• This record comes from PubMed

Site-specific substitution in atomically precise carboranethiol-protected nanoclusters and concomitant changes in electronic properties

. 2025 Jan 30 ; 16 (1) : 1197. [epub] 20250130

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article

Links

PubMed 39885129
PubMed Central PMC11782596
DOI 10.1038/s41467-025-56385-w
PII: 10.1038/s41467-025-56385-w
Knihovny.cz E-resources

We report the synthesis of [Ag17(o1-CBT)12]3- abbreviated as Ag17, a stable 8e⁻ anionic cluster with a unique Ag@Ag12@Ag4 core-shell structure, where o1-CBT is ortho-carborane-1-thiol. By substituting Ag atoms with Au and/or Cu at specific sites we created isostructural clusters [AuAg16(o1-CBT)12]3- (AuAg16), [Ag13Cu4(o1-CBT)12]3- (Ag13Cu4) and [AuAg12Cu4(o1-CBT)12]3- (AuAg12Cu4). These substitutions make systematic modulation of their structural and electronic properties. We show that Au preferentially occupies the core, while Cu localizes in the tetrahedral shell, influencing stability and structural diversity of the clusters. The band gap expands systematically (2.09 eV for Ag17 to 2.28 eV for AuAg12Cu4), altering optical absorption and emission. Ultrafast optical measurements reveal longer excited-state lifetimes for Cu-containing clusters, highlighting the effect of heteroatom incorporation. These results demonstrate a tunable platform for designing nanoclusters with tailored electronic properties, with implications for optoelectronics and catalysis.

See more in PubMed

Chakraborty, I. & Pradeep, T. Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chem. Rev.117, 8208–8271 (2017). PubMed

Takano, S. & Tsukuda, T. Chemically Modified Gold/Silver Superatoms as Artificial Elements at Nanoscale: Design Principles and Synthesis Challenges. J. Am. Chem. Soc.143, 1683–1698 (2021). PubMed

Lee, S. et al. [Pt2Cu34(PET)22Cl4]2–: An Atomically Precise, 10-Electron PtCu Bimetal Nanocluster with a Direct Pt–Pt Bond. J. Am. Chem. Soc.143, 12100–12107 (2021). PubMed

Jin, R., Zeng, C., Zhou, M. & Chen, Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem. Rev.116, 10346–10413 (2016). PubMed

Desireddy, A. et al. Ultrastable silver nanoparticles. Nature501, 399–402 (2013). PubMed

Gan, Z., Xia, N. & Wu, Z. Discovery, Mechanism, and Application of Antigalvanic Reaction. Acc. Chem. Res.51, 2774–2783 (2018). PubMed

Bootharaju, M. S., Joshi, C. P., Parida, M. R., Mohammed, O. F. & Bakr, O. M. Templated Atom-Precise Galvanic Synthesis and Structure Elucidation of a [Ag24Au(SR)18]− Nanocluster. Angew. Chem. Int. Ed55, 922–926 (2016). PubMed

Takano, S., Ito, S. & Tsukuda, T. Efficient and Selective Conversion of Phosphine-Protected (MAu8)2+ (M = Pd, Pt) Superatoms to Thiolate-Protected (MAu12)6+ or Alkynyl-Protected (MAu12)4+ Superatoms via Hydride Doping. J. Am. Chem. Soc.141, 15994–16002 (2019). PubMed

Fan, X. et al. Structural Isomerization in Cu(I) Clusters: Tracing the Cu Thermal Migration Paths and Unveiling the Structure-Dependent Photoluminescence. CCS Chem. 10.31635/ccschem.022.202101741 (2023).

