Fluorescence from pentacyanopropenide in melamine
Status Publisher Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40686835
PubMed Central
PMC12268318
DOI
10.1039/d5ma00400d
PII: d5ma00400d
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Aggregation-induced optical phenomena are at the forefront of modern materials science. In this work, tetracyanoethylene (TCNE) is reacted and encapsulated within melamine. Crystallization from aqueous tetrahydrofuran solutions containing melamine and TCNE at varying concentrations yields colorful crystals exhibiting multi-wavelength fluorescence emission. Combined infrared spectroscopy and mass spectrometry reveal that the crystals are melamine doped with trace amounts of 1,1,2,3,3-pentacyanopropenide. Fluorescence excitation-emission spectral mapping elucidates the concentration dependence of fluorescence emission in both the precursor solutions and the resulting crystals. Density functional theory calculations attribute the observed multi-wavelength emission to dimers of the pentacyanopropenide. Encapsulating reactive molecules within crystalline melamine, as demonstrated with 1,1,2,3,3-pentacyanopropenide and its dimer, offers a versatile strategy for stabilizing a wide range of otherwise unstable species.
Zobrazit více v PubMed
Burroughes J. H. Bradley D. D. C. Brown A. R. Marks R. N. Mackay K. Friend R. H. Burns P. L. Holmes A. B. Light-emitting diodes based on conjugated polymers. Nature. 1990;347(6293):539–541.
Yang Y. Zhao Q. Feng W. Li F. Luminescent chemodosimeters for bioimaging. Chem. Rev. 2013;113(1):192–270. PubMed
Zhang B. Ge C. Yao J. Liu Y. Xie H. Fang J. Selective selenol fluorescent probes: design, synthesis, structural determinants, and biological applications. J. Am. Chem. Soc. 2015;137(2):757–769. PubMed
Green A. P. Buckley A. R. Solid state concentration quenching of organic fluorophores in pmma. Phys. Chem. Chem. Phys. 2015;17(2):1435–1440. PubMed
Srujana P. Sudhakar P. Radhakrishnan T. P. Enhancement of fluorescence efficiency from molecules to materials and the critical role of molecular assembly. J. Mater. Chem. C. 2018;6(35):9314–9329.
Han T. Yan D. Wu Q. Song N. Zhang H. Wang D. Aggregation-induced emission: A rising star in chemistry and materials science. Chin. J. Chem. 2021;39(3):677–689.
Arbeloa F. L. Ojeda P. R. Arbeloa I. L. Dimerization and trimerization of rhodamine 6g in aqueous solution. effect on the fluorescence quantum yield. J. Chem. Soc., Faraday Trans. 2. 1988;84(12):1903–1912.
Taguchi T. Hirayama S. Okamoto M. New spectroscopic evidence for molecular aggregates of rhodamine 6g in aqueous solution at high pressure. Chem. Phys. Lett. 1994;231(4–6):561–568.
Bojarski P. Matczuk A. Bojarski C. Kawski A. Kukliński B. Zurkowska G. Diehl H. Fluorescent dimers of rhodamine 6g in concentrated ethylene glycol solution. Chem. Phys. 1996;210(3):485–499.
Li R. Fan Y. Tang B. Ren J. Zhang L. Concentration-dependent luminescent behaviour of rhodamine 6g in alpo4 xerogel monoliths. Mater. Chem. Phys. 2011;125(1):87–92.
Barzan M. Hajiesmaeilbaigi F. Investigation the concentration effect on the absorption and fluorescence properties of rhodamine 6g dye. Optik. 2018;159:157–161.
Li J. Yuan S. Qin J.-S. Huang L. Bose R. Pang J. Zhang P. Xiao Z. Tan K. Malko A. V. et al., Fluorescence enhancement in the solid state by isolating perylene fluorophores in metal-organic frameworks. ACS Appl. Mater. Interfaces. 2020;12(23):26727–26732. PubMed
Luo J. Xie Z. Lam J. W. Y. Cheng L. Chen H. Qiu C. Kwok H. S. Zhan X. Liu Y. Zhu D. et al., Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole. Chem. Commun. 2001;(18):1740–1741. PubMed
Johnson T. J. Hipps K. W. Willett R. D. Salts of the 1,1,2,3,3,-pentacyanopropenide anion: crystallographic and spectroscopic studies. J. Phys. Chem. 1988;92(24):6892–6899.
Mishra V. Mantel A. Kapusta P. Prado-Roller A. Shiozawa H. Highly luminescent tcnq in melamine. ACS Appl. Opt. Mater. 2024;2(6):1128–1135. PubMed PMC
Jeremy Jones W. Orville-Thomas W. J. The infra-red spectrum and structure of melamine. Trans. Faraday Soc. 1959;55:203–210.
Takenaka T. Tadokoro S.-I. Uyeda N. Infrared absorption spectra of tetracyanoethylene: Adsorbed on evaporated alkali halides. Bull. Inst. Chem. Res., Kyoto Univ. 1971;48(6):249–263.
Yang S. Ding J. Zheng J. Hu B. Li J. Chen H. Zhou Z. Qiao X. Detection of melamine in milk products by surface desorption atmospheric pressure chemical ionization mass spectrometry. Anal. Chem. 2009;81(7):2426–2436. PubMed
Kailasa S. K. Wu H.-F. Electrospray ionization tandem mass spectrometry for rapid, sensitive and direct detection of melamine in dairy products. J. Ind. Eng. Chem. 2015;21:138–144.
Miller J. S. Tetracyanoethylene (tcne): The characteristic geometries and vibrational absorptions of its numerous structures. Angew. Chem., Int. Ed. 2006;45(16):2508–2525. PubMed
Smith-Gicklhorn A. M. Frankowski M. Bondybey V. E. Tetracyanoethylene, its ions and ionic fragments. Phys. Chem. Chem. Phys. 2002;4(8):1425–1431.
Soltner T. Häusler J. Kornath A. J. The existence of tricyanomethane. Angew. Chem., Int. Ed. 2015;54(46):13775–13776. PubMed
Middleton W. J. Little E. L. Coffman D. D. Engelhardt V. A. Cyanocarbon chemistry. v.1 cyanocarbon acids and their salts. J. Am. Chem. Soc. 1958;80(11):2795–2806.
Conan F. Gall B. L. Kerbaol J.-M. Stang S. L. Sala-Pala J. Mest Y. L. Bacsa J. Ouyang X. Dunbar K. R. Campana. C. F. Electrochemical, spectroscopic, and structural evidence for the mild hydrolysis of tetracyanoethylene, tcne, to form the 2,3,3-tricyanoacrylamidate ligand: Isolation of an unexpected quadruply-bonded polymeric material [mo2(o2ccme3)3((nc)2cc(cn)conh)] Inorg. Chem. 2004;43(12):3673–3681. PubMed
Culbertson J. A. Sears L. J. Knighton W. B. Grimsrud E. P. Origin of adduct ions in the electron-capture mass spectrum of tetracyanoethylene. Org. Mass Spectrom. 1992;27(3):277–283.
Guerraf A. E. Zeng W. Mantel A. Benhsina E. Chin J. M. Shiozawa H. Synchronous electrochromism and electrofluorochromism in a zirconium pyrenetetrabenzoate metal-organic framework. Adv. Electron. Mater. 2024;10(7):2300854.