A phylogenetic and morphological study of the genus Dermoloma (Agaricales, Tricholomataceae) in Europe and North America exposes inefficiency of opportunistic species descriptions

. 2025 ; 16 () : e157337. [epub] 20250710

Status PubMed-not-MEDLINE Jazyk angličtina Země Bulharsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40689223

Dermoloma is traditionally known as a small genus of agarics classified in the family Tricholomataceae. This study implemented a multilocus phylogeny of six DNA regions to recognize phylogenetic species within the genus. The species concept is reinforced by observations of well-defined morphological characters enhanced by long term sampling effort in Europe and North America. Thirty European Dermoloma species are described, including 16 new species from Europe and three from North American. These species are classified into two subgenera morphologically distinguished by spores with positive or negative amyloid reaction. A new genus Neodermoloma is introduced for the Dermoloma-like species N.campestre. Localized or continental-scale species endemicity was confirmed based on studied material, but more inclusive phylogenetic clustering supported a mixture of North American species among the European clades. Of the 22 names validly published from Europe prior to this study, 11 could be assigned to well-defined Dermoloma species recognized here. Of the remaining 11 names, two were considered representing Dermoloma species not recorded since their description, and nine were established as later synonyms of other species. Morphological studies of Dermoloma are challenging due to the relatively low number of characters suitable for identification of species. The majority of morphological characters showed continuous variation with high overlap throughout the genus. For this reason, species identification requires an awareness of morphological variability within species, and multiple distinguishing characters need to be combined, and furthermore, often a barcode sequence is needed for a certain identification. Stable isotope analysis in Dermoloma of δ13C and δ15N revealed an ecological signature similar to known CHEGD fungi, i.e. Clavariaceae and Hygrocybe s.l. This indicates that Dermoloma species are biotrophic but neither ectomycorrhizal nor saprotrophic and may form mutualistic root endophytic associations with vascular plants.

Conservatoire botanique national des Pyrénées et de Midi Pyrénées Vallon de Salut B P 315 65203 Bagnères de Bigorre Cedex France Conservatoire botanique national des Pyrénées et de Midi Pyrénées Bagnères de Bigorre Cedex France

Department of Botany Division of Science and Technology University of Education Lahore Pakistan University of Education Lahore Pakistan

Department of Botany Faculty of Natural Sciences Comenius University Bratislava Révová 39 811 02 Bratislava Slovakia Comenius University Bratislava Bratislava Slovakia

Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee USA University of Tennessee Knoxville United States of America

Department of Forest Ecology Wageningen University P O Box 9101 6700 HB Wageningen Netherlands Wageningen University Wageningen Netherlands

Department of Forest Mycology and Plant Pathology Swedish University of Agricultural Sciences Box 7026 750 07 Uppsala Sweden Swedish University of Agricultural Sciences Uppsala Sweden

Department of Life Sciences and Systems Biology University of Torino Vale P A Mattioli 25 10125 Torino Italy University of Torino Torino Italy

Department of Life Sciences Pont Cledwyn Aberystwyth University Aberystwyth SY23 3DD Wales UK Aberystwyth University Aberystwyth United Kingdom

Department of Plant Anatomy Institute of Biology Eötvös Loránd University Pázmány Péter sétány 1 C H 1117 Budapest Hungary Eötvös Loránd University Budapest Hungary

Department of Plant Pathology and Mycology Institute of Forest Ecology Slovak Academy of Sciences Zvolen Akademická 2 949 01 Nitra Slovakia Slovak Academy of Sciences Zvolen Nitra Slovakia

Institute of Geochemistry Mineralogy and Mineral Resources Faculty of Science Charles University Prague 2 Albertov 6 Czech Republic Charles University Prague Czech Republic

Laboratoire de Génie Civil et géo Environnement University of Lille ULR 4515 LGCgE 3 rue du Pr Laguesse F 59000 Lille France University of Lille Lille France

Laboratory for Biological Diversity Ruđer Bošković Institute Bijenička cesta 54 HR 10000 Zagreb Croatia Ruđer Bošković Institute Zagreb Croatia

