Changing pattern of exposure to polycyclic aromatic hydrocarbons over time in the Central European population
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40676167
DOI
10.1038/s41370-025-00793-z
PII: 10.1038/s41370-025-00793-z
Knihovny.cz E-zdroje
- Klíčová slova
- Biomonitoring, Chemical exposure, Legislation, Polycyclic aromatic hydrocarbons,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Temporal trends of chemicals in the population are key to identifying changing sources of chemicals and determining the effectiveness of various legislative measures. OBJECTIVE: The present study focused on time comparisons to explore a possible decrease in PAH metabolite levels in the Czech population. Legislative measures occurred between sampling periods, including restricting smoking and the Air Protection Act. METHODS: Ten metabolites of PAHs were measured in urine samples collected in 2011-2012 from mothers and children from DEMOCOPHES-CZ study (N = 235) and in 2019-2020 from children, teenagers, and young adults from CELSPAC studies (N = 809). Multivariate linear regression, Kruskal-Wallis ANOVA, and Mann-Whitney test (MW) were used to investigate differences in OH-PAHs between periods, age categories, and exposure determinants. RESULTS: Median concentrations significantly decreased between 2011-2020 by 30-35% for 1-OH-NAP, 2-and 3-OH-FLUO, 85% for 1-OH-PHE, and 44% for 2/3-OH-PHE, while 2-OH-NAP increased by 29% in non-smoking adults. In children, median concentrations of all metabolites decreased by 10-51%, with 2-OH-NAP rising by 49%. Smokers showed the largest differences, with significant decreases of 46-59% in the median concentrations of 2-OH-NAP, 2/3-OH-PHE, 9-OH-PHE, and 1-OH-PYR, and 76-91% in OH-FLUOs, 1-OH-NAP, and 1-OH-PHE. Fish and offal consumption, season, locality, and type of cooking were significant factors associated with levels of OH-PAHs, explaining 4-9% of the variability. Smoking was the main contributor in 2011, explaining up to 45% variability; no difference was found between smokers and non-smokers in 2019. New reference values of OH-PAHs in urine were calculated for the Czech population. IMPACT: This study analyses the temporal trends of OH-PAHs in the population in the context of introduced legislative measures. In addition, it examines OH-PAH exposure in children, adolescents, and young adults in relation to lifestyle factors and establishes new reference values for polycyclic aromatic hydrocarbons that are important for public health decision-making. Biomonitoring over time is an essential tool for establishing new measures to protect public health. Created in BioRender. Komprdova, K. (2025) https://BioRender.com/u10q831 .
Charles University 3rd Faculty of Medicine Prague Czech Republic
Faculty of Sports Studies Masaryk University Kamenice 753 5 Brno Czech Republic
National Institute of Public Health Šrobárova 48 Prague 10 100 42 Czech Republic
RECETOX Faculty of Science Masaryk University Kotlarska 2 Brno Czech Republic
Zobrazit více v PubMed
Zhang Y, Tao S. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos Environ. 2009;43:812–9.
Khaiwal R, Sokhi R, Van Grieken R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos Environ. 2008;42:2895–921.
Haritash AK, Kaushik CP. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. J Hazard Mater. 2009;169:1–15. PubMed
Abdel-Shafy HI, Mansour MSM. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian J Pet. 2016;25:107–23.
Agency for Toxic Substances and Disease Registry. Toxicological Profile for Polycyclic Aromatic Hydrocarbons. Atlanta, GA: U.S.Department of Health and Human Services, Public Health Service; 1995.
Skupińska K, Misiewicz I, Kasprzycka-Guttman T. Polycyclic aromatic hydrocarbons: Physicochemical properties, environmental appearance and impact on living organisms. Acta Poloniae Pharmaceut Drug Res. 2004;61:233–40.
Purcaro G, Moret S, Conte LS. Polycyclic aromatic hydrocarbons. encyclopedia of food and health. 2015;406–18.
Jansen EHJM, Schenk E, Den Engelsman G, Van de Werken G. Route-specific urinary biomarkers in the risk assessment of PAH exposure. Polycycl Aroma Compd. 1996;11:185–92.
Patel AP, Mehta SS, White AJ, Niehoff NM, Arroyave WD, Wang A, et al. Urinary polycyclic aromatic hydrocarbon metabolites and mortality in the United States: A prospective analysis. PLoS ONE. 2021;16:1–19.
