Carborane Nanomembranes
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
39968860
PubMed Central
PMC11887487
DOI
10.1021/acsnano.4c16611
Knihovny.cz E-resources
- Keywords
- carboranes, electron irradiation induced chemical synthesis, molecular self-assembly, nanomembranes, two-dimensional materials,
- Publication type
- Journal Article MeSH
We report on the fabrication of a boron-based two-dimensional (2D) material via electron irradiation-induced cross-linking of carborane self-assembled monolayers (SAMs) on crystalline silver substrates. The SAMs of 1,2-dicarba-closo-dodecarborane-9,12-dithiol (O9,12) were prepared on flat crystalline silver substrates and irradiated with low-energy electrons, resulting in a 2D nanomembrane. The mechanical stability and compact character of the carborane nanomembrane were improved by using 12-(1',12'-dicarba-closo-dodecarboran-1'-yl)-1,12-dicarba-closo-dodecarborane-1-thiol (1-HS-bis-pCB), a longer, rod-like SAM precursor with two para-carborane units linked linearly together. The self-assembly, cross-linking process, and transfer of the resulting membranes onto holey substrates were characterized with different complementary surface-sensitive techniques including X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and low-energy electron diffraction (LEED) as well as scanning tunneling and electron microscopies (STM, SEM) to provide insight on the structural changes within the cross-linked SAMs. The presented methodology has potential for the development of boron-based 2D materials for applications in electronic and optical devices.
Center for Energy and Environmental Chemistry Jena Philosophenweg 7a 07743 Jena Germany
Central European Institute of Technology Purkyňova 123 612 00 Brno Královo Pole Czech Republic
Department of Chemistry Middle East Technical University Ankara 06800 Turkiye
Jena Center for Soft Matter Philosophenweg 7 07743 Jena Germany
See more in PubMed
Backes C.; Abdelkader A. M.; Alonso C.; Andrieux-Ledier A.; Arenal R.; Azpeitia J.; Balakrishnan N.; Banszerus L.; Barjon J.; Bartali R. Production and processing of graphene and related materials. 2D Mater. 2020, 7 (2), 022001.10.1088/2053-1583/ab1e0a. DOI
Geng D.; Yang H. Y. Recent advances in growth of novel 2D materials: beyond graphene and transition metal dichalcogenides. Adv. Mater. 2018, 30 (45), 1800865.10.1002/adma.201800865. PubMed DOI
Ferrari A. C.; Bonaccorso F.; Fal’Ko V.; Novoselov K. S.; Roche S.; Bøggild P.; Borini S.; Koppens F. H.; Palermo V.; Pugno N. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7 (11), 4598–4810. 10.1039/C4NR01600A. PubMed DOI
Feng X.; Schlüter A. D. Towards macroscopic crystalline 2D polymers. Angew. Chem., Int. Ed. 2018, 57 (42), 13748–13763. 10.1002/anie.201803456. PubMed DOI
Wang Q. H.; Kalantar-Zadeh K.; Kis A.; Coleman J. N.; Strano M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7 (11), 699–712. 10.1038/nnano.2012.193. PubMed DOI
