Multicolor photoluminescence of Cu14 clusters modulated using surface ligands
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39211504
PubMed Central
PMC11352640
DOI
10.1039/d4sc01566e
PII: d4sc01566e
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Copper nanoclusters exhibit unique structural features and their molecular assembly results in diverse photoluminescence properties. In this study, we present ligand-dependent multicolor luminescence observed in a Cu14 cluster, primarily protected by ortho-carborane-9,12-dithiol (o-CBDT), featuring an octahedral Cu6 inner kernel enveloped by eight isolated copper atoms. The outer layer of the metal kernel consists of six bidentate o-CBDT ligands, in which carborane backbones are connected through μ3-sulphide linkages. The initially prepared Cu14 cluster, solely protected by six o-CBDT ligands, did not crystallize in its native form. However, in the presence of N,N-dimethylformamide (DMF), the cluster crystallized along with six DMF molecules. Single-crystal X-ray diffraction (SCXRD) revealed that the DMF molecules were directly coordinated to six of the eight capping Cu atoms, while oxygen atoms were bound to the two remaining Cu apices in antipodal positions. Efficient tailoring of the cluster surface with DMF shifted its luminescence from yellow to bright red. Luminescence decay profiles showed fluorescence emission for these clusters, originating from the singlet states. Additionally, we synthesized microcrystalline fibers with a one-dimensional assembly of DMF-appended Cu14 clusters and bidentate DPPE linkers. These fibers exhibited bright greenish-yellow phosphorescence emission, originating from the triplet state, indicating the drastic surface tailoring effect of secondary ligands. Theoretical calculations provided insights into the electronic energy levels and associated electronic transitions for these clusters. This work demonstrated dynamic tuning of the emissive excited states of copper nanoclusters through the efficient engineering of ligands.
Zobrazit více v PubMed
Jin R. Zeng C. Zhou M. Chen Y. Chem. Rev. 2016;116:10346–10413. doi: 10.1021/acs.chemrev.5b00703. PubMed DOI
Chakraborty I. Pradeep T. Chem. Rev. 2017;117:8208–8271. doi: 10.1021/acs.chemrev.6b00769. PubMed DOI
Liu X. Astruc D. Coord. Chem. Rev. 2018;359:112–126. doi: 10.1016/j.ccr.2018.01.001. DOI
An Y. Ren Y. Bick M. Dudek A. Hong-Wang Waworuntu E. Tang J. Chen J. Chang B. Biosens. Bioelectron. 2020;154:112078. doi: 10.1016/j.bios.2020.112078. PubMed DOI
Ao H. Feng H. Pan S. Bao Z. Li Z. Chen J. Qian Z. ACS Appl. Nano Mater. 2018;1:5673–5681. doi: 10.1021/acsanm.8b01286. DOI
