Laser based 100 GeV electron acceleration scheme for muon production
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
40670599
PubMed Central
PMC12267649
DOI
10.1038/s41598-025-95440-w
PII: 10.1038/s41598-025-95440-w
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
High energy muons, due to their unique ability to penetrate deeply into matter, can enable radiography of structures that cannot be probed by other forms of radiation. Current terrestrial sources of muons require conventional GeV-TeV particle accelerators which are hundreds to thousands of meters in size. Laser wakefield acceleration (LWFA) can achieve acceleration gradients of two-to-three orders of magnitude greater than conventional accelerators, thus shrinking the accelerator to a number of meters. We propose a concept for a compact muon source based on the first self-consistent PIC simulations of an all optical LWFA that uses a guiding channel to achieve electron energies of 100 GeV in a distance of 6 m with a driving laser energy of 300 J in a single stage. From the resulting electron energy spectrum we estimate muon production for this source. We show that this accelerator, coupled with high average power laser driver technology, provides the basis for a high energy and high flux muon source.
Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
Lawrence Livermore National Laboratory 7000 East Avenue Livermore CA 94551 USA
Zobrazit více v PubMed
Alvarez, L. W. et al. Search for hidden chambers in the pyramids. PubMed
Morishima, K. et al. Discovery of a big void in Khufu’s pyramid by observation of cosmic-ray muons. PubMed
Fujii, H. et al. Performance of a remotely located muon radiography system to identify the inner structure of a nuclear plant.
Patnaik, R., Lee, Y. & Dorroh, D. Image based object identification in muon tomography. In
Accettura, C. et al. Towards a muon collider.
Tajima, T. & Dawson, J. M. Laser electron accelerator.
Aniculaesei, C. et al. The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator.
Gonsalves, A. J. et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. PubMed
Miao, B. et al. Multi-GeV electron bunches from an all-optical laser wakefield accelerator.
Bobbili Sanyasi, R., Jong Ho, J., Hyung Taek, K. & Chang Hee, N. Bright muon source driven by GeV electron beams from a compact laser wakefield accelerator.
Dreesen, W. et al. Detection of petawatt laser-induced muon source for rapid high-z material detection. In
Calvin, L. et al. Laser-driven muon production for material inspection and imaging.
Martins, S. F., Lu, W., Fonseca, R. A., Mori, W. B. & Silva, L. O. Exploring laser-wakefield-accelerator regimes for near-term lasers using particle-in-cell simulation in Lorentz-boosted frames.
Kiani, L. et al. High average power ultrafast laser technologies for driving future advanced accelerators.
Durfee, C. G. & Milchberg, H. M. Light pipe for high intensity laser pulses. PubMed
Miao, B., Feder, L., Shrock, J. E., Goffin, A. & Milchberg, H. M. Optical guiding in meter-scale plasma waveguides. PubMed
Feder, L., Miao, B., Shrock, J. E., Goffin, A. & Milchberg, H. M. Self-waveguiding of relativistic laser pulses in neutral gas channels.
Shrock, J. E., Miao, B., Feder, L. & Milchberg, H. M. Meter-scale plasma waveguides for multi-GeV laser wakefield acceleration.
Picksley, A. et al. Matched guiding and controlled injection in dark-current-free, 10-GeV-class, channel-guided laser-plasma accelerators. PubMed
Sprangle, P. et al. Wakefield generation and GeV acceleration in tapered plasma channels. PubMed
Guillaume, E. et al. Electron rephasing in a laser-wakefield accelerator. PubMed
Geddes, C. G. R. et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. PubMed
Faure, J. et al. A laser-plasma accelerator producing monoenergetic electron beams. PubMed
Mangles, S. P. D. et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. PubMed
Albert, F. et al. Laser wakefield accelerator based light sources: Potential applications and requirements.
Lu, W. et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime.
Lu, W., et al. Designing LWFA in the blowout regime. In
Ekerfelt, H., Hansson, M., Gallardo González, I., Davoine, X. & Lundh, O. A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration. PubMed PMC
Bulanov, S., Naumova, N., Pegoraro, F. & Sakai, J. Particle injection into the wave acceleration phase due to nonlinear wake wave breaking.
Pak, A. et al. Injection and trapping of tunnel-ionized electrons into laser-produced wakes. PubMed
Chen, M., Sheng, Z.-M., Ma, Y.-Y. & Zhang, J. Electron injection and trapping in a laser wakefield by field ionization to high-charge states of gases.