Laboratory of Molecular Ecology and Mycology Institute of Botany Plant Science and Biodiversity Center Slovak Academy of Sciences Dúbravská cesta 9 845 23 Bratislava Slovakia Slovak Academy of Sciences Bratislava Slovakia

Somerton Cottage Hundleton Pembroke Wales UK Somerton Cottage Hundleton Pembroke United Kingdom

Studienzentrum Naturkunde Universalmuseum Joanneum Weinzöttlstraße 16 8045 Graz Austria Universalmuseum Joanneum Graz Austria

Technische Universität Dresden Internationales Hochschulinstitut Zittau Markt 23 02763 Zittau Germany Technische Universität Dresden Zittau Germany

Zobrazit více v PubMed

Adamčík S, Looney BP, et al. (2016) Circumscription of species of DOI

Adamčík S, Dima B, et al. (2018) European DOI

Adamčík S, Jančovičová S, et al. (2017a) Circumscription of species in the DOI

Adamčík S, Dima B, et al. (2020) DOI

Adamčík S, Jančovičová S, et al. (2017b) DOI

Arnolds E. (1992) Notulae ad Floram agaricinam neerlandicam – XIX. A revision of

Arnolds E. (1993) Notulae ad Floram agaricinam neerlandicam – XX. A revision of

Arnolds E. (1995)

Arnolds E. (2002)

Badotti F, de Oliveira FS, et al. (2017) Effectiveness of ITS and sub-regions as DNA barcode markers for the identification of PubMed DOI PMC

Balero M, Contu M. (1988) Inquadramentodelle specie del genere

Beker HJ, Eberhardt U, Vesterholt J. (2016)

Birkebak JM, Mayor JR, et al. (2013) A systematic, morphological and ecological overview of the PubMed DOI

Bon M. (1979) Taxons nouveaux. Documents Mycologiques 9(35): 39–44.

Bon M. (1986) Novitates. Validations et taxons nouveaux. Documents Mycologiques 17(65): 51–56.

Bon M. (1998) Novitates –

Caboň M, Galvánek D, et al. (2021) Mulching has negative impact on fungal and plant diversity in Slovak oligotrophic grasslands. Basic and Applied Ecology 52: 24–37. 10.1016/j.baae.2021.02.007 DOI

Castresana J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540–552. 10.1093/oxfordjournals.molbev.a026334 PubMed DOI

Contu M, Consiglio G, Setti L. (2008) Studi sul genere

Corriol G, Jargeat P. (2019) Morphological and phylogenetical description of DOI

Débarre F. (2012) Refining the conditions for sympatric ecological speciation. Journal of Evolutionary Biology 25: 2651–2660. 10.1111/j.1420-9101.2012.02621.x PubMed DOI

Dennis RWG. (1951) Some DOI

Dennis RWG. (1961) Fungi venezuelani: IV. DOI

Ding XX, Xu X, et al. (2023) A fifty-locus phylogenetic analysis provides deep insights into the phylogeny of PubMed DOI PMC

Donk MA. (1962) The generic names proposed for

Fries EM. (1821) Systema mycologicum sistens fungorum ordines, genera et species, huc usque cognitas, quas ad normam methodi naturalis determinavit, Vol. 1. Ex Officina Berlingiana, Lundae, 520 pp. 10.5962/bhl.title.5378 DOI

Gardes M, Bruns TD. (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118. 10.1111/j.1365-294X.1993.tb00005.x PubMed DOI

Griffith GW, Kevin R, et al. (2012) Sward management influences fruiting of grassland basidiomycete fungi. Biological Conservation 145: 234–240. 10.1016/j.biocon.2011.11.010 DOI

Griffith GW, Gamarra JGP, et al. (2013) The international conservation importance of Welsh ‘waxcap’ grasslands. Mycosphere 4: 969–984. 10.5943/mycosphere/4/5/10 DOI

Halbwachs H, Dentinger BTM, et al. (2013) Hyphae of waxcap fungi colonise plant roots. Fungal Ecology 6(6): 487–492. 10.1016/j.funeco.2013.08.003 DOI