Mallah MA, Changxing L, Mallah MA, Noreen S, Liu Y, Saeed M, et al. Polycyclic aromatic hydrocarbon and its effects on human health: An overeview. Chemosphere. 2022;296:133948.
Madeen EP, Williams DE. Environmental PAH exposure and male idiopathic infertility: a review on early life exposures and adult diagnosis. Rev Environ Health. 2017;32:73–81. PubMed PMC
Fang B, Bravo MA, Wang H, Sheng L, Wu W, Zhou Y, et al. Polycyclic aromatic hydrocarbons are associated with later puberty in girls: A longitudinal study. Sci Total Environ. 2022;846:157497.
Huang W, Caudill SP, Grainger J, Needham LL, Patterson DG. Levels of 1-hydroxypyrene and other monohydroxy polycyclic aromatic hydrocarbons in children: A study based on U.S. reference range values. Toxicol Lett. 2006;163:10–9. PubMed
Jacob J, Seidel A. Biomonitoring of polycyclic aromatic hydrocarbons in human urine. J Chromatogr B. 2002;778:31–47.
Shimada T. Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet. 2006;21:257–76. PubMed
Jongeneelen FJ, Bos RP, Anzion RB, Theuws JL, Henderson PT. Biological monitoring of polycyclic aromatic hydrocarbons. Metabolites in urine. Scand J Work Environ Health. 1986;12:137–43.
Hisamuddin NH, Jalaludin J. Children’s exposure to polycyclic aromatic hydrocarbon (PAHs): A review on urinary 1-hydroxypyrene and associated health effects. Rev Environ Health. 2023;38:151–68. PubMed
Hansen ÅM, Mathiesen L, Pedersen M, Knudsen LE. Urinary 1-hydroxypyrene (1-HP) in environmental and occupational studies-A review. Int J Hyg Environ Health. 2008;211:471–503. PubMed
Huang X, Deng X, Li W, Liu S, Chen Y, Yang B, et al. Internal exposure levels of polycyclic aromatic hydrocarbons in children and adolescents: A systematic review and meta-analysis. Environ Health Prev Med. 2019;24:1–15.
Jung SK, Choi W, Kim SY, Hong S, Jeon HL, Joo Y, et al. Profile of Environmental Chemicals in the Korean Population—Results of the Korean National Environmental Health Survey (KoNEHS) Cycle 3, 2015–2017. Int J Environ Res Public Health. 2022;19:2015–7.
Schoeters G, Verheyen VJ, Colles A, Remy S, Martin LR, Govarts E, et al. Internal exposure of Flemish teenagers to environmental pollutants: Results of the Flemish Environment and Health Study 2016–2020 (FLEHS IV). Int J Hyg Environ Health. 2022;242:113972. PubMed
Murawski A, Roth A, Schwedler G, Schmied-Tobies MIH, Rucic E, Pluym N, et al. Polycyclic aromatic hydrocarbons (PAH) in urine of children and adolescents in Germany – human biomonitoring results of the German Environmental Survey 2014–2017 (GerES V). Int J Hyg Environ Health. 2020;226:113491. PubMed
Thai PK, Heffernan AL, Toms LML, Li Z, Calafat AM, Hobson P, et al. Monitoring exposure to polycyclic aromatic hydrocarbons in an Australian population using pooled urine samples. Environ Int. 2016;88:30–5. PubMed
Vorkamp K, Esteban López M, Gilles L, Göen T, Govarts E, Hajeb P, et al. Coordination of chemical analyses under the European Human Biomonitoring Initiative (HBM4EU): Concepts, procedures and lessons learnt. Int J Hyg Environ Health. 2023;251.
Govarts E, Gilles L, Rodriguez Martin L, Santonen T, Apel P, Alvito P, et al. Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021). Vol. 249, International Journal of Hygiene and Environmental Health. Elsevier GmbH; 2023.
Rodriguez Martin L, Gilles L, Helte E, Åkesson A, Tägt J, Covaci A, et al. Time Patterns in Internal Human Exposure Data to Bisphenols, Phthalates, DINCH, Organophosphate Flame Retardants, Cadmium and Polyaromatic Hydrocarbons in Europe. Toxics. 2023;11:819.