Stanev, T. & Vankov, C. P. Production of high-energy muons in gamma showers.
Stanev, T., Vankov, C. P. & Halzen, F. Muons in gamma showers. In
Motz, J. W., Olsen, H. A. & Koch, H. W. Pair production by photons.
Bulanov, S. V. et al. On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers.
Bulanov, S. V. et al. On some theoretical problems of laser wake-field accelerators.
Wang, Y. et al. 0.85 micron pw laser operation at 3.3 khz and high-contrast ultrahigh-intensity nm second-harmonic beamline. PubMed
Miao, B., Shrock, J. & Milchberg, H. Electrons see the guiding light.
Shrock, J. E. et al. Guided mode evolution and ionization injection in meter-scale multi-GeV laser wakefield accelerators. PubMed
Titov, A. I., Kämpfer, B. & Takabe, H. Dimuon production by laser-wakefield accelerated electrons.
Aniculaesei, C. et al. Electron energy increase in a laser wakefield accelerator using up-ramp plasma density profiles. PubMed PMC
Katsouleas, T. Physical mechanisms in the plasma wake-field accelerator. PubMed
Private communication, Ela Rockafellow.
Ralph, J. E. et al. Self-guiding of ultrashort, relativistically intense laser pulses through underdense plasmas in the blowout regime. PubMed
Hussein, A. E. et al. Direct spectral measurements of midinfrared radiation from a laser wakefield accelerator.
Shadwick, B. A., Schroeder, C. B. & Esarey, E. Nonlinear laser energy depletion in laser-plasma acceleratorsa).
Clark, T. R. & Milchberg, H. M. Optical mode structure of the plasma waveguide. PubMed
Ahdida, C. et al. New capabilities of the fluka multi-purpose code.
Battistoni, G. et al. Overview of the fluka code.
Fluka website: https://fluka.cern
Tsai, Y.-S. Pair production and bremsstrahlung of charged leptons.
Miao, B. et al. Measurements and simulations of hydrodynamic plasma waveguides generated by optical field ionization. arXiv:2404.13632 (2024).
Gordon, D.F., Sprangle, P., Slinker, S., Fernsler, R. & Lampe, M. Sparc- A simulation model for electrical discharges.
Wang, Y. et al. 1.1 J Yb:YAG picosecond laser at 1 khz repetition rate. PubMed
Rainville, A., Chen, M., Whittlesey, M., Du, Q. & Galvanauskas, A. 22mj coherent beam combining from three 85 [Image: see text] m core ccc fiber amplifiers. In
Chen, S. et al. Broadband spectral combining of three pulse-shaped fiber amplifiers with 42fs compressed pulse duration. PubMed
Sistrunk, E. et al. Laser technology development for high peak power lasers achieving kilowatt average power and beyond. In
Tamer, I. et al. Demonstration of a 1 TW peak power, joule-level ultrashort Tm:YLF laser. PubMed
Tamer, I. et al. 1 GW peak power and 100 j pulsed operation of a diode-pumped Tm:YLF laser. PubMed
Fedeli, L., Huebl, A., Boillod-Cerneux, F., Clark, T., Gott, K., Hillairet, C., Jaure, S., Leblanc, A., Lehe, R., Myers, A. and Piechurski, C., Sato, M., Zaim, N., Zhang, W., Vay, J.-L. & Vincenti, H. Pushing the frontier in the design of laser-based electron accelerators with groundbreaking mesh-refined particle-in-cell simulations on exascale-class supercomputers. In
Vay, J.-L. Noninvariance of space- and time-scale ranges under a Lorentz transformation and the implications for the study of relativistic interactions. PubMed
Lehe, R., Kirchen, M., Godfrey, B. B., Maier, A. R. & Vay, J.-L. Elimination of numerical Cherenkov instability in flowing-plasma particle-in-cell simulations by using Galilean coordinates. PubMed
Kirchen, M. et al. Stable discrete representation of relativistically drifting plasmas.
Lifschitz, A. F. et al. Particle-in-cell modelling of laser-plasma interaction using Fourier decomposition.
Lehe, R., Kirchen, M., Andriyash, I. A., Godfrey, B. B. & Vay, J.-L. A spectral, quasi-cylindrical and dispersion-free particle-in-cell algorithm.