Partial Cu(0) Character. J. Am. Chem. Soc.137, 13319–13324 (2015). PubMed
Chiu, T.-H. et al. Homoleptic Platinum/Silver Superatoms Protected by Dithiolates: Linear Assemblies of Two and Three Centered Icosahedra Isolobal to Ne2 and I3. J. Am. Chem. Soc.141, 12957–12961 (2019). PubMed
Bootharaju, M. S. et al. Cd12Ag32(SePh)36: Non-Noble Metal Doped Silver Nanoclusters. J. Am. Chem. Soc.141, 8422–8425 (2019). PubMed
Dhayal, R. S., van Zyl, W. E. & Liu, C. W. Polyhydrido Copper Clusters: Synthetic Advances, Structural Diversity, and Nanocluster-to-Nanoparticle Conversion. Acc. Chem. Res.49, 86–95 (2016). PubMed
Qu, M. et al. Observation of Non-FCC Copper in Alkynyl-Protected Cu53 Nanoclusters. Angew. Chem. Int. Ed.59, 6507–6512 (2020). PubMed
Kang, X., Li, Y., Zhu, M. & Jin, R. Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chem. Soc. Rev.49, 6443–6514 (2020). PubMed
Khatun, E. et al. Confining an Ag10 Core in an Ag12 Shell: A Four-Electron Superatom with Enhanced Photoluminescence upon Crystallization. ACS Nano13, 5753–5759 (2019). PubMed
Nguyen, T.-A. D. et al. Ligand-Exchange-Induced Growth of an Atomically Precise Cu29 Nanocluster from a Smaller Cluster. Chem. Mater.28, 8385–8390 (2016).
Jana, A. et al. A luminescent Cu 4 cluster film grown by electrospray deposition: a nitroaromatic vapour sensor. Nanoscale15, 8141–8147 (2023). PubMed
Wang, Q.-Y. et al. o-Carborane-Based and Atomically Precise Metal Clusters as Hypergolic Materials. J. Am. Chem. Soc.142, 12010–12014 (2020). PubMed
Huang, J.-H., Ji, A.-Q., Wang, Z.-Y., Wang, Q.-Y. & Zang, S.-Q. Boosting 2000-Fold Hypergolic Ignition Rate of Carborane by Substitutes Migration in Metal Clusters. Adv. Sci.11, 2401861 (2024). PubMed PMC
Jana, A. et al. Light-Activated Intercluster Conversion of an Atomically Precise Silver Nanocluster. ACS Nano15, 15781–15793 (2021). PubMed
Wang, J., Wang, Z.-Y., Li, S.-J., Zang, S.-Q. & Mak, T. C. W. Carboranealkynyl-Protected Gold Nanoclusters: Size Conversion and UV/Vis–NIR Optical Properties. Angew. Chem.133, 6024–6029 (2021). PubMed
Wang, J., Xu, F., Wang, Z.-Y., Zang, S.-Q. & Mak, T. C. W. Ligand-Shell Engineering of a Au28 Nanocluster Boosts Electrocatalytic CO2 Reduction. Angew. Chem. Int. Ed.61, e202207492 (2022). PubMed
Jana, A. et al. Carboranethiol-Protected Propeller-Shaped Photoresponsive Silver Nanomolecule. Inorg. Chem.61, 8593–8603 (2022). PubMed
Morin, J.-F., Shirai, Y. & Tour, J. M. En Route to a Motorized Nanocar. Org. Lett.8, 1713–1716 (2006). PubMed
Goronzy, D. P. et al. Influence of Terminal Carboxyl Groups on the Structure and Reactivity of Functionalized m-Carboranethiolate Self-Assembled Monolayers. Chem. Mater.32, 6800–6809 (2020).
Wang, J. et al. Carborane Derivative Conjugated with Gold Nanoclusters for Targeted Cancer Cell Imaging. Biomacromolecules18, 1466–1472 (2017). PubMed
Fisher, S. P. et al. Nonclassical Applications of closo-Carborane Anions: From Main Group Chemistry and Catalysis to Energy Storage. Chem. Rev.119, 8262–8290 (2019). PubMed
Poater, J. et al. Too Persistent to Give Up: Aromaticity in Boron Clusters Survives Radical Structural Changes. J. Am. Chem. Soc.142, 9396–9407 (2020). PubMed
White, K. E. et al. Competing Intermolecular and Molecule–Surface Interactions: Dipole–Dipole-Driven Patterns in Mixed Carborane Self-Assembled Monolayers. Chem. Mater.36, 2085–2095 (2024).