Koppens F. H.; Mueller T.; Avouris P.; Ferrari A. C.; Vitiello M. S.; Polini M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9 (10), 780–793. 10.1038/nnano.2014.215. PubMed DOI
Pomerantseva E.; Gogotsi Y. Two-dimensional heterostructures for energy storage. Nat. Energy 2017, 2 (7), 1–6. 10.1038/nenergy.2017.89. DOI
Celebi K.; Buchheim J.; Wyss R. M.; Droudian A.; Gasser P.; Shorubalko I.; Kye J.-I.; Lee C.; Park H. G. Ultimate permeation across atomically thin porous graphene. Science 2014, 344 (6181), 289–292. 10.1126/science.1249097. PubMed DOI
Meng Z.; Stolz R. M.; Mendecki L.; Mirica K. A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 2019, 119 (1), 478–598. 10.1021/acs.chemrev.8b00311. PubMed DOI
Novoselov K. S.; Geim A. K.; Morozov S. V.; Jiang D.-e.; Zhang Y.; Dubonos S. V.; Grigorieva I. V.; Firsov A. A. Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666–669. 10.1126/science.1102896. PubMed DOI
Manzeli S.; Ovchinnikov D.; Pasquier D.; Yazyev O. V.; Kis A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2 (8), 1–15. 10.1038/natrevmats.2017.33. DOI
Dean C. R.; Young A. F.; Meric I.; Lee C.; Wang L.; Sorgenfrei S.; Watanabe K.; Taniguchi T.; Kim P.; Shepard K. L.; Hone J. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5 (10), 722–726. 10.1038/nnano.2010.172. PubMed DOI
Mannix A. J.; Zhou X.-F.; Kiraly B.; Wood J. D.; Alducin D.; Myers B. D.; Liu X.; Fisher B. L.; Santiago U.; Guest J. R.; Yacaman M. J.; Ponce A.; Oganov A. R.; Hersam M. C.; Guisinger N. P. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350 (6267), 1513–1516. 10.1126/science.aad1080. PubMed DOI PMC
Feng B.; Zhang J.; Zhong Q.; Li W.; Li S.; Li H.; Cheng P.; Meng S.; Chen L.; Wu K. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8 (6), 563–568. 10.1038/nchem.2491. PubMed DOI
Müller V.; Hinaut A.; Moradi M.; Baljozovic M.; Jung T. A.; Shahgaldian P.; Möhwald H.; Hofer G.; Kröger M.; King B. T. A two-dimensional polymer synthesized at the air/water interface. Angew. Chem., Int. Ed. 2018, 57 (33), 10584–10588. 10.1002/anie.201804937. PubMed DOI
Dong R.; Han P.; Arora H.; Ballabio M.; Karakus M.; Zhang Z.; Shekhar C.; Adler P.; Petkov P. S.; Erbe A. High-mobility band-like charge transport in a semiconducting two-dimensional metal-organic framework. Nat. Mater. 2018, 17 (11), 1027–1032. 10.1038/s41563-018-0189-z. PubMed DOI
Eck W.; Küller A.; Grunze M.; Völkel B.; Gölzhäuser A. Freestanding nanosheets from crosslinked biphenyl self-assembled monolayers. Adv. Mater. 2005, 17 (21), 2583–2587. 10.1002/adma.200500900. DOI
Angelova P.; Vieker H.; Weber N. E.; Matei D.; Reimer O.; Meier I.; Kurasch S.; Biskupek J.; Lorbach D.; Wunderlich K.; Chen L.; Terfort A.; Klapper M.; Müllen K.; Kaiser U.; Gölzhäuser A.; Turchanin A. A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes. ACS Nano 2013, 7 (8), 6489–6497. 10.1021/nn402652f. PubMed DOI
