Multicolor photoluminescence of Cu14 clusters modulated using surface ligands

. 2024 Aug 28 ; 15 (34) : 13741-13752. [epub] 20240730

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39211504

Copper nanoclusters exhibit unique structural features and their molecular assembly results in diverse photoluminescence properties. In this study, we present ligand-dependent multicolor luminescence observed in a Cu14 cluster, primarily protected by ortho-carborane-9,12-dithiol (o-CBDT), featuring an octahedral Cu6 inner kernel enveloped by eight isolated copper atoms. The outer layer of the metal kernel consists of six bidentate o-CBDT ligands, in which carborane backbones are connected through μ3-sulphide linkages. The initially prepared Cu14 cluster, solely protected by six o-CBDT ligands, did not crystallize in its native form. However, in the presence of N,N-dimethylformamide (DMF), the cluster crystallized along with six DMF molecules. Single-crystal X-ray diffraction (SCXRD) revealed that the DMF molecules were directly coordinated to six of the eight capping Cu atoms, while oxygen atoms were bound to the two remaining Cu apices in antipodal positions. Efficient tailoring of the cluster surface with DMF shifted its luminescence from yellow to bright red. Luminescence decay profiles showed fluorescence emission for these clusters, originating from the singlet states. Additionally, we synthesized microcrystalline fibers with a one-dimensional assembly of DMF-appended Cu14 clusters and bidentate DPPE linkers. These fibers exhibited bright greenish-yellow phosphorescence emission, originating from the triplet state, indicating the drastic surface tailoring effect of secondary ligands. Theoretical calculations provided insights into the electronic energy levels and associated electronic transitions for these clusters. This work demonstrated dynamic tuning of the emissive excited states of copper nanoclusters through the efficient engineering of ligands.

Zobrazit více v PubMed

Jin R. Zeng C. Zhou M. Chen Y. Chem. Rev. 2016;116:10346–10413. doi: 10.1021/acs.chemrev.5b00703. PubMed DOI

Chakraborty I. Pradeep T. Chem. Rev. 2017;117:8208–8271. doi: 10.1021/acs.chemrev.6b00769. PubMed DOI

Liu X. Astruc D. Coord. Chem. Rev. 2018;359:112–126. doi: 10.1016/j.ccr.2018.01.001. DOI

An Y. Ren Y. Bick M. Dudek A. Hong-Wang Waworuntu E. Tang J. Chen J. Chang B. Biosens. Bioelectron. 2020;154:112078. doi: 10.1016/j.bios.2020.112078. PubMed DOI

Ao H. Feng H. Pan S. Bao Z. Li Z. Chen J. Qian Z. ACS Appl. Nano Mater. 2018;1:5673–5681. doi: 10.1021/acsanm.8b01286. DOI

Qiu J. Liu X. Light: Sci. Appl. 2023;12:12–14. doi: 10.1038/s41377-022-01053-7. PubMed DOI PMC

Kirakci K. Fejfarová K. Martinčík J. Nikl M. Lang K. Inorg. Chem. 2017;56:4609–4614. doi: 10.1021/acs.inorgchem.7b00240. PubMed DOI

Shahsavari S. Hadian-Ghazvini S. Saboor F. H. Oskouie I. M. Hasany M. Simchi A. Rogach A. L. Mater. Chem. Front. 2019;3:2326–2356. doi: 10.1039/C9QM00492K. DOI

Jana A. Spoorthi B. K. Nair A. S. Nagar A. Pathak B. Base T. Pradeep T. Nanoscale. 2023;15:8141–8147. doi: 10.1039/D3NR00416C. PubMed DOI

Ai L. Jiang W. Liu Z. Liu J. Gao Y. Zou H. Wu Z. Wang Z. Liu Y. Zhang H. Yang B. Nanoscale. 2017;9:12618–12627. doi: 10.1039/C7NR03985A. PubMed DOI

