Fluorescence from pentacyanopropenide in melamine

. 2025 Aug 26 ; 6 (17) : 5884-5891. [epub] 20250703

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40686835

Aggregation-induced optical phenomena are at the forefront of modern materials science. In this work, tetracyanoethylene (TCNE) is reacted and encapsulated within melamine. Crystallization from aqueous tetrahydrofuran solutions containing melamine and TCNE at varying concentrations yields colorful crystals exhibiting multi-wavelength fluorescence emission. Combined infrared spectroscopy and mass spectrometry reveal that the crystals are melamine doped with trace amounts of 1,1,2,3,3-pentacyanopropenide. Fluorescence excitation-emission spectral mapping elucidates the concentration dependence of fluorescence emission in both the precursor solutions and the resulting crystals. Density functional theory calculations attribute the observed multi-wavelength emission to dimers of the pentacyanopropenide. Encapsulating reactive molecules within crystalline melamine, as demonstrated with 1,1,2,3,3-pentacyanopropenide and its dimer, offers a versatile strategy for stabilizing a wide range of otherwise unstable species.

Zobrazit více v PubMed

Burroughes J. H. Bradley D. D. C. Brown A. R. Marks R. N. Mackay K. Friend R. H. Burns P. L. Holmes A. B. Light-emitting diodes based on conjugated polymers. Nature. 1990;347(6293):539–541. doi: 10.1038/347539a0. DOI

Yang Y. Zhao Q. Feng W. Li F. Luminescent chemodosimeters for bioimaging. Chem. Rev. 2013;113(1):192–270. doi: 10.1021/cr2004103. PubMed DOI

Zhang B. Ge C. Yao J. Liu Y. Xie H. Fang J. Selective selenol fluorescent probes: design, synthesis, structural determinants, and biological applications. J. Am. Chem. Soc. 2015;137(2):757–769. doi: 10.1021/ja5099676. PubMed DOI

Green A. P. Buckley A. R. Solid state concentration quenching of organic fluorophores in pmma. Phys. Chem. Chem. Phys. 2015;17(2):1435–1440. doi: 10.1039/C4CP05244G. PubMed DOI

Srujana P. Sudhakar P. Radhakrishnan T. P. Enhancement of fluorescence efficiency from molecules to materials and the critical role of molecular assembly. J. Mater. Chem. C. 2018;6(35):9314–9329. doi: 10.1039/C8TC03305F. DOI

Han T. Yan D. Wu Q. Song N. Zhang H. Wang D. Aggregation-induced emission: A rising star in chemistry and materials science. Chin. J. Chem. 2021;39(3):677–689. doi: 10.1002/cjoc.202000520. DOI

Arbeloa F. L. Ojeda P. R. Arbeloa I. L. Dimerization and trimerization of rhodamine 6g in aqueous solution. effect on the fluorescence quantum yield. J. Chem. Soc., Faraday Trans. 2. 1988;84(12):1903–1912. doi: 10.1039/F29888401903. DOI

Taguchi T. Hirayama S. Okamoto M. New spectroscopic evidence for molecular aggregates of rhodamine 6g in aqueous solution at high pressure. Chem. Phys. Lett. 1994;231(4–6):561–568. doi: 10.1016/0009-2614(94)01274-1. DOI

Bojarski P. Matczuk A. Bojarski C. Kawski A. Kukliński B. Zurkowska G. Diehl H. Fluorescent dimers of rhodamine 6g in concentrated ethylene glycol solution. Chem. Phys. 1996;210(3):485–499. doi: 10.1016/0301-0104(96)00141-3. DOI

Li R. Fan Y. Tang B. Ren J. Zhang L. Concentration-dependent luminescent behaviour of rhodamine 6g in alpo4 xerogel monoliths. Mater. Chem. Phys. 2011;125(1):87–92. doi: 10.1016/j.matchemphys.2010.08.076. DOI

Barzan M. Hajiesmaeilbaigi F. Investigation the concentration effect on the absorption and fluorescence properties of rhodamine 6g dye. Optik. 2018;159:157–161. doi: 10.1016/j.ijleo.2018.01.075. DOI

Li J. Yuan S. Qin J.-S. Huang L. Bose R. Pang J. Zhang P. Xiao Z. Tan K. Malko A. V. et al., Fluorescence enhancement in the solid state by isolating perylene fluorophores in metal-organic frameworks. ACS Appl. Mater. Interfaces. 2020;12(23):26727–26732. doi: 10.1021/acsami.0c05512. PubMed DOI