Qiu J. Liu X. Light: Sci. Appl. 2023;12:12–14. doi: 10.1038/s41377-022-01053-7. PubMed DOI PMC
Kirakci K. Fejfarová K. Martinčík J. Nikl M. Lang K. Inorg. Chem. 2017;56:4609–4614. doi: 10.1021/acs.inorgchem.7b00240. PubMed DOI
Shahsavari S. Hadian-Ghazvini S. Saboor F. H. Oskouie I. M. Hasany M. Simchi A. Rogach A. L. Mater. Chem. Front. 2019;3:2326–2356. doi: 10.1039/C9QM00492K. DOI
Jana A. Spoorthi B. K. Nair A. S. Nagar A. Pathak B. Base T. Pradeep T. Nanoscale. 2023;15:8141–8147. doi: 10.1039/D3NR00416C. PubMed DOI
Ai L. Jiang W. Liu Z. Liu J. Gao Y. Zou H. Wu Z. Wang Z. Liu Y. Zhang H. Yang B. Nanoscale. 2017;9:12618–12627. doi: 10.1039/C7NR03985A. PubMed DOI
Smolentsev G. Milne C. J. Guda A. Haldrup K. Szlachetko J. Azzaroli N. Cirelli C. Knopp G. Bohinc R. Menzi S. Pamfilidis G. Gashi D. Beck M. Mozzanica A. James D. Bacellar C. Mancini G. F. Tereshchenko A. Shapovalov V. Kwiatek W. M. Czapla-Masztafiak J. Cannizzo A. Gazzetto M. Sander M. Levantino M. Kabanova V. Rychagova E. Ketkov S. Olaru M. Beckmann J. Vogt M. Nat. Commun. 2020;11:1–9. doi: 10.1038/s41467-019-13993-7. PubMed DOI PMC
Sagadevan A. Ghosh A. Maity P. Mohammed O. F. Bakr O. M. Rueping M. J. Am. Chem. Soc. 2022;144:12052–12061. doi: 10.1021/jacs.2c02218. PubMed DOI
Huitorel B. El Moll H. Utrera-Melero R. Cordier M. Fargues A. Garcia A. Massuyeau F. Martineau-Corcos C. Fayon F. Rakhmatullin A. Kahlal S. Saillard J. Y. Gacoin T. Perruchas S. Inorg. Chem. 2018;57:4328–4339. doi: 10.1021/acs.inorgchem.7b03160. PubMed DOI
Chakrahari K. K. Liao J.-H. Kahlal S. Liu Y.-C. Chiang M.-H. Saillard J.-Y. Liu C. W. Angew. Chem., Int. Ed. 2016;55:14704–14708. doi: 10.1002/anie.201608609. PubMed DOI
Ford P. C. Cariati E. Bourassa J. Chem. Rev. 1999;99:3625–3647. doi: 10.1021/cr960109i. PubMed DOI
Huitorel B. El Moll H. Cordier M. Fargues A. Garcia A. Massuyeau F. Martineau-Corcos C. Gacoin T. Perruchas S. Inorg. Chem. 2017;56:12379–12388. doi: 10.1021/acs.inorgchem.7b01870. PubMed DOI
Wu H. Anumula R. Andrew G. N. Luo Z. Nanoscale. 2023;15:4137–4142. doi: 10.1039/D2NR07223H. PubMed DOI
Sun P. P. Han B. L. Li H. G. Zhang C. K. Xin X. Dou J. M. Gao Z. Y. Sun D. Angew. Chem., Int. Ed. 2022;61:1–7. PubMed
Liu X. Huang K. L. Inorg. Chem. 2009;48:8653–8655. doi: 10.1021/ic900611u. PubMed DOI
Lin X. Tang J. Zhu C. Wang L. Yang Y. Wu R. Fan H. Liu C. Huang J. Chem. Sci. 2023;14:994–1002. doi: 10.1039/D2SC06099J. PubMed DOI PMC
Huang J. H. Liu L. Y. Wang Z. Y. Zang S. Q. Mak T. C. W. ACS Nano. 2022;16:18789–18794. doi: 10.1021/acsnano.2c07521. PubMed DOI