Smolentsev G. Milne C. J. Guda A. Haldrup K. Szlachetko J. Azzaroli N. Cirelli C. Knopp G. Bohinc R. Menzi S. Pamfilidis G. Gashi D. Beck M. Mozzanica A. James D. Bacellar C. Mancini G. F. Tereshchenko A. Shapovalov V. Kwiatek W. M. Czapla-Masztafiak J. Cannizzo A. Gazzetto M. Sander M. Levantino M. Kabanova V. Rychagova E. Ketkov S. Olaru M. Beckmann J. Vogt M. Nat. Commun. 2020;11:1–9. doi: 10.1038/s41467-019-13993-7. PubMed DOI PMC

Sagadevan A. Ghosh A. Maity P. Mohammed O. F. Bakr O. M. Rueping M. J. Am. Chem. Soc. 2022;144:12052–12061. doi: 10.1021/jacs.2c02218. PubMed DOI

Huitorel B. El Moll H. Utrera-Melero R. Cordier M. Fargues A. Garcia A. Massuyeau F. Martineau-Corcos C. Fayon F. Rakhmatullin A. Kahlal S. Saillard J. Y. Gacoin T. Perruchas S. Inorg. Chem. 2018;57:4328–4339. doi: 10.1021/acs.inorgchem.7b03160. PubMed DOI

Chakrahari K. K. Liao J.-H. Kahlal S. Liu Y.-C. Chiang M.-H. Saillard J.-Y. Liu C. W. Angew. Chem., Int. Ed. 2016;55:14704–14708. doi: 10.1002/anie.201608609. PubMed DOI

Ford P. C. Cariati E. Bourassa J. Chem. Rev. 1999;99:3625–3647. doi: 10.1021/cr960109i. PubMed DOI

Huitorel B. El Moll H. Cordier M. Fargues A. Garcia A. Massuyeau F. Martineau-Corcos C. Gacoin T. Perruchas S. Inorg. Chem. 2017;56:12379–12388. doi: 10.1021/acs.inorgchem.7b01870. PubMed DOI

Wu H. Anumula R. Andrew G. N. Luo Z. Nanoscale. 2023;15:4137–4142. doi: 10.1039/D2NR07223H. PubMed DOI

Sun P. P. Han B. L. Li H. G. Zhang C. K. Xin X. Dou J. M. Gao Z. Y. Sun D. Angew. Chem., Int. Ed. 2022;61:1–7. PubMed

Liu X. Huang K. L. Inorg. Chem. 2009;48:8653–8655. doi: 10.1021/ic900611u. PubMed DOI

Lin X. Tang J. Zhu C. Wang L. Yang Y. Wu R. Fan H. Liu C. Huang J. Chem. Sci. 2023;14:994–1002. doi: 10.1039/D2SC06099J. PubMed DOI PMC

Huang J. H. Liu L. Y. Wang Z. Y. Zang S. Q. Mak T. C. W. ACS Nano. 2022;16:18789–18794. doi: 10.1021/acsnano.2c07521. PubMed DOI

Nematulloev S. Huang R. W. Yin J. Shkurenko A. Dong C. Ghosh A. Alamer B. Naphade R. Hedhili M. N. Maity P. Eddaoudi M. Mohammed O. F. Bakr O. M. Small. 2021;17:1–6. doi: 10.1002/smll.202006839. PubMed DOI

Cook A. W. Jones Z. R. Wu G. Scott S. L. Hayton T. W. J. Am. Chem. Soc. 2018;140:394–400. doi: 10.1021/jacs.7b10960. PubMed DOI

Nguyen T.-A. D. Jones Z. R. Goldsmith B. R. Buratto W. R. Wu G. Scott S. L. Hayton T. W. J. Am. Chem. Soc. 2015;137:13319–13324. doi: 10.1021/jacs.5b07574. PubMed DOI

Dong C. Huang R. W. Chen C. Chen J. Nematulloev S. Guo X. Ghosh A. Alamer B. Hedhili M. N. Isimjan T. T. Han Y. Mohammed O. F. Bakr O. M. J. Am. Chem. Soc. 2021;143:11026–11035. doi: 10.1021/jacs.1c03402. PubMed DOI