Han, B.-L. et al. Polymorphism in Atomically Precise Cu23 Nanocluster Incorporating Tetrahedral [Cu4]0 Kernel. J. Am. Chem. Soc.142, 5834–5841 (2020). PubMed

Sakthivel, N. A. & Dass, A. Aromatic Thiolate-Protected Series of Gold Nanomolecules and a Contrary Structural Trend in Size Evolution. Acc. Chem. Res.51, 1774–1783 (2018). PubMed

Gell, L., Lehtovaara, L. & Häkkinen, H. Superatomic S2 Silver Clusters Stabilized by a Thiolate–Phosphine Monolayer: Insight into Electronic and Optical Properties of Ag14(SC6H3F2)12(PPh3)8 and Ag16(SC6H3F2)14(DPPE)4. J. Phys. Chem. A118, 8351–8355 (2014). PubMed

Kang, X. & Zhu, M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev.48, 2422–2457 (2019). PubMed

Abbas, M. A., Kamat, P. V. & Bang, J. H. Thiolated Gold Nanoclusters for Light Energy Conversion. ACS Energy Lett3, 840–854 (2018).

Huang, R.-W. et al. Radioluminescent Cu–Au Metal Nanoclusters: Synthesis and Self-Assembly for Efficient X-ray Scintillation and Imaging. J. Am. Chem. Soc.145, 13816–13827 (2023). PubMed

Russier-Antoine, I. et al. Ligand-core NLO-phores: a combined experimental and theoretical approach to the two-photon absorption and two-photon excited emission properties of small-ligated silver nanoclusters. Nanoscale9, 1221–1228 (2017). PubMed

Zhang, C., Si, W.-D., Wang, Z., Tung, C.-H. & Sun, D. Chiral Ligand-Concentration Mediating Asymmetric Transformations of Silver Nanoclusters: NIR-II Circularly Polarized Phosphorescence Lighting. Angew. Chem. Int. Ed.63, e202404545 (2024). PubMed

Zhang, M.-M. et al. Chiral Hydride Cu18 Clusters Transform to Superatomic Cu15Ag4 Clusters: Circularly Polarized Luminescence Lighting. J. Am. Chem. Soc.145, 22310–22316 (2023). PubMed

Qian, S. et al. Engineering luminescent metal nanoclusters for sensing applications. Coord. Chem. Rev.451, 214268 (2022).

Liu, C. et al. Chiral Ag23 nanocluster with open shell electronic structure and helical face-centered cubic framework. Nat. Commun.9, 744 (2018). PubMed PMC

Nguyen, T.-A. D. et al. A Cu25 Nanocluster with Partial Cu(0) Character. J. Am. Chem. Soc.137, 13319–13324 (2015). PubMed

Chiu, T.-H. et al. Homoleptic Platinum/Silver Superatoms Protected by Dithiolates: Linear Assemblies of Two and Three Centered Icosahedra Isolobal to Ne2 and I3. J. Am. Chem. Soc.141, 12957–12961 (2019). PubMed

Bootharaju, M. S. et al. Cd12Ag32(SePh)36: Non-Noble Metal Doped Silver Nanoclusters. J. Am. Chem. Soc.141, 8422–8425 (2019). PubMed

Dhayal, R. S., van Zyl, W. E. & Liu, C. W. Polyhydrido Copper Clusters: Synthetic Advances, Structural Diversity, and Nanocluster-to-Nanoparticle Conversion. Acc. Chem. Res.49, 86–95 (2016). PubMed

Qu, M. et al. Observation of Non-FCC Copper in Alkynyl-Protected Cu53 Nanoclusters. Angew. Chem. Int. Ed.59, 6507–6512 (2020). PubMed

Kang, X., Li, Y., Zhu, M. & Jin, R. Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chem. Soc. Rev.49, 6443–6514 (2020). PubMed

Khatun, E. et al. Confining an Ag10 Core in an Ag12 Shell: A Four-Electron Superatom with Enhanced Photoluminescence upon Crystallization. ACS Nano13, 5753–5759 (2019). PubMed

Nguyen, T.-A. D. et al. Ligand-Exchange-Induced Growth of an Atomically Precise Cu29 Nanocluster from a Smaller Cluster. Chem. Mater.28, 8385–8390 (2016).

