• This record comes from PubMed

Carborane Nanomembranes

. 2025 Mar 04 ; 19 (8) : 8131-8141. [epub] 20250219

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

We report on the fabrication of a boron-based two-dimensional (2D) material via electron irradiation-induced cross-linking of carborane self-assembled monolayers (SAMs) on crystalline silver substrates. The SAMs of 1,2-dicarba-closo-dodecarborane-9,12-dithiol (O9,12) were prepared on flat crystalline silver substrates and irradiated with low-energy electrons, resulting in a 2D nanomembrane. The mechanical stability and compact character of the carborane nanomembrane were improved by using 12-(1',12'-dicarba-closo-dodecarboran-1'-yl)-1,12-dicarba-closo-dodecarborane-1-thiol (1-HS-bis-pCB), a longer, rod-like SAM precursor with two para-carborane units linked linearly together. The self-assembly, cross-linking process, and transfer of the resulting membranes onto holey substrates were characterized with different complementary surface-sensitive techniques including X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and low-energy electron diffraction (LEED) as well as scanning tunneling and electron microscopies (STM, SEM) to provide insight on the structural changes within the cross-linked SAMs. The presented methodology has potential for the development of boron-based 2D materials for applications in electronic and optical devices.

See more in PubMed

Backes C.; Abdelkader A. M.; Alonso C.; Andrieux-Ledier A.; Arenal R.; Azpeitia J.; Balakrishnan N.; Banszerus L.; Barjon J.; Bartali R. Production and processing of graphene and related materials. 2D Mater. 2020, 7 (2), 022001.10.1088/2053-1583/ab1e0a. DOI

Geng D.; Yang H. Y. Recent advances in growth of novel 2D materials: beyond graphene and transition metal dichalcogenides. Adv. Mater. 2018, 30 (45), 1800865.10.1002/adma.201800865. PubMed DOI

Ferrari A. C.; Bonaccorso F.; Fal’Ko V.; Novoselov K. S.; Roche S.; Bøggild P.; Borini S.; Koppens F. H.; Palermo V.; Pugno N. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7 (11), 4598–4810. 10.1039/C4NR01600A. PubMed DOI

Feng X.; Schlüter A. D. Towards macroscopic crystalline 2D polymers. Angew. Chem., Int. Ed. 2018, 57 (42), 13748–13763. 10.1002/anie.201803456. PubMed DOI

Wang Q. H.; Kalantar-Zadeh K.; Kis A.; Coleman J. N.; Strano M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7 (11), 699–712. 10.1038/nnano.2012.193. PubMed DOI

Koppens F. H.; Mueller T.; Avouris P.; Ferrari A. C.; Vitiello M. S.; Polini M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9 (10), 780–793. 10.1038/nnano.2014.215. PubMed DOI

Pomerantseva E.; Gogotsi Y. Two-dimensional heterostructures for energy storage. Nat. Energy 2017, 2 (7), 1–6. 10.1038/nenergy.2017.89. DOI

Celebi K.; Buchheim J.; Wyss R. M.; Droudian A.; Gasser P.; Shorubalko I.; Kye J.-I.; Lee C.; Park H. G. Ultimate permeation across atomically thin porous graphene. Science 2014, 344 (6181), 289–292. 10.1126/science.1249097. PubMed DOI

Meng Z.; Stolz R. M.; Mendecki L.; Mirica K. A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 2019, 119 (1), 478–598. 10.1021/acs.chemrev.8b00311. PubMed DOI

Novoselov K. S.; Geim A. K.; Morozov S. V.; Jiang D.-e.; Zhang Y.; Dubonos S. V.; Grigorieva I. V.; Firsov A. A. Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666–669. 10.1126/science.1102896. PubMed DOI

Manzeli S.; Ovchinnikov D.; Pasquier D.; Yazyev O. V.; Kis A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2 (8), 1–15. 10.1038/natrevmats.2017.33. DOI

Dean C. R.; Young A. F.; Meric I.; Lee C.; Wang L.; Sorgenfrei S.; Watanabe K.; Taniguchi T.; Kim P.; Shepard K. L.; Hone J. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5 (10), 722–726. 10.1038/nnano.2010.172. PubMed DOI

Mannix A. J.; Zhou X.-F.; Kiraly B.; Wood J. D.; Alducin D.; Myers B. D.; Liu X.; Fisher B. L.; Santiago U.; Guest J. R.; Yacaman M. J.; Ponce A.; Oganov A. R.; Hersam M. C.; Guisinger N. P. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350 (6267), 1513–1516. 10.1126/science.aad1080. PubMed DOI PMC

Feng B.; Zhang J.; Zhong Q.; Li W.; Li S.; Li H.; Cheng P.; Meng S.; Chen L.; Wu K. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8 (6), 563–568. 10.1038/nchem.2491. PubMed DOI