Huang, J.-H., Wang, Z.-Y., Zang, S.-Q. & Mak, T. C. W. Spontaneous Resolution of Chiral Multi-Thiolate-Protected Ag30 Nanoclusters. ACS Cent. Sci.6, 1971–1976 (2020). PubMed PMC
Ghosh, A., Mohammed, O. F. & Bakr, O. M. Atomic-Level Doping of Metal Clusters. Acc. Chem. Res.51, 3094–3103 (2018). PubMed
Kim, M. et al. Dopant-Dependent Electronic Structures Observed for M2Au36(SC6H13)24 Clusters (M = Pt, Pd). J. Phys. Chem. Lett.9, 982–989 (2018). PubMed
Choi, W. et al. Effects of Metal-Doping on Hydrogen Evolution Reaction Catalyzed by MAu24 and M2Au36 Nanoclusters (M = Pt, Pd). ACS Appl. Mater. Interf.10, 44645–44653 (2018). PubMed
Xie, S., Tsunoyama, H., Kurashige, W., Negishi, Y. & Tsukuda, T. Enhancement in Aerobic Alcohol Oxidation Catalysis of Au25 Clusters by Single Pd Atom Doping. ACS Catal2, 1519–1523 (2012).
Chakrahari, K. K. et al. Synthesis of Bimetallic Copper-Rich Nanoclusters Encapsulating a Linear Palladium Dihydride Unit. Angew. Chem. Int. Ed.58, 4943–4947 (2019). PubMed
Bootharaju, M. S. et al. Atom-Precise Heteroatom Core-Tailoring of Nanoclusters for Enhanced Solar Hydrogen Generation. Adv. Mater.35, 2207765 (2023). PubMed
Masuda, S., Sakamoto, K. & Tsukuda, T. Atomically precise Au and Ag nanoclusters doped with a single atom as model alloy catalysts. Nanoscale16, 4514–4528 (2024). PubMed
Chen, S. et al. Assembly of the Thiolated [Au1Ag22(S-Adm)12]3+ Superatom Complex into a Framework Material through Direct Linkage by SbF6− Anions.Angew. Chem.132, 7612–7617 (2020). PubMed
Du, W. et al. Ag50(Dppm)6(SR)30 and Its Homologue AuxAg50–x(Dppm)6(SR)30 Alloy Nanocluster: Seeded Growth, Structure Determination, and Differences in Properties. J. Am. Chem. Soc.139, 1618–1624 (2017). PubMed
Chai, J. et al. Chiral Inversion and Conservation of Clusters: A Case Study of Racemic Ag32Cu12 Nanocluster. Inorg. Chem.60, 9050–9056 (2021). PubMed
Kim, M. et al. Insights into the Metal-Exchange Synthesis of MAg24(SR)18 (M = Ni, Pd, Pt) Nanoclusters. Chem. Mater.32, 10216–10226 (2020).
Khatun, E. & Pradeep, T. New Routes for Multicomponent Atomically Precise Metal Nanoclusters. ACS Omega6, 1–16 (2021). PubMed PMC
Yan, J. et al. Total Structure and Electronic Structure Analysis of Doped Thiolated Silver [MAg24(SR)18]2– (M = Pd, Pt) Clusters. J. Am. Chem. Soc.137, 11880–11883 (2015). PubMed
Yang, Y. et al. An All-Alkynyl Protected 74-Nuclei Silver(I)–Copper(I)-Oxo Nanocluster: Oxo-Induced Hierarchical Bimetal Aggregation and Anisotropic Surface Ligand Orientation. Angew. Chem. Int. Ed.58, 12280–12285 (2019). PubMed
He, L. et al. Kernel Tuning and Nonuniform Influence on Optical and Electrochemical Gaps of Bimetal Nanoclusters. J. Am. Chem. Soc.140, 3487–3490 (2018). PubMed
Hossain, S. et al. Thiolate-Protected Trimetallic Au∼20Ag∼4Pd and Au∼20Ag∼4Pt Alloy Clusters with Controlled Chemical Composition and Metal Positions. J. Phys. Chem. Lett.9, 2590–2594 (2018). PubMed
Han, B.-L. et al. Precise Implantation of an Archimedean Ag@Cu12 Cuboctahedron into a Platonic Cu4Bis(diphenylphosphino)hexane6 Tetrahedron. ACS Nano15, 8733–8741 (2021). PubMed
Xie, X.-Y. et al. The Origin of the Photoluminescence Enhancement of Gold-Doped Silver Nanoclusters: The Importance of Relativistic Effects and Heteronuclear Gold–Silver Bonds. Angew. Chem. Int. Ed.57, 9965–9969 (2018). PubMed
Hirai, H. et al. Doping-Mediated Energy-Level Engineering of M@Au12 Superatoms (M=Pd, Pt, Rh, Ir) for Efficient Photoluminescence and Photocatalysis. Angew. Chem. Int. Ed.61, e202207290 (2022). PubMed
Fakhouri, H. et al. Effects of Single Platinum Atom Doping on Stability and Nonlinear Optical Properties of Ag29 Nanoclusters. J. Phys. Chem. C126, 21094–21100 (2022).