Jana, A. et al. A luminescent Cu 4 cluster film grown by electrospray deposition: a nitroaromatic vapour sensor. Nanoscale15, 8141–8147 (2023). PubMed

Wang, Q.-Y. et al. o-Carborane-Based and Atomically Precise Metal Clusters as Hypergolic Materials. J. Am. Chem. Soc.142, 12010–12014 (2020). PubMed

Huang, J.-H., Ji, A.-Q., Wang, Z.-Y., Wang, Q.-Y. & Zang, S.-Q. Boosting 2000-Fold Hypergolic Ignition Rate of Carborane by Substitutes Migration in Metal Clusters. Adv. Sci.11, 2401861 (2024). PubMed PMC

Jana, A. et al. Light-Activated Intercluster Conversion of an Atomically Precise Silver Nanocluster. ACS Nano15, 15781–15793 (2021). PubMed

Wang, J., Wang, Z.-Y., Li, S.-J., Zang, S.-Q. & Mak, T. C. W. Carboranealkynyl-Protected Gold Nanoclusters: Size Conversion and UV/Vis–NIR Optical Properties. Angew. Chem.133, 6024–6029 (2021). PubMed

Wang, J., Xu, F., Wang, Z.-Y., Zang, S.-Q. & Mak, T. C. W. Ligand-Shell Engineering of a Au28 Nanocluster Boosts Electrocatalytic CO2 Reduction. Angew. Chem. Int. Ed.61, e202207492 (2022). PubMed

Jana, A. et al. Carboranethiol-Protected Propeller-Shaped Photoresponsive Silver Nanomolecule. Inorg. Chem.61, 8593–8603 (2022). PubMed

Morin, J.-F., Shirai, Y. & Tour, J. M. En Route to a Motorized Nanocar. Org. Lett.8, 1713–1716 (2006). PubMed

Goronzy, D. P. et al. Influence of Terminal Carboxyl Groups on the Structure and Reactivity of Functionalized m-Carboranethiolate Self-Assembled Monolayers. Chem. Mater.32, 6800–6809 (2020).

Wang, J. et al. Carborane Derivative Conjugated with Gold Nanoclusters for Targeted Cancer Cell Imaging. Biomacromolecules18, 1466–1472 (2017). PubMed

Fisher, S. P. et al. Nonclassical Applications of closo-Carborane Anions: From Main Group Chemistry and Catalysis to Energy Storage. Chem. Rev.119, 8262–8290 (2019). PubMed

Poater, J. et al. Too Persistent to Give Up: Aromaticity in Boron Clusters Survives Radical Structural Changes. J. Am. Chem. Soc.142, 9396–9407 (2020). PubMed

White, K. E. et al. Competing Intermolecular and Molecule–Surface Interactions: Dipole–Dipole-Driven Patterns in Mixed Carborane Self-Assembled Monolayers. Chem. Mater.36, 2085–2095 (2024).

Huang, J.-H., Wang, Z.-Y., Zang, S.-Q. & Mak, T. C. W. Spontaneous Resolution of Chiral Multi-Thiolate-Protected Ag30 Nanoclusters. ACS Cent. Sci.6, 1971–1976 (2020). PubMed PMC

Ghosh, A., Mohammed, O. F. & Bakr, O. M. Atomic-Level Doping of Metal Clusters. Acc. Chem. Res.51, 3094–3103 (2018). PubMed

Kim, M. et al. Dopant-Dependent Electronic Structures Observed for M2Au36(SC6H13)24 Clusters (M = Pt, Pd). J. Phys. Chem. Lett.9, 982–989 (2018). PubMed

Choi, W. et al. Effects of Metal-Doping on Hydrogen Evolution Reaction Catalyzed by MAu24 and M2Au36 Nanoclusters (M = Pt, Pd). ACS Appl. Mater. Interf.10, 44645–44653 (2018). PubMed

Xie, S., Tsunoyama, H., Kurashige, W., Negishi, Y. & Tsukuda, T. Enhancement in Aerobic Alcohol Oxidation Catalysis of Au25 Clusters by Single Pd Atom Doping. ACS Catal2, 1519–1523 (2012).