Müller V.; Hinaut A.; Moradi M.; Baljozovic M.; Jung T. A.; Shahgaldian P.; Möhwald H.; Hofer G.; Kröger M.; King B. T. A two-dimensional polymer synthesized at the air/water interface. Angew. Chem., Int. Ed. 2018, 57 (33), 10584–10588. 10.1002/anie.201804937. PubMed DOI

Dong R.; Han P.; Arora H.; Ballabio M.; Karakus M.; Zhang Z.; Shekhar C.; Adler P.; Petkov P. S.; Erbe A. High-mobility band-like charge transport in a semiconducting two-dimensional metal-organic framework. Nat. Mater. 2018, 17 (11), 1027–1032. 10.1038/s41563-018-0189-z. PubMed DOI

Eck W.; Küller A.; Grunze M.; Völkel B.; Gölzhäuser A. Freestanding nanosheets from crosslinked biphenyl self-assembled monolayers. Adv. Mater. 2005, 17 (21), 2583–2587. 10.1002/adma.200500900. DOI

Angelova P.; Vieker H.; Weber N. E.; Matei D.; Reimer O.; Meier I.; Kurasch S.; Biskupek J.; Lorbach D.; Wunderlich K.; Chen L.; Terfort A.; Klapper M.; Müllen K.; Kaiser U.; Gölzhäuser A.; Turchanin A. A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes. ACS Nano 2013, 7 (8), 6489–6497. 10.1021/nn402652f. PubMed DOI

Turchanin A.; Gölzhäuser A. Carbon Nanomembranes. Adv. Mater. 2016, 28 (29), 6075–6103. 10.1002/adma.201670202. PubMed DOI

Turchanin A.; Käfer D.; El-Desawy M.; Wöll C.; Witte G.; Gölzhäuser A. Molecular mechanisms of electron-induced cross-linking in aromatic SAMs. Langmuir 2009, 25 (13), 7342–7352. 10.1021/la803538z. PubMed DOI

Yang Y.; Dementyev P.; Biere N.; Emmrich D.; Stohmann P.; Korzetz R.; Zhang X.; Beyer A.; Koch S.; Anselmetti D. Rapid water permeation through carbon nanomembranes with sub-nanometer channels. ACS Nano 2018, 12 (5), 4695–4701. 10.1021/acsnano.8b01266. PubMed DOI

Turchanin A.; Tinazli A.; El-Desawy M.; Großmann H.; Schnietz M.; Solak H. H.; Tampe R.; Gölzhäuser A. Molecular self-assembly, chemical lithography, and biochemical tweezers: a path for the fabrication of functional nanometer-scale protein arrays. Adv. Mater. 2008, 20 (3), 471–477. 10.1002/adma.200702189. DOI

Woszczyna M.; Winter A.; Grothe M.; Willunat A.; Wundrack S.; Stosch R.; Weimann T.; Ahlers F.; Turchanin A. All-Carbon Vertical van der Waals Heterostructures: Non-destructive Functionalization of Graphene for Electronic Applications. Adv. Mater. 2014, 26 (28), 4831–4837. 10.1002/adma.201400948. PubMed DOI

Zheng Z.; Nottbohm C. T.; Turchanin A.; Muzik H.; Beyer A.; Heilemann M.; Sauer M.; Gölzhäuser A. Janus nanomembranes: a generic platform for chemistry in two dimensions. Angew. Chem., Int. Ed. 2010, 49 (45), 8493–8497. 10.1002/anie.201004053. PubMed DOI

van Deursen P. M.; Tang Z.; Winter A.; Mohn M. J.; Kaiser U.; Turchanin A. A.; Schneider G. F. Selective ion sieving through arrays of sub-nanometer nanopores in chemically tunable 2D carbon membranes. Nanoscale 2019, 11 (43), 20785–20791. 10.1039/C9NR05537A. PubMed DOI

Woszczyna M.; Winter A.; Grothe M.; Willunat A.; Wundrack S.; Stosch R.; Weimann T.; Ahlers F.; Turchanin A. All-Carbon Vertical van der Waals Heterostructures: Non-destructive Functionalization of Graphene for Electronic Applications. Adv. Mater. 2014, 26 (28), 4831–4837. 10.1002/adma.201400948. PubMed DOI

Tang Z.; George A.; Winter A.; Kaiser D.; Neumann C.; Weimann T.; Turchanin A. Optically triggered control of the charge carrier density in chemically functionalized graphene field effect transistors. Chem.—Eur. J. 2020, 26 (29), 6473–6478. 10.1002/chem.202000431. PubMed DOI PMC