Nematulloev S. Huang R. W. Yin J. Shkurenko A. Dong C. Ghosh A. Alamer B. Naphade R. Hedhili M. N. Maity P. Eddaoudi M. Mohammed O. F. Bakr O. M. Small. 2021;17:1–6. doi: 10.1002/smll.202006839. PubMed DOI
Cook A. W. Jones Z. R. Wu G. Scott S. L. Hayton T. W. J. Am. Chem. Soc. 2018;140:394–400. doi: 10.1021/jacs.7b10960. PubMed DOI
Nguyen T.-A. D. Jones Z. R. Goldsmith B. R. Buratto W. R. Wu G. Scott S. L. Hayton T. W. J. Am. Chem. Soc. 2015;137:13319–13324. doi: 10.1021/jacs.5b07574. PubMed DOI
Dong C. Huang R. W. Chen C. Chen J. Nematulloev S. Guo X. Ghosh A. Alamer B. Hedhili M. N. Isimjan T. T. Han Y. Mohammed O. F. Bakr O. M. J. Am. Chem. Soc. 2021;143:11026–11035. doi: 10.1021/jacs.1c03402. PubMed DOI
Xu C. Jin Y. Fang H. Zheng H. Carozza J. C. Pan Y. Wei P.-J. Zhang Z. Wei Z. Zhou Z. Han H. J. Am. Chem. Soc. 2023;145:25673–25685. doi: 10.1021/jacs.3c08549. PubMed DOI
Yuan P. Chen R. Zhang X. Chen F. Yan J. Sun C. Ou D. Peng J. Lin S. Tang Z. Teo B. K. Zheng L. S. Zheng N. Angew. Chem., Int. Ed. 2019;58:835–839. doi: 10.1002/anie.201812236. PubMed DOI
Ghosh A. Huang R. W. Alamer B. Abou-Hamad E. Hedhili M. N. Mohammed O. F. Bakr O. M. ACS Mater. Lett. 2019;1:297–302. doi: 10.1021/acsmaterialslett.9b00122. DOI
Huang R. W. Yin J. Dong C. Ghosh A. Alhilaly M. J. Dong X. Hedhili M. N. Abou-Hamad E. Alamer B. Nematulloev S. Han Y. Mohammed O. F. Bakr O. M. J. Am. Chem. Soc. 2020;142:8696–8705. doi: 10.1021/jacs.0c00541. PubMed DOI
Luo Z. Castleman A. W. Khanna S. N. Chem. Rev. 2016;116:14456–14492. doi: 10.1021/acs.chemrev.6b00230. PubMed DOI
Yuan S. F. Luyang H. W. Lei Z. Wan X. K. Li J. J. Wang Q. M. Chem. Commun. 2021;57:4315–4318. doi: 10.1039/D1CC01161H. PubMed DOI
Ke F. Song Y. Li H. Zhou C. Du Y. Zhu M. Dalton Trans. 2019;48:13921–13924. doi: 10.1039/C9DT02908G. PubMed DOI
Wu Z. Liu J. Gao Y. Liu H. Li T. Zou H. Wang Z. Zhang K. Wang Y. Zhang H. Yang B. J. Am. Chem. Soc. 2015;137:12906–12913. doi: 10.1021/jacs.5b06550. PubMed DOI
Ma X. H. Li J. Luo P. Hu J. H. Han Z. Dong X. Y. Xie G. Zang S. Q. Nat. Commun. 2023;14:1–11. PubMed PMC
Liu C. Y. Yuan S. F. Wang S. Guan Z. J. en Jiang D. Wang Q. M. Nat. Commun. 2022;13:1–8. PubMed PMC
Zhang L. M. Mak T. C. W. J. Am. Chem. Soc. 2016;138:2909–2912. doi: 10.1021/jacs.5b12103. PubMed DOI
Xu C. Yi X. Y. Duan T. K. Chen Q. Zhang Q. F. Polyhedron. 2011;30:2637–2643. doi: 10.1016/j.poly.2011.06.023. DOI
Fuhr O. Dehnen S. Fenske D. Chem. Soc. Rev. 2013;42:1871–1906. doi: 10.1039/C2CS35252D. PubMed DOI
Ishii W. Okayasu Y. Kobayashi Y. Tanaka R. Katao S. Nishikawa Y. Kawai T. Nakashima T. J. Am. Chem. Soc. 2023;145:11236–11244. doi: 10.1021/jacs.3c01259. PubMed DOI