Xu C. Jin Y. Fang H. Zheng H. Carozza J. C. Pan Y. Wei P.-J. Zhang Z. Wei Z. Zhou Z. Han H. J. Am. Chem. Soc. 2023;145:25673–25685. doi: 10.1021/jacs.3c08549. PubMed DOI

Yuan P. Chen R. Zhang X. Chen F. Yan J. Sun C. Ou D. Peng J. Lin S. Tang Z. Teo B. K. Zheng L. S. Zheng N. Angew. Chem., Int. Ed. 2019;58:835–839. doi: 10.1002/anie.201812236. PubMed DOI

Ghosh A. Huang R. W. Alamer B. Abou-Hamad E. Hedhili M. N. Mohammed O. F. Bakr O. M. ACS Mater. Lett. 2019;1:297–302. doi: 10.1021/acsmaterialslett.9b00122. DOI

Huang R. W. Yin J. Dong C. Ghosh A. Alhilaly M. J. Dong X. Hedhili M. N. Abou-Hamad E. Alamer B. Nematulloev S. Han Y. Mohammed O. F. Bakr O. M. J. Am. Chem. Soc. 2020;142:8696–8705. doi: 10.1021/jacs.0c00541. PubMed DOI

Luo Z. Castleman A. W. Khanna S. N. Chem. Rev. 2016;116:14456–14492. doi: 10.1021/acs.chemrev.6b00230. PubMed DOI

Yuan S. F. Luyang H. W. Lei Z. Wan X. K. Li J. J. Wang Q. M. Chem. Commun. 2021;57:4315–4318. doi: 10.1039/D1CC01161H. PubMed DOI

Ke F. Song Y. Li H. Zhou C. Du Y. Zhu M. Dalton Trans. 2019;48:13921–13924. doi: 10.1039/C9DT02908G. PubMed DOI

Wu Z. Liu J. Gao Y. Liu H. Li T. Zou H. Wang Z. Zhang K. Wang Y. Zhang H. Yang B. J. Am. Chem. Soc. 2015;137:12906–12913. doi: 10.1021/jacs.5b06550. PubMed DOI

Ma X. H. Li J. Luo P. Hu J. H. Han Z. Dong X. Y. Xie G. Zang S. Q. Nat. Commun. 2023;14:1–11. PubMed PMC

Liu C. Y. Yuan S. F. Wang S. Guan Z. J. en Jiang D. Wang Q. M. Nat. Commun. 2022;13:1–8. PubMed PMC

Zhang L. M. Mak T. C. W. J. Am. Chem. Soc. 2016;138:2909–2912. doi: 10.1021/jacs.5b12103. PubMed DOI

Xu C. Yi X. Y. Duan T. K. Chen Q. Zhang Q. F. Polyhedron. 2011;30:2637–2643. doi: 10.1016/j.poly.2011.06.023. DOI

Fuhr O. Dehnen S. Fenske D. Chem. Soc. Rev. 2013;42:1871–1906. doi: 10.1039/C2CS35252D. PubMed DOI

Ishii W. Okayasu Y. Kobayashi Y. Tanaka R. Katao S. Nishikawa Y. Kawai T. Nakashima T. J. Am. Chem. Soc. 2023;145:11236–11244. doi: 10.1021/jacs.3c01259. PubMed DOI

Zeng Y. Havenridge S. Gharib M. Baksi A. Weerawardene K. L. D. M. Ziefuß A. R. Strelow C. Rehbock C. Mews A. Barcikowski S. Kappes M. M. Parak W. J. Aikens C. M. Chakraborty I. J. Am. Chem. Soc. 2021;143:9405–9414. doi: 10.1021/jacs.1c01799. PubMed DOI

Khatun E. Ghosh A. Chakraborty P. Singh P. Bodiuzzaman M. Paramasivam G. Nataranjan G. Ghosh J. Pal S. K. Pradeep T. Nanoscale. 2018;10:20033–20042. doi: 10.1039/C8NR05989F. PubMed DOI

