Multi robot exploration using an advanced multi-objective salp swarm algorithm for efficient coverage and performance
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
40681526
PubMed Central
PMC12274450
DOI
10.1038/s41598-025-08194-w
PII: 10.1038/s41598-025-08194-w
Knihovny.cz E-zdroje
- Klíčová slova
- Area coverage, Artificial Intelligence, Autonomous robotic systems, Computational efficiency, Multi-objective optimization, Multi-robot exploration, Salp swarm algorithm,
- Publikační typ
- časopisecké články MeSH
This work introduces the Advanced Multi-Objective Salp Swarm Algorithm Exploration Technique (AMET), which is a novel optimization framework designed to enhance the efficiency and robustness of multi-robot exploration. AMET combines the deterministic structure of Coordinated Multi-Robot Exploration (CME) with the adaptive search capabilities of the Multi-Objective Salp Swarm Algorithm (MSSA) to achieve a balanced trade-off between exploration efficiency and mapping accuracy. To validate its effectiveness, AMET is compared to both multi-objective and single-objective exploration strategies, including CME combined with Multi-Objective Grey Wolf Optimizer (CME-MGWO), Multi-Objective Ant Colony Optimization (CME-MACO), Multi-Objective Dragonfly Algorithm (CME-MODA), and the single-objective CME with traditional Salp Swarm Algorithm (CME-SSA). The evaluation focuses on four critical performance metrics: runtime efficiency, exploration area coverage, mission completion resilience, and the reduction of redundant exploration. Experimental results across multiple case studies demonstrate that AMET consistently outperforms both single-objective and multi-objective counterparts, achieving superior area coverage, reduced computational overhead, and enhanced exploration coordination. These findings highlight the potential of AMET as a scalable and efficient approach for robotic exploration, providing a foundation for future advancements in multi-robot systems. The proposed method opens new possibilities for applications in search-and-rescue operations, planetary surface exploration, and large-scale environmental monitoring.
Zobrazit více v PubMed
Olcay, E., Schuhmann, F. & Lohmann, B. Collective navigation of a multi-robot system in an unknown environment.
Lima, P. U. & Custódio, L. Multi-robot systems. In
Matarić, M. J., Sukhatme, G. S. & Østergaard, E. H. Multi-robot task allocation in uncertain environments.
Mavrovouniotis, M., Li, C. & Yang, S. A survey of swarm intelligence for dynamic optimization: algorithms and applications.
Soares, P. P., de Souza, L. B., Mendonça, M., Palácios, R. H. C. & de Almeida, J. P. L. S. Group of robots inspired by swarm robotics exploring unknown environments. In
Kaufmann, M.
Blondin, M. J. & Hale, M. An algorithm for multi-objective multi-agent optimization. In
Garg, V., Tiwari, R. & Shukla, A. Comparative analysis of fruit fly-inspired multi-robot cooperative algorithm for target search and rescue. In
Brinkmann, W.
Tran, V. P., Garratt, M. A., Kasmarik, K., Anavatti, S. G. & Abpeikar, S. Frontier-led swarming: Robust multi-robot coverage of unknown environments.
Nair, V. G. & Guruprasad, K. R. MR-SimExCoverage: Multi-robot simultaneous exploration and coverage.
Mirjalili, S. et al. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems.
Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II.
Zhang, Q. & Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition.
Li, H. et al. Source-seeking multi-robot team simulator as container of nature-inspired metaheuristic algorithms and Astar algorithm.
Paikray, H. K., Das, P. K. & Panda, S. Optimal path planning of multi-robot in dynamic environment using hybridization of meta-heuristic algorithm.
Xu, Y., Li, Q., Xu, X., Yang, J. & Chen, Y. Research progress of nature-inspired metaheuristic algorithms in mobile robot path planning.
Burgard, W., Moors, M., Stachniss, C. & Schneider, F. E. Coordinated multi-robot exploration.
Mirjalili, S., Saremi, S., Mirjalili, S. M. & Coelho, L. D. S. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization.
Sun, X., You, X. & Liu, S. Multi-objective ant colony optimization algorithm for shortest route problem. In
Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems.
Yan, Z., Fabresse, L., Laval, J. & Bouraqadi, N. Metrics for performance benchmarking of multi-robot exploration. In
Alitappeh, R. J. & Jeddisaravi, K. Multi-robot exploration in task allocation problem.
Kamalova, Navruzov & Qian, Lee. Multi-robot exploration based on multi-objective grey wolf optimizer.
Romeh, A. E. & Mirjalili, S. Multi-robot exploration of unknown space using combined meta-heuristic salp swarm algorithm and deterministic coordinated multi-robot exploration. PubMed PMC
Chang, Y. et al. LAMP 2.0: A robust multi-robot SLAM system for operation in challenging large-scale underground environments.
Alitappeh, R. J. & Jeddisaravi, K. Multi-robot exploration in task allocation problem.
Habibian, S. et al. Design and implementation of a maxi-sized mobile robot (Karo) for rescue missions.
Dutta, A., Roy, S., Kreidl, O. P. & Boloni, L. Multi-robot information gathering for precision agriculture: Current state, scope, and challenges.
Kennedy, J. & Eberhart, R. Particle swarm optimization. In
St-Onge, D., Levillain, F., Zibetti, E. & Beltrame, G. Collective expression: How robotic swarms convey information with group motion.
Andries, M.; Charpillet, F. Multi-robot taboo-list exploration of unknown structured environments. In
Holland, John H. "Genetic algorithms." Scientific american 267.1, 66–73 (1992).
Galceran, E. & Carreras, M. A survey on coverage path planning for robotics.
Wang, X. & Syrmos, V. L. Coverage path planning for multiple robotic agent-based inspection of an unknown 2D environment. In
Mirjalili, S., Mirjalili, S. M. & Lewis, A. Grey wolf optimizer.
Kennedy, J. & Eberhart, R. Particle swarm optimization. In
Albina, K. & Lee, S. G. Hybrid stochastic exploration using grey wolf optimizer and coordinated multi-robot exploration algorithms.
Gul, F., Mir, I., Rahiman, W. & Islam, T. U. Novel implementation of multi-robot space exploration utilizing coordinated multi-robot exploration and frequency modified whale optimization algorithm.
Gul, F., Mir, I. & Mir, S. Aquila optimizer with parallel computing strategy for efficient environment exploration.
Gul, F., Mir, I., Abualigah, L. & Sumari, P. Multi-robot space exploration: An augmented arithmetic approach.
Derrac, J., García, S., Molina, D. & Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms.
Romeh, A. E., Mirjalili, S. & Gul, F. Hybrid vulture-coordinated multi-robot exploration: A novel algorithm for optimization of multi-robot exploration.