Zeng Y. Havenridge S. Gharib M. Baksi A. Weerawardene K. L. D. M. Ziefuß A. R. Strelow C. Rehbock C. Mews A. Barcikowski S. Kappes M. M. Parak W. J. Aikens C. M. Chakraborty I. J. Am. Chem. Soc. 2021;143:9405–9414. doi: 10.1021/jacs.1c01799. PubMed DOI
Khatun E. Ghosh A. Chakraborty P. Singh P. Bodiuzzaman M. Paramasivam G. Nataranjan G. Ghosh J. Pal S. K. Pradeep T. Nanoscale. 2018;10:20033–20042. doi: 10.1039/C8NR05989F. PubMed DOI
Kang X. Wei X. Xiang P. Tian X. Zuo Z. Song F. Wang S. Zhu M. Chem. Sci. 2020;11:4808–4816. doi: 10.1039/D0SC01055C. PubMed DOI PMC
Jana A. Jash M. Dar W. A. Roy J. Chakraborty P. Paramasivam G. Lebedkin S. Kirakci K. Manna S. Antharjanam S. Machacek J. Kucerakova M. Ghosh S. Lang K. Kappes M. M. Base T. Pradeep T. Chem. Sci. 2023;14:1613–1626. doi: 10.1039/D2SC06578A. PubMed DOI PMC
Li Y. L. Wang J. Luo P. Ma X. H. Dong X. Y. Wang Z. Y. Du C. X. Zang S. Q. Mak T. C. W. Adv. Sci. 2019;6:6–11. PubMed PMC
Li Y. Wang Z. Ma X. Luo P. Du C. Zang S. Nanoscale. 2019;11:5151–5157. doi: 10.1039/C9NR01058K. PubMed DOI
Ebina A. Hossain S. Horihata H. Ozaki S. Kato S. Kawawaki T. Negishi Y. Nanomaterials. 2020;10:1–48. doi: 10.3390/nano10061105. PubMed DOI PMC
Huang R. W. Wei Y. S. Dong X. Y. Wu X. H. Du C. X. Zang S. Q. Mak T. C. W. Nat. Chem. 2017;9:689–697. doi: 10.1038/nchem.2718. PubMed DOI
Alhilaly M. J. Huang R. W. Naphade R. Alamer B. Hedhili M. N. Emwas A. H. Maity P. Yin J. Shkurenko A. Mohammed O. F. Eddaoudi M. Bakr O. M. J. Am. Chem. Soc. 2019;141:9585–9592. doi: 10.1021/jacs.9b02486. PubMed DOI
Dong X. Y. Huang H. L. Wang J. Y. Li H. Y. Zang S. Q. Chem. Mater. 2018;30:2160–2167. doi: 10.1021/acs.chemmater.8b00611. DOI
Dar W. A. Jana A. Sugi K. S. Paramasivam G. Bodiuzzaman M. Khatun E. Som A. Mahendranath A. Chakraborty A. Pradeep T. Chem. Mater. 2022;34:4703–4711. doi: 10.1021/acs.chemmater.2c00647. DOI
Dong X. Y. Si Y. Sen Yang J. Zhang C. Han Z. Luo P. Wang Z. Y. Zang S. Q. Mak T. C. W. Nat. Commun. 2020;11:1–9. doi: 10.1038/s41467-019-13993-7. PubMed DOI PMC
Das A. K. Biswas S. Kayal A. Reber A. C. Bhandary S. Chopra D. Mitra J. Khanna S. N. Mandal S. Nano Lett. 2023;23:8923–8931. doi: 10.1021/acs.nanolett.3c02269. PubMed DOI
Nakatani R. Biswas S. Irie T. Sakai J. Hirayama D. Kawawaki T. Niihori Y. Das S. Negishi Y. Nanoscale. 2023;15:16299–16306. doi: 10.1039/D3NR03343K. PubMed DOI
Zhao M. Huang S. Fu Q. Li W. Guo R. Yao Q. Wang F. Cui P. Tung C.-H. Sun D. Angew. Chem., Int. Ed. 2020;59:20031–20036. doi: 10.1002/anie.202007122. PubMed DOI
Wu X. H. Luo P. Wei Z. Li Y. Y. Huang R. W. Dong X. Y. Li K. Zang S. Q. Tang B. Z. Adv. Sci. 2018;6:1–7. PubMed PMC