Hudson-Hanley B, Smit E, Branscum A, Hystad P, Kile ML. Trends in urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) in the non-smoking U.S. population, NHANES 2001–2014. Chemosphere. 2021;276:130211. PubMed PMC
Zhang X, Li Z. Developing a profile of urinary PAH metabolites among Chinese populations in the 2010s. Sci Total Environ. 2023;857:159449. PubMed
Jung KH, Liu B, Lovinsky-Desir S, Yan B, Camann D, Sjodin A, et al. Time trends of polycyclic aromatic hydrocarbon exposure in New York city from 2001 to 2012: Assessed by repeat air and urine samples. Environ Res. 2014;131:95–103. PubMed PMC
Burkhardt T, Scherer M, Scherer G, Pluym N, Weber T, Kolossa-Gehring M. Time trend of exposure to secondhand tobacco smoke and polycyclic aromatic hydrocarbons between 1995 and 2019 in Germany – Showcases for successful European legislation. Environ Res. 2023;216:114638.
Online. In: Sbírka zákonů České republiky. [Internet]. 2017. Act No. 65/2017 Coll. Act on the Protection of Health from the Harmful Effects of Addictive Substances. Available from: https://www.zakonyprolidi.cz/translation/cs/2017-65?langid=1033
NIPH. Užívání tabáku a alkoholu v české republice 2019. 2020.
Online. In: Sbírka zákonů České republiky. [Internet]. 2014 [cited 2025 Feb 20]. Act No. 201/2012 Coll. Act on Air Protection. Available from: https://www.zakonyprolidi.cz/translation/cs/2012-201?langid=1033
Schindler BK, Esteban M, Koch HM, Castano A, Koslitz S, Cañas A, et al. The European COPHES/DEMOCOPHES project: Towards transnational comparability and reliability of human biomonitoring results. Int J Hyg Environ Health. 2014;217:653–61. PubMed
Černá M, Malý M, Rudnai P, Középesy S, Náray M, Halzlová K, et al. Case study: Possible differences in phthalates exposure among the Czech, Hungarian, and Slovak populations identified based on the DEMOCOPHES pilot study results. Environ Res. 2015;141:118–24. PubMed
Piler P, Kandrnal V, Kukla L, Andrýsková L, Švancara J, Jarkovský J, et al. Cohort Profile: The European Longitudinal Study of Pregnancy and Childhood (ELSPAC) in the Czech Republic. Int J Epidemiol. 2017;46:1379–1379F. PubMed
Gilles L, Govarts E, Rodriguez Martin L, Andersson AM, Appenzeller BMR, Barbone F, et al. Harmonization of Human Biomonitoring Studies in Europe: Characteristics of the HBM4EU-Aligned Studies Participants. Int J Environ Res Public Health. 2022;19:6787. PubMed PMC
CDC. Laboratory Procedure Manual Monohydroxy-Polycyclic Aromatic Hydrocarbons (OH-PAHs). 2013.
Esteban López M, Göen T, Mol H, Nübler S, Haji-Abbas-Zarrabi K, Koch HM, et al. The European human biomonitoring platform - Design and implementation of a laboratory quality assurance/quality control (QA/QC) programme for selected priority chemicals. Int J Hyg Environ Health. 2021;234:113740. PubMed
Nübler S, Esteban López M, Castano A, Mol H, Müller J, Schäfer M, et al. External Quality Assurance Schemes (Equass) and Inter-Laboratory Comparison Investigations (Icis) for Human Biomonitoring of Polycyclic Aromatic Hydrocarbon (Pah) Biomarkers in Urine as Part of the Quality Assurance Programme Under Hbm4eu. SSRN Electron J. 2022;11:1092–9.
Henny J. The IFCC recommendations for determining referenceintervals: strengths and limitations. Journal Lab Med [Internet]. 2009;33:45–51. https://www.degruyter.com/document/doi/10.1515/JLM.2009.016/html?srsltid=AfmBOop80YVfYMNssogMeg0W2R5UTnvqL0kio-i-DyQuFYUfoDyDcTjJMar1 cited 2025 Feb 20].
UBA. Reference and HBM Values [Internet]. 2023. Available from: https://www.umweltbundesamt.de/en/topics/health/commissions-working-groups/human-biomonitoring-commission/reference-hbm-values
Hoopmann M, Murawski A, Schümann M, Göen T, Apel P, Vogel N, et al. A revised concept for deriving reference values for internal exposures to chemical substances and its application to population-representative biomonitoring data in German children and adolescents 2014–2017 (GerES V). Int J Hyg Environ Health. 2023;253:114236.