Turchanin A.; Gölzhäuser A. Carbon Nanomembranes. Adv. Mater. 2016, 28 (29), 6075–6103. 10.1002/adma.201670202. PubMed DOI
Turchanin A.; Käfer D.; El-Desawy M.; Wöll C.; Witte G.; Gölzhäuser A. Molecular mechanisms of electron-induced cross-linking in aromatic SAMs. Langmuir 2009, 25 (13), 7342–7352. 10.1021/la803538z. PubMed DOI
Yang Y.; Dementyev P.; Biere N.; Emmrich D.; Stohmann P.; Korzetz R.; Zhang X.; Beyer A.; Koch S.; Anselmetti D. Rapid water permeation through carbon nanomembranes with sub-nanometer channels. ACS Nano 2018, 12 (5), 4695–4701. 10.1021/acsnano.8b01266. PubMed DOI
Turchanin A.; Tinazli A.; El-Desawy M.; Großmann H.; Schnietz M.; Solak H. H.; Tampe R.; Gölzhäuser A. Molecular self-assembly, chemical lithography, and biochemical tweezers: a path for the fabrication of functional nanometer-scale protein arrays. Adv. Mater. 2008, 20 (3), 471–477. 10.1002/adma.200702189. DOI
Woszczyna M.; Winter A.; Grothe M.; Willunat A.; Wundrack S.; Stosch R.; Weimann T.; Ahlers F.; Turchanin A. All-Carbon Vertical van der Waals Heterostructures: Non-destructive Functionalization of Graphene for Electronic Applications. Adv. Mater. 2014, 26 (28), 4831–4837. 10.1002/adma.201400948. PubMed DOI
Zheng Z.; Nottbohm C. T.; Turchanin A.; Muzik H.; Beyer A.; Heilemann M.; Sauer M.; Gölzhäuser A. Janus nanomembranes: a generic platform for chemistry in two dimensions. Angew. Chem., Int. Ed. 2010, 49 (45), 8493–8497. 10.1002/anie.201004053. PubMed DOI
van Deursen P. M.; Tang Z.; Winter A.; Mohn M. J.; Kaiser U.; Turchanin A. A.; Schneider G. F. Selective ion sieving through arrays of sub-nanometer nanopores in chemically tunable 2D carbon membranes. Nanoscale 2019, 11 (43), 20785–20791. 10.1039/C9NR05537A. PubMed DOI
Woszczyna M.; Winter A.; Grothe M.; Willunat A.; Wundrack S.; Stosch R.; Weimann T.; Ahlers F.; Turchanin A. All-Carbon Vertical van der Waals Heterostructures: Non-destructive Functionalization of Graphene for Electronic Applications. Adv. Mater. 2014, 26 (28), 4831–4837. 10.1002/adma.201400948. PubMed DOI
Tang Z.; George A.; Winter A.; Kaiser D.; Neumann C.; Weimann T.; Turchanin A. Optically triggered control of the charge carrier density in chemically functionalized graphene field effect transistors. Chem.—Eur. J. 2020, 26 (29), 6473–6478. 10.1002/chem.202000431. PubMed DOI PMC
Kaiser D.; Tang Z.; Küllmer M.; Neumann C.; Winter A.; Kahle R.; Georgi L.; Weimann T.; Siegmann M.; Gräfe S. pH sensors based on amino-terminated carbon nanomembrane and single-layer graphene van der Waals heterostructures. Appl. Phys. Rev. 2021, 8 (3), 031410.10.1063/5.0040442. DOI
Kaiser D.; Meyerbroeker N.; Purschke W.; Sell S.; Neumann C.; Winter A.; Tang Z.; Hüger D.; Maasch C.; Bethge L.; Weimann T.; Ferwerda G.; de Jonge M. I.; Schnieders A.; Vater A.; Turchanin A. Ultrasensitive detection of chemokines in clinical samples with graphene-based field-effect transistors. Adv. Mater. 2024, 36 (52), 2407487.10.1002/adma.202407487. PubMed DOI PMC