Jana A. Jash M. Poonia A. K. Paramasivam G. Islam M. R. Chakraborty P. Antharjanam S. Machacek J. Ghosh S. Adarsh K. N. V. D. Base T. Pradeep T. ACS Nano. 2021;15:15781–15793. doi: 10.1021/acsnano.1c02602. PubMed DOI
Jana A. Unnikrishnan P. M. Poonia A. K. Roy J. Jash M. Paramasivam G. Machacek J. Adarsh K. N. V. D. Base T. Pradeep T. Inorg. Chem. 2022;61:8593–8603. doi: 10.1021/acs.inorgchem.2c00186. PubMed DOI
Deng G. Teo B. K. Zheng N. J. Am. Chem. Soc. 2021;143:10214–10220. doi: 10.1021/jacs.1c03251. PubMed DOI
Liang X. Q. Li Y. Z. Wang Z. Zhang S. S. Liu Y. C. Cao Z. Z. Feng L. Gao Z. Y. Xue Q. W. Tung C. H. Sun D. Nat. Commun. 2021;12:1–10. doi: 10.1038/s41467-020-20314-w. PubMed DOI PMC
Drougkas E. Bache M. Liang X. von Solms N. Kontogeorgis G. M. J. Mol. Liq. 2023;391:123279. doi: 10.1016/j.molliq.2023.123279. DOI
Das A. K. Biswas S. Wani V. S. Nair A. S. Pathak B. Mandal S. Chem. Sci. 2022;13:7616–7625. doi: 10.1039/D2SC02544B. PubMed DOI PMC
Wei W. Lu Y. Chen W. Chen S. J. Am. Chem. Soc. 2011;133:2060–2063. doi: 10.1021/ja109303z. PubMed DOI
Shima M. Tsutsumi K. Tanaka A. Onodera H. Tanemura M. Surf. Interface Anal. 2018;50:1187–1190. doi: 10.1002/sia.6414. DOI
Banholzer W. F. Burrell M. C. Surf. Sci. 1986;176:125–133. doi: 10.1016/0039-6028(86)90167-6. DOI
Shi Y. Ma J. Feng A. Wang Z. Rogach A. R. Aggregate. 2021;2:1–15. doi: 10.1002/agt2.40. DOI
Kolay S. Maity S. Bain D. Chakraborty S. Patra A. Nanoscale Adv. 2021;3:5570–5575. doi: 10.1039/D1NA00446H. PubMed DOI PMC
Benito Q. Le Goff X. F. Maron S. Fargues A. Garcia A. Martineau C. Taulelle F. Kahlal S. Gacoin T. Boilot J. P. Perruchas S. J. Am. Chem. Soc. 2014;136:11311–11320. doi: 10.1021/ja500247b. PubMed DOI
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., et al., Gaussian 09, Revision B.01, Gaussian Inc., Wallingford, CT, 2009
Agrachev M. Fei W. Antonello S. Bonacchi S. Dainese T. Zoleo A. Ruzzi M. Maran F. Chem. Sci. 2020;11:3427–3440. doi: 10.1039/D0SC00520G. PubMed DOI PMC
Zhu C. Xin J. Li J. Li H. Kang X. Pei Y. Zhu M. Angew. Chem., Int. Ed. 2022;61:1–6. PubMed
Benial A. M. F. Ramakrishnan V. Murugesan R. Spectrochim. Acta, Part A. 2002;58:1703–1712. doi: 10.1016/S1386-1425(01)00622-9. PubMed DOI
Wang Z. Wang M. Li Y. Luo P. Jia T. Huang R. Zang S. Mak T. C. W. J. Am. Chem. Soc. 2018;140:1069–1076. doi: 10.1021/jacs.7b11338. PubMed DOI
Plešek J. Hermanek S. Collect. Czech. Chem. Commun. 1981;46:687–692. doi: 10.1135/cccc19810687. DOI
Plešek J. Janoušek Z. Hermanek S. Collect. Czech. Chem. Commun. 1978;43:1332–1338. doi: 10.1135/cccc19781332. DOI
Li J. Ma H. Z. Reid G. E. Edwards A. J. Hong Y. White J. M. Mulder R. J. O'Hair R. A. J. Chem.–Eur. J. 2018;24:2070–2074. doi: 10.1002/chem.201705448. PubMed DOI