Halbwachs H, Simmel J, Bässler C. (2016) Tales and mysteries of fungal fruiting: How morphological and physiological traits affect a pileate lifestyle. Fungal Biology Reviews 30: 36–61. 10.1016/j.fbr.2016.04.002 DOI

Halbwachs H, Easton GL, et al. (2018) Isotopic evidence of biotrophy and unusual nitrogen nutrition in soil-dwelling PubMed DOI PMC

Hart SC, Gehring CA, et al. (2006) Carbon and nitrogen elemental and isotopic patterns in macrofungal sporocarps and trees in semiarid forests of the south-western USA. Functional Ecology 20: 42–51. 10.1111/j.1365-2435.2005.01058.x DOI

Hay CRJ, Thorn RG, Jacobs CR. (2018) Taxonomic survey of DOI

Herink J. (1958) Šťavnatkovité houby pahorku “Velká Horka” u Mnichova Hradiště. Species familiae

Hernández-Hernández T, Miller EC, et al. (2021) Speciation across the Tree of Life. Biological Reviews 96: 1205–1242. 10.1111/brv.12698 PubMed DOI

Horak E. (1987) Über neue und systematisch interessante

Josserand M. (1943) Notes critiques sur quelques champignons de la région lyonnaise (3e Serié). Bulletin trimestrial de la Société mycologique de France 59: 6–34.

Josserand M. (1958) Une espèce nouvelle de Tricholomée: Tricholoma (Dermoloma) hygrophorus. Bulletin trimestrial de la Société mycologique de France 74: 482–491.

Josserand M. (1970) DOI

Katoh K, Standley DM. (2013) MAFFT multiple sequence alignment software, version 7: Improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. 10.1093/molbev/mst010 PubMed DOI PMC

Katoh K, Rozewicki J, Yamada KD. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. 10.1093/bib/bbx108 PubMed DOI PMC

Kearse M, Moir R, et al. (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649. 10.1093/bioinformatics/bts199 PubMed DOI PMC

Kolde R. (2018) pheatmap: pretty heatmaps. R package version 1.0.12. https://github.com/raivokolde/pheatmap

Kornerup A, Wanscher JH. (1978) Methuen Handbook of Colour. 3

Korotkin HB, Swenie RA, et al. (2018) Stable isotope analyses reveal previously unknown trophic mode diversity in the PubMed DOI

Kropp BR. (2008)

Kubička J. (1975) Houby státní prírodní reservace “Vyšenské kopce” u Českého Krumlova. Czech Mycology 29: 25–34. 10.33585/cmy.29103 DOI

Kües U, Navarro-González M. (2015) How do DOI

Kühner R. (1947) Quelques agarics rares, critiques, ou noveaux de la région de Besançon. Annales scientifiques de Franche-Comté 2: 26–42.

Lanfear R, Calcott B, et al. (2012) PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29: 1695–1701. 10.1093/molbev/mss020 PubMed DOI

Lange JE. (1933) Studies in the agarics of Denmark 9. Dansk Botanisk Arkiv 8(3): 1–49.

Larsson A. (2014) AliView: a fast and lightweight alignment viewer and editor for large data sets. Bioinformatics 30: 3276–3278. 10.1093/bioinformatics/btu531 PubMed DOI PMC

Lodge DJ, Padamsee M, et al. (2014) Molecular phylogeny, morphology, pigment chemistry and ecology in DOI

Maddison WP, Maddison DR. (2019) Mesquite: A modular system for evolutionary analysis. Version 3.61. Available online: http://mesquiteproject.org

Manz C, Amalfi M, et al. (2025) Just the tip of the iceberg: uncovering a hyperdiverse clade of African Russula ( PubMed DOI PMC

Matheny PB. (2005) Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences ( PubMed DOI

Matheny PB, Liu YJ, et al. (2002) Using RPB1 sequences to improve phylogenetic inference among mushrooms ( PubMed DOI

Matheny PB, Kudzma LV, et al. (2023) A phylogeny for North American PubMed DOI PMC

Mayor JR, Schuur EAG, Henkel TW. (2009) Elucidating the nutritional dynamics of fungi using stable isotopes. Ecology Letters 12: 171–183. 10.1111/j.1461-0248.2008.01265.x PubMed DOI