Yuan, S.-F., Guan, Z.-J., Liu, W.-D. & Wang, Q.-M. Solvent-triggered reversible interconversion of all-nitrogen-donor-protected silver nanoclusters and their responsive optical properties. Nat. Commun.10, 4032 (2019). PubMed PMC
Chevrier, D. M. et al. Interactions between Ultrastable Na4Ag44(SR)30 Nanoclusters and Coordinating Solvents: Uncovering the Atomic-Scale Mechanism. ACS Nano14, 8433–8441 (2020). PubMed
Udayabhaskararao, T. & Pradeep, T. New Protocols for the Synthesis of Stable Ag and Au Nanocluster Molecules. J. Phys. Chem. Lett.4, 1553–1564 (2013). PubMed
Manno, R. et al. Continuous Microwave-Assisted Synthesis of Silver Nanoclusters Confined in Mesoporous SBA-15: Application in Alkyne Cyclizations. Chem. Mater.32, 2874–2883 (2020).
Bootharaju, M. S. et al. Reversible Size Control of Silver Nanoclusters via Ligand-Exchange. Chem. Mater.27, 4289–4297 (2015).
Yuan, X. et al. Traveling through the Desalting Column Spontaneously Transforms Thiolated Ag Nanoclusters from Nonluminescent to Highly Luminescent. J. Phys. Chem. Lett.4, 1811–1815 (2013). PubMed
Wickramasinghe, S. et al. M3Ag17(SPh)12 Nanoparticles and Their Structure Prediction. J. Am. Chem. Soc.137, 11550–11553 (2015). PubMed
Conn, B. E. et al. Confirmation of a de novo structure prediction for an atomically precise monolayer-coated silver nanoparticle. Sci. Adv.2, e1601609 (2016). PubMed PMC
Jana, A. et al. Photoconversion of Ag31 to Ag42 Initiated by Solvated Electrons. Chem. Mater.35, 7020–7031 (2023).
Qu, M. et al. Bidentate Phosphine-Assisted Synthesis of an All-Alkynyl-Protected Ag74 Nanocluster. J. Am. Chem. Soc.139, 12346–12349 (2017). PubMed
Dhayal, R. S. et al. Ag21S2P(OiPr)212]+: An Eight-Electron Superatom. Angew. Chem. Int. Ed.54, 3702–3706 (2015). PubMed
Chang, W.-T. et al. Eight-Electron Silver and Mixed Gold/Silver Nanoclusters Stabilized by Selenium Donor Ligands. Angew. Chem. Int. Ed.56, 10178–10182 (2017). PubMed
Dhayal, R. S. et al. [Ag20S2P(OR)212]: A Superatom Complex with a Chiral Metallic Core and High Potential for Isomerism. Chem. – Eur. J22, 9943–9947 (2016). PubMed
Yen, W.-J., Liao, J.-H., Chiu, T.-H., Wen, Y.-S. & Liu, C. W. Homoleptic Silver-Rich Trimetallic M20 Nanocluster. Inorg. Chem.61, 6695–6700 (2022). PubMed
Zhong, Y.-J. et al. Doping effect on the structure and properties of eight-electron silver nanoclusters. J. Chem. Phys.155, 034304 (2021). PubMed
Jana, A. et al. Carborane-thiol protected copper nanoclusters: stimuli-responsive materials with tunable phosphorescence. Chem. Sci.14, 1613–1626 (2023). PubMed PMC
Gam, F. et al. Alloying dichalcogenolate-protected Ag21 eight-electron nanoclusters: a DFT investigation. Nanoscale14, 196–203 (2021). PubMed
Liu, D. et al. [Au14(2-SAdm)9(Dppe)2]+: a gold nanocluster with a crystallization-induced emission enhancement phenomenon. Chem. Commun.60, 1337–1340 (2024). PubMed
Kang, X., Wang, S. & Zhu, M. Observation of a new type of aggregation-induced emission in nanoclusters. Chem. Sci.9, 3062–3068 (2018). PubMed PMC
Kang, X. et al. Rational construction of a library of M29 nanoclusters from monometallic to tetrametallic. Proc. Natl. Acad. Sci.116, 18834–18840 (2019). PubMed PMC
Galassi, R. et al. Cupriphication of gold to sensitize d10–d10 metal–metal bonds and near-unity phosphorescence quantum yields. Proc. Natl. Acad. Sci.114, E5042–E5051 (2017). PubMed PMC
Häkkinen, H., Moseler, M. & Landman, U. Bonding in Cu, Ag, and Au Clusters: Relativistic Effects, Trends, and Surprises. Phys. Rev. Lett.89, 033401 (2002). PubMed
Song, Y. et al. Ultrabright Au@Cu14 nanoclusters: 71.3% phosphorescence quantum yield in non-degassed solution at room temperature. Sci. Adv.7, eabd2091 (2021). PubMed PMC