Kang X. Wei X. Xiang P. Tian X. Zuo Z. Song F. Wang S. Zhu M. Chem. Sci. 2020;11:4808–4816. doi: 10.1039/D0SC01055C. PubMed DOI PMC

Jana A. Jash M. Dar W. A. Roy J. Chakraborty P. Paramasivam G. Lebedkin S. Kirakci K. Manna S. Antharjanam S. Machacek J. Kucerakova M. Ghosh S. Lang K. Kappes M. M. Base T. Pradeep T. Chem. Sci. 2023;14:1613–1626. doi: 10.1039/D2SC06578A. PubMed DOI PMC

Li Y. L. Wang J. Luo P. Ma X. H. Dong X. Y. Wang Z. Y. Du C. X. Zang S. Q. Mak T. C. W. Adv. Sci. 2019;6:6–11. PubMed PMC

Li Y. Wang Z. Ma X. Luo P. Du C. Zang S. Nanoscale. 2019;11:5151–5157. doi: 10.1039/C9NR01058K. PubMed DOI

Ebina A. Hossain S. Horihata H. Ozaki S. Kato S. Kawawaki T. Negishi Y. Nanomaterials. 2020;10:1–48. doi: 10.3390/nano10061105. PubMed DOI PMC

Huang R. W. Wei Y. S. Dong X. Y. Wu X. H. Du C. X. Zang S. Q. Mak T. C. W. Nat. Chem. 2017;9:689–697. doi: 10.1038/nchem.2718. PubMed DOI

Alhilaly M. J. Huang R. W. Naphade R. Alamer B. Hedhili M. N. Emwas A. H. Maity P. Yin J. Shkurenko A. Mohammed O. F. Eddaoudi M. Bakr O. M. J. Am. Chem. Soc. 2019;141:9585–9592. doi: 10.1021/jacs.9b02486. PubMed DOI

Dong X. Y. Huang H. L. Wang J. Y. Li H. Y. Zang S. Q. Chem. Mater. 2018;30:2160–2167. doi: 10.1021/acs.chemmater.8b00611. DOI

Dar W. A. Jana A. Sugi K. S. Paramasivam G. Bodiuzzaman M. Khatun E. Som A. Mahendranath A. Chakraborty A. Pradeep T. Chem. Mater. 2022;34:4703–4711. doi: 10.1021/acs.chemmater.2c00647. DOI

Dong X. Y. Si Y. Sen Yang J. Zhang C. Han Z. Luo P. Wang Z. Y. Zang S. Q. Mak T. C. W. Nat. Commun. 2020;11:1–9. doi: 10.1038/s41467-019-13993-7. PubMed DOI PMC

Das A. K. Biswas S. Kayal A. Reber A. C. Bhandary S. Chopra D. Mitra J. Khanna S. N. Mandal S. Nano Lett. 2023;23:8923–8931. doi: 10.1021/acs.nanolett.3c02269. PubMed DOI

Nakatani R. Biswas S. Irie T. Sakai J. Hirayama D. Kawawaki T. Niihori Y. Das S. Negishi Y. Nanoscale. 2023;15:16299–16306. doi: 10.1039/D3NR03343K. PubMed DOI

Zhao M. Huang S. Fu Q. Li W. Guo R. Yao Q. Wang F. Cui P. Tung C.-H. Sun D. Angew. Chem., Int. Ed. 2020;59:20031–20036. doi: 10.1002/anie.202007122. PubMed DOI

Wu X. H. Luo P. Wei Z. Li Y. Y. Huang R. W. Dong X. Y. Li K. Zang S. Q. Tang B. Z. Adv. Sci. 2018;6:1–7. PubMed PMC

Jana A. Jash M. Poonia A. K. Paramasivam G. Islam M. R. Chakraborty P. Antharjanam S. Machacek J. Ghosh S. Adarsh K. N. V. D. Base T. Pradeep T. ACS Nano. 2021;15:15781–15793. doi: 10.1021/acsnano.1c02602. PubMed DOI