Chakrahari, K. K. et al. Synthesis of Bimetallic Copper-Rich Nanoclusters Encapsulating a Linear Palladium Dihydride Unit. Angew. Chem. Int. Ed.58, 4943–4947 (2019). PubMed

Bootharaju, M. S. et al. Atom-Precise Heteroatom Core-Tailoring of Nanoclusters for Enhanced Solar Hydrogen Generation. Adv. Mater.35, 2207765 (2023). PubMed

Masuda, S., Sakamoto, K. & Tsukuda, T. Atomically precise Au and Ag nanoclusters doped with a single atom as model alloy catalysts. Nanoscale16, 4514–4528 (2024). PubMed

Chen, S. et al. Assembly of the Thiolated [Au1Ag22(S-Adm)12]3+ Superatom Complex into a Framework Material through Direct Linkage by SbF6− Anions.Angew. Chem.132, 7612–7617 (2020). PubMed

Du, W. et al. Ag50(Dppm)6(SR)30 and Its Homologue AuxAg50–x(Dppm)6(SR)30 Alloy Nanocluster: Seeded Growth, Structure Determination, and Differences in Properties. J. Am. Chem. Soc.139, 1618–1624 (2017). PubMed

Chai, J. et al. Chiral Inversion and Conservation of Clusters: A Case Study of Racemic Ag32Cu12 Nanocluster. Inorg. Chem.60, 9050–9056 (2021). PubMed

Kim, M. et al. Insights into the Metal-Exchange Synthesis of MAg24(SR)18 (M = Ni, Pd, Pt) Nanoclusters. Chem. Mater.32, 10216–10226 (2020).

Khatun, E. & Pradeep, T. New Routes for Multicomponent Atomically Precise Metal Nanoclusters. ACS Omega6, 1–16 (2021). PubMed PMC

Yan, J. et al. Total Structure and Electronic Structure Analysis of Doped Thiolated Silver [MAg24(SR)18]2– (M = Pd, Pt) Clusters. J. Am. Chem. Soc.137, 11880–11883 (2015). PubMed

Yang, Y. et al. An All-Alkynyl Protected 74-Nuclei Silver(I)–Copper(I)-Oxo Nanocluster: Oxo-Induced Hierarchical Bimetal Aggregation and Anisotropic Surface Ligand Orientation. Angew. Chem. Int. Ed.58, 12280–12285 (2019). PubMed

He, L. et al. Kernel Tuning and Nonuniform Influence on Optical and Electrochemical Gaps of Bimetal Nanoclusters. J. Am. Chem. Soc.140, 3487–3490 (2018). PubMed

Hossain, S. et al. Thiolate-Protected Trimetallic Au∼20Ag∼4Pd and Au∼20Ag∼4Pt Alloy Clusters with Controlled Chemical Composition and Metal Positions. J. Phys. Chem. Lett.9, 2590–2594 (2018). PubMed

Han, B.-L. et al. Precise Implantation of an Archimedean Ag@Cu12 Cuboctahedron into a Platonic Cu4Bis(diphenylphosphino)hexane6 Tetrahedron. ACS Nano15, 8733–8741 (2021). PubMed

Xie, X.-Y. et al. The Origin of the Photoluminescence Enhancement of Gold-Doped Silver Nanoclusters: The Importance of Relativistic Effects and Heteronuclear Gold–Silver Bonds. Angew. Chem. Int. Ed.57, 9965–9969 (2018). PubMed

Hirai, H. et al. Doping-Mediated Energy-Level Engineering of M@Au12 Superatoms (M=Pd, Pt, Rh, Ir) for Efficient Photoluminescence and Photocatalysis. Angew. Chem. Int. Ed.61, e202207290 (2022). PubMed

Fakhouri, H. et al. Effects of Single Platinum Atom Doping on Stability and Nonlinear Optical Properties of Ag29 Nanoclusters. J. Phys. Chem. C126, 21094–21100 (2022).

Yuan, S.-F., Guan, Z.-J., Liu, W.-D. & Wang, Q.-M. Solvent-triggered reversible interconversion of all-nitrogen-donor-protected silver nanoclusters and their responsive optical properties. Nat. Commun.10, 4032 (2019). PubMed PMC

Chevrier, D. M. et al. Interactions between Ultrastable Na4Ag44(SR)30 Nanoclusters and Coordinating Solvents: Uncovering the Atomic-Scale Mechanism. ACS Nano14, 8433–8441 (2020). PubMed

Udayabhaskararao, T. & Pradeep, T. New Protocols for the Synthesis of Stable Ag and Au Nanocluster Molecules. J. Phys. Chem. Lett.4, 1553–1564 (2013). PubMed

Manno, R. et al. Continuous Microwave-Assisted Synthesis of Silver Nanoclusters Confined in Mesoporous SBA-15: Application in Alkyne Cyclizations. Chem. Mater.32, 2874–2883 (2020).