Melzer V. (1924) L’ornementation des spores de

Miller M, Pfeiffer W, Schwartz T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Gateway computing environments workshop (GCE), New Orleans, LA (USA), November 2010, IEEE Publisher, New Orleans, 1–8. 10.1109/GCE.2010.5676129 DOI

Miller AH, Stroud JT, Losos JB. (2023) The ecology and evolution of key innovations. Trends in Ecology and Evolution 38: 122–131. 10.1016/j.tree.2022.09.005 PubMed DOI

Moreau P-A, Chalange R, et al. (2023) Matériaux pour un catalogue actualisé des Mycota français - 1re partie: bolets, lactaires et tricholomes. Bulletin ADONIF 4: 39–116.

Mujic AB, Durall DM, et al. (2016) Competitive avoidance not edaphic specialization drives vertical niche partitioning among sister species of ectomycorrhizal fungi. New Phytologist 209: 1174–1183. 10.1111/nph.13677 PubMed DOI

Nagy LG, Walther G, et al. (2011) Understanding the evolutionary processes of fungal fruiting bodies: correlated evolution and divergence times in the PubMed DOI

Nagy LG, Tóth R, et al. (2017) Six key traits of fungi: their evolutionary origins and genetic bases. Microbiology Spectrum 5: 10. 10.1128/microbiolspec.FUNK-0036-2016 PubMed DOI PMC

Örstadius L. (2023) The Genus

Örstadius L, Ryberg M, Larsson E. (2015) Molecular phylogenetics and taxonomy in DOI

Orton PD. (1960) New checklist of British agarics and boleti. Part III. Notes on genera and species in the list. Transaction of the British Mycological Society 43: 159–384. 10.1016/S0007-1536(60)80065-4 DOI

Orton PD. (1980) Notes on British agarics: VII. Notes from the Royal Botanic Garden Edinburgh 38: 315–330.

Persoon CH. (1801) Synopsis methodicae fungorum: sistens enumerationem omnium huc vsque detectarum specierum, cum breuibus descriptionibus nec non synonymis et obseruationibus selectis. Apud Henricum Dieterich, Gottingae, 708 pp. 10.5962/bhl.title.166151 DOI

R Core Team. (2023) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org

Rambaut A, Suchard M, et al. (2014) Tracer. Version 1.6. http://beast.bio.ed.ac.uk/software/tracer/

Rehner SA, Buckley E. (2005) A PubMed DOI

Reschke K, Morozova OV, et al. (2022) Phylogeny, taxonomy, and character evolution in EntolomasubgenusNolanea. Persoonia 49: 136–170. 10.3767/persoonia.2022.49.04 PubMed DOI PMC

Redhead SA. (1984) Mycological observations, 4-12: on

Ricek EW. (1989) Die Pilzflora des Attergaues, Hausruck- und Kobernaußerwaldes. Zoologisch-Botanischen Gesellschaft in Österreich, Wien, 439 pp.

Ronquist F, Teslenko M, et al. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. 10.1093/sysbio/sys029 PubMed DOI PMC

Sánchez-García M, Matheny PB. (2017) Is the switch to an ectomycorrhizal state an evolutionary key innovation in mushroom-forming fungi? A case study of the PubMed DOI

Sánchez-García M, Matheny PB, et al. (2014) Deconstructing the DOI

Sánchez-García M, Adamčíková K, et al. (2021) The genus DOI

Seitzman BH, Ouimette A, et al. (2011) Conservation of biotrophy in PubMed DOI

Schmitt I, Crespo A, et al. (2009) New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia 23: 35–40. 10.3767/003158509X470602 PubMed DOI PMC

Singer R. (1956) New genera of fungi. VII. Mycologia 48: 719–727. 10.1080/00275514.1956.12024585 PubMed DOI

Singer R. (1962) [1961] Type studies on Agarics IV. Sydowia 15: 133–151.