Hohman J. N.; Claridge S. A.; Kim M.; Weiss P. S. Cage molecules for self-assembly. Mater. Sci. Eng. R Rep. 2010, 70 (3–6), 188–208. 10.1016/j.mser.2010.06.008. DOI
Thomas J. C.; Goronzy D. P.; Serino A. C.; Auluck H. S.; Irving O. R.; Jimenez-Izal E.; Deirmenjian J. M.; Machacek J.; Sautet P.; Alexandrova A. N. Acid-base control of valency within carboranedithiol self-assembled monolayers: molecules do the can-can. ACS Nano 2018, 12 (3), 2211–2221. 10.1021/acsnano.7b09011. PubMed DOI PMC
Ciani L.; Bortolussi S.; Postuma I.; Cansolino L.; Ferrari C.; Panza L.; Altieri S.; Ristori S. Rational design of gold nanoparticles functionalized with carboranes for application in Boron Neutron Capture Therapy. Int. J. Pharm. 2013, 458 (2), 340–346. 10.1016/j.ijpharm.2013.10.008. PubMed DOI
Yeager L. J.; Saeki F.; Shelly K.; Hawthorne M. F.; Garrell R. L. A new class of self-assembled monolayers: closo-B12H11S3-on gold. J. Am. Chem. Soc. 1998, 120 (38), 9961–9962. 10.1021/ja9809253. DOI
Baše T.; Bastl Z.; Plzák Z.; Grygar T.; Plešek J.; Carr M. J.; Malina V.; Šubrt J.; Bohácek J.; Večerníková E. Carboranethiol-modified gold surfaces. A study and comparison of modified cluster and flat surfaces. Langmuir 2005, 21 (17), 7776–7785. 10.1021/la051122d. PubMed DOI
Morin J.-F.; Sasaki T.; Shirai Y.; Guerrero J. M.; Tour J. M. Synthetic routes toward carborane-wheeled nanocars. Journal of organic chemistry 2007, 72 (25), 9481–9490. 10.1021/jo701400t. PubMed DOI
Pospíšil L.; Heyrovský M.; Pecka J.; Michl J. Toward a Hexagonal Grid Polymer: Interaction of Tentacled 1, 3, 5-Tricarboranylbenzene Derivatives with a Mercury Surface. Langmuir 1997, 13 (23), 6294–6301. 10.1021/la970500e. DOI
Ito M.; Wei T. X.; Chen P.-L.; Akiyama H.; Matsumoto M.; Tamada K.; Yamamoto Y. A novel method for creation of free volume in a one-component self-assembled monolayer. Dramatic size effect of para-carborane. J. Mater. Chem. 2005, 15 (4), 478–483. 10.1039/b411121d. DOI
Hitchcock A. P.; Wen A. T.; Lee S.; Glass J. A. Jr; Spencer J. T.; Dowben P. A. Inner-shell excitation of boranes and carboranes. J. Phys. Chem. 1993, 97 (31), 8171–8181. 10.1021/j100133a010. DOI
Zharnikov M.; Grunze M. Spectroscopic characterization of thiol-derived self-assembling monolayers. J. Condens. Matter Phys. 2001, 13 (49), 11333.10.1088/0953-8984/13/49/314. DOI
Stohmann P.; Koch S.; Yang Y.; Kaiser C. D.; Ehrens J.; Schnack J.; Biere N.; Anselmetti D.; Gölzhäuser A.; Zhang X. Investigation of electron-induced cross-linking of self-assembled monolayers by scanning tunneling microscopy. Beilstein J. Nanotechnol. 2022, 13 (1), 462–471. 10.3762/bjnano.13.39. PubMed DOI PMC
Vetushka A.; Bernard L.; Guseva O.; Bastl Z.; Plocek J.; Tomandl I.; Fejfar A.; Baše T.; Schmutz P. Adsorption of oriented carborane dipoles on a silver surface. Phys. Status Solidi B 2016, 253 (3), 591–600. 10.1002/pssb.201552446. DOI
Grimes R. N.Carboranes; Academic Press: 2016.