Kaiser D.; Tang Z.; Küllmer M.; Neumann C.; Winter A.; Kahle R.; Georgi L.; Weimann T.; Siegmann M.; Gräfe S. pH sensors based on amino-terminated carbon nanomembrane and single-layer graphene van der Waals heterostructures. Appl. Phys. Rev. 2021, 8 (3), 031410.10.1063/5.0040442. DOI

Kaiser D.; Meyerbroeker N.; Purschke W.; Sell S.; Neumann C.; Winter A.; Tang Z.; Hüger D.; Maasch C.; Bethge L.; Weimann T.; Ferwerda G.; de Jonge M. I.; Schnieders A.; Vater A.; Turchanin A. Ultrasensitive detection of chemokines in clinical samples with graphene-based field-effect transistors. Adv. Mater. 2024, 36 (52), 2407487.10.1002/adma.202407487. PubMed DOI PMC

Hohman J. N.; Claridge S. A.; Kim M.; Weiss P. S. Cage molecules for self-assembly. Mater. Sci. Eng. R Rep. 2010, 70 (3–6), 188–208. 10.1016/j.mser.2010.06.008. DOI

Thomas J. C.; Goronzy D. P.; Serino A. C.; Auluck H. S.; Irving O. R.; Jimenez-Izal E.; Deirmenjian J. M.; Machacek J.; Sautet P.; Alexandrova A. N. Acid-base control of valency within carboranedithiol self-assembled monolayers: molecules do the can-can. ACS Nano 2018, 12 (3), 2211–2221. 10.1021/acsnano.7b09011. PubMed DOI PMC

Ciani L.; Bortolussi S.; Postuma I.; Cansolino L.; Ferrari C.; Panza L.; Altieri S.; Ristori S. Rational design of gold nanoparticles functionalized with carboranes for application in Boron Neutron Capture Therapy. Int. J. Pharm. 2013, 458 (2), 340–346. 10.1016/j.ijpharm.2013.10.008. PubMed DOI

Yeager L. J.; Saeki F.; Shelly K.; Hawthorne M. F.; Garrell R. L. A new class of self-assembled monolayers: closo-B12H11S3-on gold. J. Am. Chem. Soc. 1998, 120 (38), 9961–9962. 10.1021/ja9809253. DOI

Baše T.; Bastl Z.; Plzák Z.; Grygar T.; Plešek J.; Carr M. J.; Malina V.; Šubrt J.; Bohácek J.; Večerníková E. Carboranethiol-modified gold surfaces. A study and comparison of modified cluster and flat surfaces. Langmuir 2005, 21 (17), 7776–7785. 10.1021/la051122d. PubMed DOI

Morin J.-F.; Sasaki T.; Shirai Y.; Guerrero J. M.; Tour J. M. Synthetic routes toward carborane-wheeled nanocars. Journal of organic chemistry 2007, 72 (25), 9481–9490. 10.1021/jo701400t. PubMed DOI

Pospíšil L.; Heyrovský M.; Pecka J.; Michl J. Toward a Hexagonal Grid Polymer: Interaction of Tentacled 1, 3, 5-Tricarboranylbenzene Derivatives with a Mercury Surface. Langmuir 1997, 13 (23), 6294–6301. 10.1021/la970500e. DOI

Ito M.; Wei T. X.; Chen P.-L.; Akiyama H.; Matsumoto M.; Tamada K.; Yamamoto Y. A novel method for creation of free volume in a one-component self-assembled monolayer. Dramatic size effect of para-carborane. J. Mater. Chem. 2005, 15 (4), 478–483. 10.1039/b411121d. DOI

Hitchcock A. P.; Wen A. T.; Lee S.; Glass J. A. Jr; Spencer J. T.; Dowben P. A. Inner-shell excitation of boranes and carboranes. J. Phys. Chem. 1993, 97 (31), 8171–8181. 10.1021/j100133a010. DOI

Zharnikov M.; Grunze M. Spectroscopic characterization of thiol-derived self-assembling monolayers. J. Condens. Matter Phys. 2001, 13 (49), 11333.10.1088/0953-8984/13/49/314. DOI

Stohmann P.; Koch S.; Yang Y.; Kaiser C. D.; Ehrens J.; Schnack J.; Biere N.; Anselmetti D.; Gölzhäuser A.; Zhang X. Investigation of electron-induced cross-linking of self-assembled monolayers by scanning tunneling microscopy. Beilstein J. Nanotechnol. 2022, 13 (1), 462–471. 10.3762/bjnano.13.39. PubMed DOI PMC

Vetushka A.; Bernard L.; Guseva O.; Bastl Z.; Plocek J.; Tomandl I.; Fejfar A.; Baše T.; Schmutz P. Adsorption of oriented carborane dipoles on a silver surface. Phys. Status Solidi B 2016, 253 (3), 591–600. 10.1002/pssb.201552446. DOI

Grimes R. N.Carboranes; Academic Press: 2016.