Schulz C, Angerer J, Ewers U, Heudorf U, Wilhelm M. Revised and new reference values for environmental pollutants in urine or blood of children in Germany derived from the German Environmental Survey on Children 2003-2006 (GerES IV). Int J Hyg Environ Health. 2009;212:637–47. PubMed
Saravanabhavan G, Werry K, Walker M, Haines D, Malowany M, Khoury C. Human biomonitoring reference values for metals and trace elements in blood and urine derived from the Canadian Health Measures Survey 2007–2013. Int J Hyg Environ Health. 2017;220:189–200. PubMed
Kim HW, Kam S, Lee DH. Synergistic interaction between polycyclic aromatic hydrocarbons and environmental tobacco smoke on the risk of obesity in children and adolescents: The U.S. National Health and Nutrition Examination Survey 2003–2008. Environ Res. 2014;135:354–60. PubMed
Scherer G, Scherer M, Rögner N, Pluym N. Assessment of the exposure to polycyclic aromatic hydrocarbons in users of various tobacco/nicotine products by suitable urinary biomarkers. Arch Toxicol. 2022;96:3113–26. PubMed
Suzuki K, Yoshinaga J. Inhalation and dietary exposure to polycyclic aromatic hydrocarbons and urinary 1-hydroxypyrene in non-smoking university students. Int Arch Occup Environ Health. 2007;81:115–21. PubMed
Van Rooij JGM, Veeger MMS, Bodelier-Bade MM, Scheepers PTJ, Jongeneelen FJ. Smoking and dietary intake of polycyclic aromatic hydrocarbons as sources of interindividual variability in the baseline excretion of 1-hydroxypyrene in urine. Int Arch Occup Environ Health. 1994;66:55–65. PubMed
Viau C, Diakité A, Ruzgyté A, Tuchweber B, Blais C, Bouchard M, et al. Is 1-hydroxypyrene a reliable bioindicator of measured dietary polycyclic aromatic hydrocarbon under normal conditions?. J Chromatogr B Anal Technol Biomed Life Sci. 2002;778:165–77.
Zhang Y, Ding J, Shen G, Zhong J, Wang C, Wei S, et al. Dietary and inhalation exposure to polycyclic aromatic hydrocarbons and urinary excretion of monohydroxy metabolites-a controlled case study in Beijing, China. Environ Pollut. 2014;184:515–22. PubMed
Liu LY, Kukučka P, Venier M, Salamova A, Klánová J, Hites RA. Differences in spatiotemporal variations of atmospheric PAH levels between North America and Europe: Data from two air monitoring projects. Environ Int. 2014;64:48–55. PubMed
Lhotka R, Pokorná P, Zíková N. Long-term trends in PAH concentrations and sources at rural background site in Central Europe. Atmosphere. 2019;10:1–16.
CHMU. Znečištění ovzduší benzo[a]pyrenem v roce 2021 [Internet]. 2021 [cited 2025 Feb 21]. Available from: https://info.chmi.cz/rocenka/ko2021/4-2.php#chapter2
Borůvková J, Gregor J, Šebková K, Bednářová Z, Kalina J, R. H, et al GENASIS – Global Environmental Assessment and Information System [Internet]. 2015. Available from: https://www.genasis.cz
Lao JY, Xie SY, Wu CC, Bao LJ, Tao S, Zeng EY. Importance of dermal absorption of polycyclic aromatic hydrocarbons derived from barbecue fumes. Environ Sci Technol. 2018;52:8330–8. PubMed
Sampaio GR, Guizellini GM, da Silva SA, de Almeida AP, Pinaffi-Langley ACC, Rogero MM, et al. Polycyclic aromatic hydrocarbons in foods: Biological effects, legislation, occurrence, analytical methods, and strategies to reduce their formation. Int J Mol Sci. MDP. 2021;22:6010.