Bootharaju, M. S. et al. Reversible Size Control of Silver Nanoclusters via Ligand-Exchange. Chem. Mater.27, 4289–4297 (2015).

Yuan, X. et al. Traveling through the Desalting Column Spontaneously Transforms Thiolated Ag Nanoclusters from Nonluminescent to Highly Luminescent. J. Phys. Chem. Lett.4, 1811–1815 (2013). PubMed

Wickramasinghe, S. et al. M3Ag17(SPh)12 Nanoparticles and Their Structure Prediction. J. Am. Chem. Soc.137, 11550–11553 (2015). PubMed

Conn, B. E. et al. Confirmation of a de novo structure prediction for an atomically precise monolayer-coated silver nanoparticle. Sci. Adv.2, e1601609 (2016). PubMed PMC

Jana, A. et al. Photoconversion of Ag31 to Ag42 Initiated by Solvated Electrons. Chem. Mater.35, 7020–7031 (2023).

Qu, M. et al. Bidentate Phosphine-Assisted Synthesis of an All-Alkynyl-Protected Ag74 Nanocluster. J. Am. Chem. Soc.139, 12346–12349 (2017). PubMed

Dhayal, R. S. et al. Ag21S2P(OiPr)212]+: An Eight-Electron Superatom. Angew. Chem. Int. Ed.54, 3702–3706 (2015). PubMed

Chang, W.-T. et al. Eight-Electron Silver and Mixed Gold/Silver Nanoclusters Stabilized by Selenium Donor Ligands. Angew. Chem. Int. Ed.56, 10178–10182 (2017). PubMed

Dhayal, R. S. et al. [Ag20S2P(OR)212]: A Superatom Complex with a Chiral Metallic Core and High Potential for Isomerism. Chem. – Eur. J22, 9943–9947 (2016). PubMed

Yen, W.-J., Liao, J.-H., Chiu, T.-H., Wen, Y.-S. & Liu, C. W. Homoleptic Silver-Rich Trimetallic M20 Nanocluster. Inorg. Chem.61, 6695–6700 (2022). PubMed

Zhong, Y.-J. et al. Doping effect on the structure and properties of eight-electron silver nanoclusters. J. Chem. Phys.155, 034304 (2021). PubMed

Jana, A. et al. Carborane-thiol protected copper nanoclusters: stimuli-responsive materials with tunable phosphorescence. Chem. Sci.14, 1613–1626 (2023). PubMed PMC

Gam, F. et al. Alloying dichalcogenolate-protected Ag21 eight-electron nanoclusters: a DFT investigation. Nanoscale14, 196–203 (2021). PubMed

Liu, D. et al. [Au14(2-SAdm)9(Dppe)2]+: a gold nanocluster with a crystallization-induced emission enhancement phenomenon. Chem. Commun.60, 1337–1340 (2024). PubMed

Kang, X., Wang, S. & Zhu, M. Observation of a new type of aggregation-induced emission in nanoclusters. Chem. Sci.9, 3062–3068 (2018). PubMed PMC

Kang, X. et al. Rational construction of a library of M29 nanoclusters from monometallic to tetrametallic. Proc. Natl. Acad. Sci.116, 18834–18840 (2019). PubMed PMC

Galassi, R. et al. Cupriphication of gold to sensitize d10–d10 metal–metal bonds and near-unity phosphorescence quantum yields. Proc. Natl. Acad. Sci.114, E5042–E5051 (2017). PubMed PMC

Häkkinen, H., Moseler, M. & Landman, U. Bonding in Cu, Ag, and Au Clusters: Relativistic Effects, Trends, and Surprises. Phys. Rev. Lett.89, 033401 (2002). PubMed

Song, Y. et al. Ultrabright Au@Cu14 nanoclusters: 71.3% phosphorescence quantum yield in non-degassed solution at room temperature. Sci. Adv.7, eabd2091 (2021). PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...