Singer R. (1975) The

Singer R. (1989) New taxa and new combinations of DOI

Singer R, Clémençon H. (1971) Neue Arten von

Smith AH. (1941) [1940] New and unusual agarics from Michigan II. Papers of the Michigan Academy of Science, Arts and Letters 26: 61–68.

Song HB, Bau T. (2023) ConocybesectionPilosellae in China: reconciliation of taxonomy and phylogeny reveals seven new species and a new record. Journal of Fungi 9: e924. 10.3390/jof9090924 PubMed DOI PMC

Stamatakis A. (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. 10.1093/bioinformatics/btu033 PubMed DOI PMC

Stengel A, Stanke KM, et al. (2022) Improving taxonomic delimitation of fungal species in the age of genomics and phenomics. Frontiers in Microbiology 13: 847067. 10.3389/fmicb.2022.847067 PubMed DOI PMC

Stöver BC, Müller KF. (2010) TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11: 1–9. 10.1186/1471-2105-11-7 PubMed DOI PMC

Svrček M. (1966) DOI

Taylor AFS, Fransson PM, et al. (2003) Species level patterns in 13C and 15N abundance of ectomycorrhizal and saprotrophic fungal sporocarps. New Phytologist 159: 757–774. 10.1046/j.1469-8137.2003.00838.x PubMed DOI

Tello SA, Silva-Flores P, et al. (2014) DOI

Tedersoo L, Naadel T, et al. (2012) Enzymatic activities and stable isotope patterns of ectomycorrhizal fungi in relation to phylogeny and exploration types in an afrotropical rain forest. New Phytologist 195: 832–843. 10.1111/j.1469-8137.2012.04217.x PubMed DOI

Thibert-Plante X, Hendry AP. (2011) Factors influencing progress toward sympatric speciation. Journal of Evolutionary Biology 24: 2186–2196. 10.1111/j.1420-9101.2011.02348.x PubMed DOI

Thiers BM (updated continuously) Index Herbariorum. https://sweetgum.nybg.org/science/ih/

Trudell SA, Rygiewicz PT, Edmonds RL. (2004) Patterns of nitrogen and carbon stable isotope ratios in macrofungi, plants and soils in two old growth conifer forests. New Phytologist 164: 317–335. 10.1111/j.1469-8137.2004.01162.x PubMed DOI

Turland NJ, Wiersema JH, et al. (2018) International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159. Koeltz Botanical Books, Glashütten, 254 pp.

Vašutová M, Antonín V, Urban A. (2008) Phylogenetic studies in PubMed DOI

Vesterholt J. (2012)

Vellinga EC. (1988) Glossary. In Bas C, Kuyper ThW, Noordeloos ME, Vellinga EC (Eds) Flora Agaricina Neerlandica 1. A.A. Balkema, Rotterdam, 54–64.

Vilgalys R, Hester M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several PubMed DOI PMC

Virágh M, Merényi Z, et al. (2022) Evolutionary morphogenesis of sexual fruiting bodies in PubMed DOI PMC

Vizzini A, Consiglio G, et al. (2016) DOI

Vizzini A, Consiglio G, Setti L. (2020) Testing spore amyloidity in PubMed DOI PMC

Vizzini A, Alvarado P, et al. (2024) Family matters inside the order PubMed DOI PMC

Vizzini A, Consiglio G, et al. (2025) PubMed DOI PMC

Voto P. (2022)

Voyron S, Ercole E, et al. (2017) Fine-scale spatial distribution of orchid mycorrhizal fungi in the soil of host-rich grasslands. New Phytologist 213: 1428–1439. 10.1111/nph.14286 PubMed DOI

Wickham H. (2016) ggplot2: elegant graphics for data analysis. 2 DOI

Wilhelm M. (1992) Drei

White TJ, Bruns T, et al. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ. (Eds) PCR protocols a guide to methods and applications.Academic Press, San Diego, 315–322. 10.1016/B978-0-12-372180-8.50042-1 DOI

Zeller B, Brechet C, et al. (2007) 13C and 15N isotopic fractionation in trees, soils and fungi in a natural forest stand and a Norway spruce plantation. Annals of Forest Science 64: 419–429. 10.1051/forest:2007019 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...