Reinik M, Tamme T, Roasto M, Juhkam K, Tenno T, Kiis A. Polycyclic aromatic hydrocarbons (PAHs) in meat products and estimated PAH intake by children and the general population in Estonia. Food Addit Contam. 2007;24:429–37. PubMed
Xia Z, Duan X, Qiu W, Liu D, Wang B, Tao S, et al. Health risk assessment on dietary exposure to polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China. Sci Total Environ. 2010;408:5331–7. PubMed
Starski A, Kukielska A, Postupolski J. Occurrence of Polycyclic Aromatic Hydrocarbons in Human Diet – Exposure and Risk Assessment To Consumer Health*. Roczniki Panstwowego Zakl Hig / Ann Natl Inst Hyg. 2021;72:253–65.
Rey-Salgueiro L, Martínez-Carballo E, García-Falcón MS, Simal-Gándara J. Survey of polycyclic aromatic hydrocarbons in canned bivalves and investigation of their potential sources. Food Res Int. 2009;42:983–8.
Deziel NC, Wei WQ, Abnet CC, Qiao YL, Sunderland D, Ren JS, et al. A multi-day environmental study of polycyclic aromatic hydrocarbon exposure in a high-risk region for esophageal cancer in China. J Expo Sci Environ Epidemiol. 2013;23:52–9. PubMed
Domingo JL, Nadal M. Human dietary exposure to polycyclic aromatic hydrocarbons: A review of the scientific literature. Food Chem Toxicol. 2015;86:144–53. PubMed
Whitehead T, Metayer C, Gunier RB, Ward MH, Nishioka MG, Buffler P, et al. Determinants of polycyclic aromatic hydrocarbon levels in house dust. J Expo Sci Environ Epidemiol. 2011;21:123–32. PubMed
Farzan SF, Chen Y, Trachtman H, Trasande L. Urinary polycyclic aromatic hydrocarbons and measures of oxidative stress, inflammation and renal function in adolescents: NHANES 2003-2008. Environ Res. 2016;144:149–57. PubMed
Thai PK, Banks APW, Toms LML, Choi PM, Wang X, Hobson P, et al. Analysis of urinary metabolites of polycyclic aromatic hydrocarbons and cotinine in pooled urine samples to determine the exposure to PAHs in an Australian population. Environ Res. 2020;182:109048.
COMMISSION DECISION of 21 May 2007 concerning the non-inclusion of carbaryl in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing that substance (notified under document number C(2007) 2093) (Text with EEA relevance)
Zhu H, Martinez-Moral MP, Kannan K. Variability in urinary biomarkers of human exposure to polycyclic aromatic hydrocarbons and its association with oxidative stress. Environ Int. 2021;156:106720.
Lin Y, Qiu X, Yu N, Yang Q, Araujo JA, Zhu Y. Urinary Metabolites of Polycyclic Aromatic Hydrocarbons and the Association with Lipid Peroxidation: A Biomarker-Based Study between Los Angeles and Beijing. Environ Sci Technol. 2016;50:3738–45. PubMed PMC
Klotz K, Weiß T, Zobel M, Bury D, Breuer D, Werner S, et al. Validity of different biomonitoring parameters in human urine for the assessment of occupational exposure to naphthalene. Arch Toxicol. 2019;93:2185–95. PubMed
Sams C. Urinary naphthol as a biomarker of exposure: Results from an oral exposure to carbaryl and workers occupationally exposed to naphthalene. Toxics. 2017;5:3.
Meeker JD, Barr DB, Serdar B, Rappaport SM, Hauser R. Utility of urinary 1-naphthol and 2-naphthol levels to assess environmental carbaryl and naphthalene exposure in an epidemiology study. In: Journal of Exposure Science and Environmental Epidemiology. 2007;17:314–20.
Health Canada. Fourth Report on Human Biomonitoring of Environmental Chemicals in Canada. 2017.
CDC. National Report on Human Exposure to Environmental Chemicals. 2020.
Choi W, Kim S, Baek YW, Choi K, Lee K, Kim S, et al. Exposure to environmental chemicals among Korean adults-updates from the second Korean National Environmental Health Survey (2012–2014). Int J Hyg Environ Health. 2017;220:29–35. PubMed
Guo Y, Senthilkumar K, Alomirah H, Moon HB, Minh TB, Mohd MA, et al. Concentrations and profiles of urinary polycyclic aromatic hydrocarbon metabolites (OH-PAHs) in several Asian countries. Environ Sci Technol. 2013;47:2932–8. PubMed
UNESCO. The International Standard Classification of Education (ISCED). Vol. 5, Prospects. Montreal, Quebec, Canada; 2012.