Luo J. Xie Z. Lam J. W. Y. Cheng L. Chen H. Qiu C. Kwok H. S. Zhan X. Liu Y. Zhu D. et al., Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole. Chem. Commun. 2001;(18):1740–1741. doi: 10.1039/B105159H. PubMed DOI

Johnson T. J. Hipps K. W. Willett R. D. Salts of the 1,1,2,3,3,-pentacyanopropenide anion: crystallographic and spectroscopic studies. J. Phys. Chem. 1988;92(24):6892–6899. doi: 10.1021/j100335a011. DOI

Mishra V. Mantel A. Kapusta P. Prado-Roller A. Shiozawa H. Highly luminescent tcnq in melamine. ACS Appl. Opt. Mater. 2024;2(6):1128–1135. doi: 10.1021/acsaom.4c00110. PubMed DOI PMC

Jeremy Jones W. Orville-Thomas W. J. The infra-red spectrum and structure of melamine. Trans. Faraday Soc. 1959;55:203–210. doi: 10.1039/TF9595500203. DOI

Takenaka T. Tadokoro S.-I. Uyeda N. Infrared absorption spectra of tetracyanoethylene: Adsorbed on evaporated alkali halides. Bull. Inst. Chem. Res., Kyoto Univ. 1971;48(6):249–263.

Yang S. Ding J. Zheng J. Hu B. Li J. Chen H. Zhou Z. Qiao X. Detection of melamine in milk products by surface desorption atmospheric pressure chemical ionization mass spectrometry. Anal. Chem. 2009;81(7):2426–2436. doi: 10.1021/ac900063u. PubMed DOI

Kailasa S. K. Wu H.-F. Electrospray ionization tandem mass spectrometry for rapid, sensitive and direct detection of melamine in dairy products. J. Ind. Eng. Chem. 2015;21:138–144. doi: 10.1016/j.jiec.2014.03.012. DOI

Miller J. S. Tetracyanoethylene (tcne): The characteristic geometries and vibrational absorptions of its numerous structures. Angew. Chem., Int. Ed. 2006;45(16):2508–2525. doi: 10.1002/anie.200503277. PubMed DOI

Smith-Gicklhorn A. M. Frankowski M. Bondybey V. E. Tetracyanoethylene, its ions and ionic fragments. Phys. Chem. Chem. Phys. 2002;4(8):1425–1431. doi: 10.1039/B110032G. DOI

Soltner T. Häusler J. Kornath A. J. The existence of tricyanomethane. Angew. Chem., Int. Ed. 2015;54(46):13775–13776. doi: 10.1002/anie.201506753. PubMed DOI

Middleton W. J. Little E. L. Coffman D. D. Engelhardt V. A. Cyanocarbon chemistry. v.1 cyanocarbon acids and their salts. J. Am. Chem. Soc. 1958;80(11):2795–2806. doi: 10.1021/ja01544a055. DOI

Conan F. Gall B. L. Kerbaol J.-M. Stang S. L. Sala-Pala J. Mest Y. L. Bacsa J. Ouyang X. Dunbar K. R. Campana. C. F. Electrochemical, spectroscopic, and structural evidence for the mild hydrolysis of tetracyanoethylene, tcne, to form the 2,3,3-tricyanoacrylamidate ligand: Isolation of an unexpected quadruply-bonded polymeric material [mo2(o2ccme3)3((nc)2cc(cn)conh)] Inorg. Chem. 2004;43(12):3673–3681. doi: 10.1021/ic0351186. PubMed DOI

Culbertson J. A. Sears L. J. Knighton W. B. Grimsrud E. P. Origin of adduct ions in the electron-capture mass spectrum of tetracyanoethylene. Org. Mass Spectrom. 1992;27(3):277–283. doi: 10.1002/oms.1210270320. DOI

Guerraf A. E. Zeng W. Mantel A. Benhsina E. Chin J. M. Shiozawa H. Synchronous electrochromism and electrofluorochromism in a zirconium pyrenetetrabenzoate metal-organic framework. Adv. Electron. Mater. 2024;10(7):2300854. doi: 10.1002/aelm.202300854. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...