Jana A. Unnikrishnan P. M. Poonia A. K. Roy J. Jash M. Paramasivam G. Machacek J. Adarsh K. N. V. D. Base T. Pradeep T. Inorg. Chem. 2022;61:8593–8603. doi: 10.1021/acs.inorgchem.2c00186. PubMed DOI

Deng G. Teo B. K. Zheng N. J. Am. Chem. Soc. 2021;143:10214–10220. doi: 10.1021/jacs.1c03251. PubMed DOI

Liang X. Q. Li Y. Z. Wang Z. Zhang S. S. Liu Y. C. Cao Z. Z. Feng L. Gao Z. Y. Xue Q. W. Tung C. H. Sun D. Nat. Commun. 2021;12:1–10. doi: 10.1038/s41467-020-20314-w. PubMed DOI PMC

Drougkas E. Bache M. Liang X. von Solms N. Kontogeorgis G. M. J. Mol. Liq. 2023;391:123279. doi: 10.1016/j.molliq.2023.123279. DOI

Das A. K. Biswas S. Wani V. S. Nair A. S. Pathak B. Mandal S. Chem. Sci. 2022;13:7616–7625. doi: 10.1039/D2SC02544B. PubMed DOI PMC

Wei W. Lu Y. Chen W. Chen S. J. Am. Chem. Soc. 2011;133:2060–2063. doi: 10.1021/ja109303z. PubMed DOI

Shima M. Tsutsumi K. Tanaka A. Onodera H. Tanemura M. Surf. Interface Anal. 2018;50:1187–1190. doi: 10.1002/sia.6414. DOI

Banholzer W. F. Burrell M. C. Surf. Sci. 1986;176:125–133. doi: 10.1016/0039-6028(86)90167-6. DOI

Shi Y. Ma J. Feng A. Wang Z. Rogach A. R. Aggregate. 2021;2:1–15. doi: 10.1002/agt2.40. DOI

Kolay S. Maity S. Bain D. Chakraborty S. Patra A. Nanoscale Adv. 2021;3:5570–5575. doi: 10.1039/D1NA00446H. PubMed DOI PMC

Benito Q. Le Goff X. F. Maron S. Fargues A. Garcia A. Martineau C. Taulelle F. Kahlal S. Gacoin T. Boilot J. P. Perruchas S. J. Am. Chem. Soc. 2014;136:11311–11320. doi: 10.1021/ja500247b. PubMed DOI

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., et al., Gaussian 09, Revision B.01, Gaussian Inc., Wallingford, CT, 2009

Agrachev M. Fei W. Antonello S. Bonacchi S. Dainese T. Zoleo A. Ruzzi M. Maran F. Chem. Sci. 2020;11:3427–3440. doi: 10.1039/D0SC00520G. PubMed DOI PMC

Zhu C. Xin J. Li J. Li H. Kang X. Pei Y. Zhu M. Angew. Chem., Int. Ed. 2022;61:1–6. PubMed

Benial A. M. F. Ramakrishnan V. Murugesan R. Spectrochim. Acta, Part A. 2002;58:1703–1712. doi: 10.1016/S1386-1425(01)00622-9. PubMed DOI

Wang Z. Wang M. Li Y. Luo P. Jia T. Huang R. Zang S. Mak T. C. W. J. Am. Chem. Soc. 2018;140:1069–1076. doi: 10.1021/jacs.7b11338. PubMed DOI

Plešek J. Hermanek S. Collect. Czech. Chem. Commun. 1981;46:687–692. doi: 10.1135/cccc19810687. DOI

Plešek J. Janoušek Z. Hermanek S. Collect. Czech. Chem. Commun. 1978;43:1332–1338. doi: 10.1135/cccc19781332. DOI

Li J. Ma H. Z. Reid G. E. Edwards A. J. Hong Y. White J. M. Mulder R. J. O'Hair R. A. J. Chem.–Eur. J. 2018;24:2070–2074. doi: 10.1002/chem.201705448. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...