Baše T.; Bastl Z.; Šlouf M.; Klementová M.; Šubrt J.; Vetushka A.; Ledinský M.; Fejfar A.; Machácek J.; Carr M. J. Gold micrometer crystals modified with carboranethiol derivatives. J. Phys. Chem. C 2008, 112 (37), 14446–14455. 10.1021/jp802281s. DOI
Lübben J. F.; Baše T.; Rupper P.; Künniger T.; Macháček J.; Guimond S. Tuning the surface potential of Ag surfaces by chemisorption of oppositely-oriented thiolated carborane dipoles. J. Colloid Interface Sci. 2011, 354 (1), 168–174. 10.1016/j.jcis.2010.10.052. PubMed DOI
Baše T.; Macháček J.; Hájková Z.; Langecker J.; Kennedy J. D.; Carr M. J. Thermal isomerizations of monothiolated carboranes (HS) C2B10H11 and the solid-state investigation of 9-(HS)-1, 2-C2B10H11 and 9-(HS)-1, 7-C2B10H11. J. Organomet. Chem. 2015, 798, 132–140. 10.1016/j.jorganchem.2015.06.020. DOI
Turchanin A.; Weber D.; Büenfeld M.; Kisielowski C.; Fistul M. V.; Efetov K. B.; Weimann T.; Stosch R.; Mayer J.; Gölzhäuser A. Conversion of self-assembled monolayers into nanocrystalline graphene: structure and electric transport. ACS Nano 2011, 5 (5), 3896–3904. 10.1021/nn200297n. PubMed DOI
Neumann C.; Szwed M.; Frey M.; Tang Z.; Kozieł K.; Cyganik P.; Turchanin A. Preparation of carbon nanomembranes without chemically active groups. ACS Appl. Mater. Interfaces 2019, 11 (34), 31176–31181. 10.1021/acsami.9b09603. PubMed DOI
Patel D. K.; Sooraj B.; Kirakci K.; Macháček J.; Kučeráková M.; Bould J.; Dušek M.; Frey M.; Neumann C.; Ghosh S. Macropolyhedral syn-B18H22, the “forgotten” isomer. J. Am. Chem. Soc. 2023, 145 (32), 17975–17986. 10.1021/jacs.3c05530. PubMed DOI PMC
Bould J.; Machacek J.; Londesborough M. G.; Macías R.; Kennedy J. D.; Bastl Z.; Rupper P.; Base T. Decaborane thiols as building blocks for self-assembled monolayers on metal surfaces. Inorg. Chem. 2012, 51 (3), 1685–1694. 10.1021/ic202000b. PubMed DOI
Vyakaranam K.; Maguire J. A.; Hosmane N. S. Heteroboranes of the p-block elements. J. Organomet. Chem. 2002, 646 (1), 21–38. 10.1016/S0022-328X(01)01214-1. DOI
Fehlner T. P., Metallaboranes. In Structural and Electronic Paradigms in Cluster Chemistry, Mingos D. M. P., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1997; pp 111–135.
Yang X.; Jiang W.; Knobler C. B.; Hawthorne M. F. Rigid-rod molecules: carborods. Synthesis of tetrameric p-carboranes and the crystal structure of bis (tri-n-butylsilyl) tetra-p-carborane. J. Am. Chem. Soc. 1992, 114 (24), 9719–9721. 10.1021/ja00050a095. DOI
Kruk M.; Neumann C.; Frey M.; Kozieł K.; Turchanin A.; Cyganik P. Odd-Even Effect in Electron Beam Irradiation of Hybrid Aromatic-Aliphatic Self-Assembled Monolayers of Fatty Acid. J. Phys. Chem. C 2021, 125 (17), 9310–9318. 10.1021/acs.jpcc.1c01857. DOI
Lamont C. L. A.; Wilkes J. Attenuation length of electrons in self-assembled monolayers of n-alkanethiols on gold. Langmuir 1999, 15 (6), 2037–2042. 10.1021/la981168p. DOI
Sojka F.; Meissner M.; Zwick C.; Forker R.; Fritz T.. Determination and correction of distortions and systematic errors in low-energy electron diffraction. Rev. Sci. Instrum. 2013, 84 ( (1), ).10.1063/1.4774110 PubMed DOI
Sojka F.; Meissner M.; Zwick C.; Forker R.; Vyshnepolsky M.; Klein C.; Horn-von Hoegen M.; Fritz T. To tilt or not to tilt: Correction of the distortion caused by inclined sample surfaces in low-energy electron diffraction. Ultramicroscopy 2013, 133, 35–40. 10.1016/j.ultramic.2013.04.005. PubMed DOI