Baše T.; Bastl Z.; Šlouf M.; Klementová M.; Šubrt J.; Vetushka A.; Ledinský M.; Fejfar A.; Machácek J.; Carr M. J. Gold micrometer crystals modified with carboranethiol derivatives. J. Phys. Chem. C 2008, 112 (37), 14446–14455. 10.1021/jp802281s. DOI

Lübben J. F.; Baše T.; Rupper P.; Künniger T.; Macháček J.; Guimond S. Tuning the surface potential of Ag surfaces by chemisorption of oppositely-oriented thiolated carborane dipoles. J. Colloid Interface Sci. 2011, 354 (1), 168–174. 10.1016/j.jcis.2010.10.052. PubMed DOI

Baše T.; Macháček J.; Hájková Z.; Langecker J.; Kennedy J. D.; Carr M. J. Thermal isomerizations of monothiolated carboranes (HS) C2B10H11 and the solid-state investigation of 9-(HS)-1, 2-C2B10H11 and 9-(HS)-1, 7-C2B10H11. J. Organomet. Chem. 2015, 798, 132–140. 10.1016/j.jorganchem.2015.06.020. DOI

Turchanin A.; Weber D.; Büenfeld M.; Kisielowski C.; Fistul M. V.; Efetov K. B.; Weimann T.; Stosch R.; Mayer J.; Gölzhäuser A. Conversion of self-assembled monolayers into nanocrystalline graphene: structure and electric transport. ACS Nano 2011, 5 (5), 3896–3904. 10.1021/nn200297n. PubMed DOI

Neumann C.; Szwed M.; Frey M.; Tang Z.; Kozieł K.; Cyganik P.; Turchanin A. Preparation of carbon nanomembranes without chemically active groups. ACS Appl. Mater. Interfaces 2019, 11 (34), 31176–31181. 10.1021/acsami.9b09603. PubMed DOI

Patel D. K.; Sooraj B.; Kirakci K.; Macháček J.; Kučeráková M.; Bould J.; Dušek M.; Frey M.; Neumann C.; Ghosh S. Macropolyhedral syn-B18H22, the “forgotten” isomer. J. Am. Chem. Soc. 2023, 145 (32), 17975–17986. 10.1021/jacs.3c05530. PubMed DOI PMC

Bould J.; Machacek J.; Londesborough M. G.; Macías R.; Kennedy J. D.; Bastl Z.; Rupper P.; Base T. Decaborane thiols as building blocks for self-assembled monolayers on metal surfaces. Inorg. Chem. 2012, 51 (3), 1685–1694. 10.1021/ic202000b. PubMed DOI

Vyakaranam K.; Maguire J. A.; Hosmane N. S. Heteroboranes of the p-block elements. J. Organomet. Chem. 2002, 646 (1), 21–38. 10.1016/S0022-328X(01)01214-1. DOI

Fehlner T. P., Metallaboranes. In Structural and Electronic Paradigms in Cluster Chemistry, Mingos D. M. P., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1997; pp 111–135.

Yang X.; Jiang W.; Knobler C. B.; Hawthorne M. F. Rigid-rod molecules: carborods. Synthesis of tetrameric p-carboranes and the crystal structure of bis (tri-n-butylsilyl) tetra-p-carborane. J. Am. Chem. Soc. 1992, 114 (24), 9719–9721. 10.1021/ja00050a095. DOI

Kruk M.; Neumann C.; Frey M.; Kozieł K.; Turchanin A.; Cyganik P. Odd-Even Effect in Electron Beam Irradiation of Hybrid Aromatic-Aliphatic Self-Assembled Monolayers of Fatty Acid. J. Phys. Chem. C 2021, 125 (17), 9310–9318. 10.1021/acs.jpcc.1c01857. DOI

Lamont C. L. A.; Wilkes J. Attenuation length of electrons in self-assembled monolayers of n-alkanethiols on gold. Langmuir 1999, 15 (6), 2037–2042. 10.1021/la981168p. DOI

Sojka F.; Meissner M.; Zwick C.; Forker R.; Fritz T.. Determination and correction of distortions and systematic errors in low-energy electron diffraction. Rev. Sci. Instrum. 2013, 84 ( (1), ).10.1063/1.4774110 PubMed DOI

Sojka F.; Meissner M.; Zwick C.; Forker R.; Vyshnepolsky M.; Klein C.; Horn-von Hoegen M.; Fritz T. To tilt or not to tilt: Correction of the distortion caused by inclined sample surfaces in low-energy electron diffraction. Ultramicroscopy 2013, 133, 35–40. 10.1016/j.ultramic.2013.04.005. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...